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ON A SPECIAL CLASS OF STANLEY-REISNER
IDEALS

K. BORNA

Abstract. For an n-gon with vertices at points 1, 2, · · · , n, the
Betti numbers of its suspension, the simplicial complex that in-
volves two more vertices n + 1 and n + 2, is known. In this paper,
with a constructive and simple proof, we generalize this result to
find the minimal free resolution and Betti numbers of the S-module
S/I where S = K[x1, · · · , xn] and I is the associated ideal to the
generalized suspension of it in the Stanley-Reisner sense. Applica-
tions to Stanley-Reisner ideals and simplicial complexes are con-
sidered.

Introduction

Let S = K[x1, · · · , xn] be a polynomial ring over a field K. In
[1, 2] Alwis considered the general n-gon with vertices at the points
1, 2, · · · , n. For its suspension, i.e., the simplicial complex that involves
two more vertices (n+1 and n+2), he found the minimal free resolution
and the Betti numbers of the S-module S/I where I is the associated
ideal to the suspension in the Stanley-Reisner sense. In this paper, we
generalize this result to sum of certain graded ideals over a graded ring.
More precisely, let J1 be an ideal of S and

0→ Sβ
S
c

fc−→ Sβ
S
c−1 → . . .→ Sβ

S
1

f1−→ Sβ
S
0

f0−→ S

J1

→ 0
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be the minimal free resolution of the S-module S/J1. Let xn+1, . . . , xn+r

be r indeterminates over S, for some non-negative integer r, and R =
K[x1, . . . , xn+r]. We construct the minimal free resolution of the R-
module R/I where I = J1R+(y) and y is any homogenous polynomial
f(xn+1, · · · , xn+r). In other words, in Theorem 1.1 we show that the
following is the minimal free resolution for R/I

0→ RβS
c

δc+1−−→ RβS
c ⊕RβS

c−1 → . . .→ RβS
1 ⊕RβS

0
δ1−→ RβS

0 → R/I → 0.

By an inductive argument we may generalize the ideal (y) to (f1, · · · , fn)
where fi is any homogenous polynomial in K[xri , · · · , xri+1

] for r1 <
r2 < · · · < rt.

Notice that y is regular modulo the ideal J1 and using the short exact

sequence 0 → R/J1R
∗−→ R/J1R → R/I → 0, where the map

∗−→ is
simply multiplication with y which is clearly injective, the concatena-
tion of this one-step resolution of R/I with the given resolution of S/J1

will be obtained by mapping cone. We will also construct the minimal
resolution of the R-module R/I. Furthermore we obtain the graded
version of this result and compute the maps in the linear resolution
explicitly in Theorem 1.1. As an application, let I be a graded ideal
of S such that S/I is Cohen-Macaulay with a pure resolution where
its Betti numbers are given in [3, Theorem 4.1.15]. Then in Corollary
1.7 we have the Betti numbers of ideal J := I + (y) where y is any
homogenous polynomial f(xn+1, · · · , xn+r).

Section 2 is devoted to further analysis of a special class of Stanley-
Reisner ideals. In fact we assume that I = (z1, · · · , zt), where zi =
ki∏
j=1

xij and that each xij occurs only once in I. Now the Betti numbers

of R/I can be easily obtained from Theorem 1.1. It can also be seen
from the fact that I is generated by a regular sequence and using Koszul
complex. We analysis this certain family of ideals in terms of simplicial
complexes. Let ∆ be the simplicial complex corresponding to I. From
the primary decomposition of I we see that ∆ is pure of dimension
n − t − 1. In fact it is consisting of k1 · · · kt facets all of dimension
n − t − 1. Furthermore, the ideal I is perfect unmixed and R/I is
a Cohen-Macaulay ring. By a result of Eagon, Reiner and a result
of Terai we deduced that the regularity of R/I∆∗ is reg (R/I∆∗) =
proj.dimR/I − 1, where ∆∗ is the Alexander dual of ∆. On the other
hand, the regularity of R/I is k1 + · · · + kt − t; see [4, Theorem 4.0].
Finally we provide some concrete examples to verify our results.
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1. Main result; the ordinary and graded versions

We remind the reader of the concept of mapping cone, [5, pp. 650].
Given a morphism α : F −→ G of two complexes (F, ϕ) and (G,ψ)
the mapping cone M := M(α) of α is the complex such that M(α)i =
Fi−1 ⊕Gi, with differential

Fi ⊕Gi+1
σi+1→ Fi−1 ⊕Gi,

where σi+1 =

(
−ϕi αi
ψi+1 0

)
, that is, on Gi+1 the map is the differential

of G, but on Fi the map is the sum of the differential of F and the given
map α of complexes.

Similar to [1, Theorem 3.1] we can prove the following result. For the
sake of convenience of reader we include the sketch of the proof.

Theorem 1.1. Let J1 be a homogenous ideal of the polynomial ring
S = K[x1, . . . , xn]. Let

0→ Sβ
S
c

fc−→ Sβ
S
c−1 → . . .→ Sβ

S
1

f1−→ Sβ
S
0

f0−→ S

J1

→ 0 (1.1)

be the minimal free resolution of the S-module S/J1 with appropriate
boundary maps. Let xn+1, . . . , xn+r be r indeterminate over S, for some
non-negative integer r, and R = K[x1, . . . , xn+r]. Then the following is
the minimal free resolution of the R-module R/I where I = J1R + (y)
and y is any homogenous polynomial f(xn+1, · · · , xn+r) :

0→ RβS
c

δc+1−−→ RβS
c ⊕RβS

c−1 → . . .→ RβS
1 ⊕RβS

0
δ1−→ RβS

0 → R/I → 0.
(1.2)

Proof. Let J = J1R. Tensoring the exact sequence (1.1) with the K-
module K[xn+1, . . . , xn+r] we exhibit a complex which is exact at all
places except at degree 0. Then we consider the mapping cone of the
following double complex where the two rows are the same and the
vertical maps are multiplications by y:

0 −−−→ RβS
c

dc−−−→ RβS
c−1 −−−→ . . . −−−→ RβS

1
d1−−−→ RβS

0 −−−→ 0yy

yy

yy

yy

yy

0 −−−→ RβS
c

dc−−−→ RβS
c−1 −−−→ . . . −−−→ RβS

1
d1−−−→ RβS

0 −−−→ 0
(1.3)

That is we have the following complex

0→ RβS
c

δc+1−−→ RβS
c ⊕RβS

c−1 → . . .→ RβS
1 ⊕RβS

0
δ1−→ RβS

0 → 0 (1.4)
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where δi : RβS
i ⊕RβS

i−1 −→ RβS
i−1 ⊕RβS

i−2 , i = 1, 2, . . . , c+ 1 is given by
δi(p, q) = (di(p) + (−1)iyq, di−1(q)) for i = 2, 3, . . . , c, and, δ1(p, q) =
(d1(p) + (−1)yq, 0),
δc+1(p, q) = ((−1)c+1yq, dc(q)). Now it is easy to see that δi−1 ◦ δi = 0.
The proof is complete if we show the exactness and the minimality
of (1.4). To this end note that (1.4) is exact at all places except degree
0 where its homology is R/I and the minimality is obtained directly
from the minimality of (1.1). �

The following consequences are now immediate:

Corollary 1.2. Let S = K[x1, . . . , xn], J1 any homogenous ideal of S
for which proj.dim(S/J1) = c. Then for the ideal I = J1R+ (y) of R =
S[x1, . . . , xn+r] where y is any homogenous polynomial f(xn+1, · · · , xn+r).
Then the ith Betti number R/I, βRi (R/I), is given by

βRi (R/I) =


βS0 (S/J1), i=0,
βSi (S/J1) + βSi−1(S/J1), i=1,2,. . . ,c,
βSc (S/J1), i=c+1,
0, otherwise.

(1.5)

Example 1.3. Let S = K[x1, . . . , x3] and J3 = (x3
1, x2x

3
3) be an ideal

of S. Then I3 = (x3
1, x2x

3
3, x

2
4) is an ideal of R = K[x1, . . . , x4]. Now

(1.5) enables us to compute the Betti numbers of R/I3 in terms of the
Betti numers of S/J3, i.e.,

βR0 (R/I3) = βS0 (S/J3) = 1,
βR1 (R/I3) = βS1 (S/J3) + βS0 (S/J3) = 2 + 1 = 3,
βR2 (R/I3) = βS2 (S/J3) + βS1 (S/J3) = 1 + 2 = 3,
βR3 (R/I3) = βS2 (S/J3) = 1.

One can note that in order to compute βSi (S/J3) for i = 0, 1, 2, we
apply (1.5) once again to S = K[x1] and J1 = (x3

1).

Remark 1.4. By an inductive argument the ideal (y) in Theorem 1.1
can be extended to (f1, · · · , ft) where fi is any homogenous polynomial
in K[xri , · · · , xri+1

] for r1 < r2 < · · · < rt. So, our general result as we
mentioned in the abstract can be obtained from this observation.

In the following we have the graded version of our Theorem 1.1.

Theorem 1.5. Let S = K[x1, · · · , xn] be a polynomial ring over a
field K, and let J be a graded ideal of S with the (minimal) graded free
resolution

0 −→ ⊕S(−acj)βcj −→ · · · −→ ⊕S(−a1j)
β1j −→ S −→ S/J −→ 0,

(1.6)
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then for the ring R = K[x1, · · · , xn+r] and its ideal I := JR + (y),
where y is any homogenous polynomial f(xn+1, · · · , xn+r) of degree e =
n+r∑
i=n+1

αi, the (minimal) graded free resolution of R/I is as follows:

0 −→⊕R(−acj − e)βcj −→ ⊕R(−acj)βcj
⊕
⊕R(−ac−1 j − e)βc−1 j −→

· · · −→ ⊕R(−a2j)
β2j
⊕
⊕R(−a1j − e)β1j −→

⊕R(−a1j)
β1j
⊕

R(−e) −→ R −→ R/I −→ 0.

(1.7)

Proof. For a moment ignore the graded settings. Then by Theorem 1.1
the desired resolution is obtained provided (1.6) is a free resolution of
S/J1. Furthermore (1.7) is minimal as long as (1.6) is minimal.
It only remains to verify that in (1.7) the maps are zero maps, that is
they preserve the degree. But this simple matter of checking holds due
to the formulation of differentials in the new resolution:

δi(p, q) = (di(p) + (−1)iyq, di−1(q)) for i = 2, 3, . . . , c, and,

δ1(p, q) = (d1(p) + (−1)yq, 0),

δc+1(p, q) = ((−1)c+1yq, dc(q)).

�

As an example of Theorem 1.5 we have:

Example 1.6. Let R = Q[x1, · · · , x7]. It is easy to see that for the
ideal I1 := (x1, x

2
2), the minimal free resolution of R/I1 is

0 −→ R(−3) −→ R(−1)⊕R(−2) −→ R −→ R/I1 −→ 0

In the following we compute the minimal free resolution of some new
ideals:
(i) Let I2 := I1 + (x5

3). Then for R/I2 we get

0 −→ R(−8) −→R(−3)⊕R(−6)⊕R(−7) −→
R(−1)⊕R(−2)⊕R(−5) −→ R −→ R/I2 −→ 0.

(ii) For I3 := I2 + (x4
4) = (x1, x

2
2, x

5
3, x

4
4), the minimal free resolution of

R/I3 is

0 −→ R(−12) −→R(−7)⊕R(−8)⊕R(−10)⊕R(−11) −→
R(−3)⊕R(−5)⊕R2(−6)⊕R(−7)⊕R(−9) −→
R(−1)⊕R(−2)⊕R(−4)⊕R(−5) −→ R −→
R/I3 −→ 0.
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(iii) Finally for I4 := I2 + (x4x5) = (x1, x
2
2, x

5
3, x4x5) we obtain

0 −→ R(−10) −→R(−5)⊕R2(−8)⊕R(−9) −→
R2(−3)⊕R(−4)⊕R(−6)⊕R2(−7) −→
R(−1)⊕R2(−2)⊕R(−5) −→ R −→ R/I4 −→ 0.

By [3, Theorem 4.1.15] for a graded ideal I of a polynomial ring
S = K[x1, · · · , xn] over a field K such that S/I is Cohen-Macaulay
with a pure resolution of type (d1, · · · , dp) its Betti numbers are given
by this formula

βSi (S/I) = (−1)i+1
∏
j 6=i

dj
(dj − di)

.

Now as an application of Corollary 1.2 we can compute the Betti num-
bers of the ideals in the following form. In fact set R = K[x1, · · · , xn+r]
and J := I+(y) where y is any homogenous polynomial f(xn+1, · · · , xn+r).

Corollary 1.7. With the notations as above we have βR0 (R/J) =
βS0 (S/I) = 1,

βRi (R/J) = (−1)i+1
∏
j 6=i

dj
(dj − di)

+ (−1)i
∏
j 6=i−1

dj
(dj − di−1)

for i = 1, · · · , p, βRp+1(R/J) = βSp (S/I) and βRi (R/J) = 0 for i > p+1.

2. Analysis of a special class of Stanley-Reisner ideals

This section is devoted to further analysis of a special class of Stanley-
Reisner ideals which is complete intersection square free monomial
ideals or Stanley-Reisner ideals of complete intersection simplicial com-
plexes. The results of this section are known, but as an application of
Theorem 1.1 we will reprove them. We mention that this analysis can
be done in different ways but here our aim is to avoid using complex
ideas and try to use simple tools as possible so that they can be fol-
lowed without much difficulty. Our special plan in the future works is
to make invariants of such ideals (and new derived classes) computable
by means of computer programs. We assume that I = (z1, · · · , zt),

where zi =

ki∏
j=1

xij and that each xij occurs only once in I. Now the

Betti numbers of R/I can be easily obtained from Theorem 1.1. We
analysis this certain family of ideals in terms of simplicial complexes
in Theorem 2.2 and subsequent results.
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A simplicial complex ∆ over a set of vertices V = {v1, · · · , vn} is a
collection of subsets of V, for which {vi} ∈ ∆ for all i and if F ∈
∆ then all subsets of F are also in ∆. An element of ∆ is called a face
of ∆, and the dimension of a face F of ∆ is defined as |F | − 1, where
|F | is the number of vertices of F. The faces of dimensions 0 and 1 are
called vertices and edges, respectively, and dim∅ = −1. The maximal
faces of ∆ under inclusion are called facets of ∆. The dimension of the
simplicial complex ∆ is the maximal dimension of its facets. Let ∆
be a simplicial complex on the vertex set V = {v1, · · · , vn}, and K
be a field. The Stanley-Reisner ring of the complex ∆ is the graded
K-algebra K[∆] = K[X1, · · · , Xn]/I∆, where I∆ is the ideal generated
by all monomials Xi1Xi2 · · ·Xik such that {vi1 , vi2 , · · · , vik} /∈ ∆. The
dimension of a Stanley-Reisner ring can be easily determined. For a
proof of the following result see [3, Theorem 5.1.4] for instance.

Theorem 2.1. Given a simplicial complex ∆, in order to reach I∆ we
may use the primary decomposition of the Stanley-Reisner ideal of ∆

I∆ =
⋂
F

PF ,

where the intersection is taken over all facets F of ∆, and PF denotes
the face ideal generated by all xi such that xi /∈ F . In particular,
dimK[∆] = dimR/I∆ = dim∆ + 1.

The simplicial complex ∆ is said to be pure if all its facets are of the
same dimension, namely dim∆. A Cohen-Macaulay simplicial complex
is pure. Our terminology and comments comes from [3, 8, 10].

Let ∆ be the following simplicial complex which corresponds to the
n-gon with vertices at the points 1, 2, . . . , n. Clearly ∆ is a pure sim-
plical complex (of dimension 1).

∆ = {∅, {1}, {2}, . . . , {n}, {1, 2}, {2, 3}, . . . , {n, 1}}. (2.1)

Let S = K[x1, x2, . . . , xn], and let J1 be the Stanley-Reisner ideal
associated to ∆ in (2.1), i.e., J1= the ideal in S generated by all mono-
mials of the form xi1xi2 . . . xir , where 1 ≤ i1 < i2 < . . . < ir ≤ n and
{i1, . . . , ir} /∈ ∆. Then it easily follows that for each n ≥ 3 we get:

J1 =

{
(x1x2x3), n=3;
(x1x3, x1x4, · · · , x1xn−1, x2x4, · · · , x2xn, · · · , xn−2xn), otherwise.

In [2] the author showed that the ith Betti number of the S-module
S/J1, denoted by βSi (S/J1) or simply βSi , which is the ith Betti number
of the n-gon, for n ≥ 3 is given by
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βSi =


1, i=0,(
n
i+1

)
i(n−i−2)
n−1

, i=1,2,. . . ,n-3,
1, i=n-2,
0, otherwise.

As well we have

0→ Sβ
S
n−2

fn−2−−→ Sβ
S
n−3 → . . .→ Sβ

S
1

f1−→ Sβ
S
0

f0−→ S

J1

→ 0

is the minimal free resolution of the S-module S/J1 with appropriate
boundary maps.
As a consequence of Theorem 1.1 we compute the Betti numbers of a
special class of Stanley-Reisner ideals which can be obtained from the
Koszul complex as it is shown in the proof of the following theorem.
We analysis this certain family of ideals in terms of simplicial com-
plexes.

Theorem 2.2. Let ∆ be a simplicial complex for which I := I∆ =

(z1, · · · , zt), where zi =

ki∏
j=1

xij and that each xij occurs only once in

I∆. Then we have:

(i) The Betti numbers of I are given by the following formula:

βRi (R/I) =


1, i=0,(
t
i

)
, i=1,2,. . . ,t-1,

1, i=t,
0, otherwise.

(ii) I is perfect, unmixed and also R/I is Cohen-Macaulay.

Proof. We prove (i) by induction on t. Since for t = 1, I is just of the
form I = (xα1

1 · · ·xαs
s ) for some s, where αi ∈ {0, 1}. So one has

βRi (R/I) =

 1, i=0,
1, i=1,
0, otherwise.

Now let t > 1, and assume that the case t − 1 is settled. Take S =
k[xij : i = 1, · · · , t − 1]. Consider the ideal J = (z1, · · · , zt−1) of S.
Then by induction hypothesis we have

βSi (S/J) =


1, i=0,(
t−1
i

)
, i=1,2,. . . ,t-2,

1, i=t-1,
0, otherwise.
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Formula (1.5) implies that

βRi (R/I) =


1, i=0,(
t−1
i

)
+
(
t−1
i−1

)
=
(
t
i

)
, i=1,2,. . . ,t-1,

1, i=t,
0, otherwise.

For the proof (ii) we note that by Theorem 2.1 ∆ is pure of dimension
n − t − 1. In fact it is consisting of k1 · · · kt facets all of dimension
n− t− 1. Hence,

dimR/I = dim∆ + 1 = n− t− 1 + 1 = n− t = dimR− t.
Then by [3, Theorem 2.1.2 (c)] it follows that z1, · · · , zt is a regular
sequence on R.
Furthermore, by the Auslander-Buchsbaum formula we have

depthR/I = depthR− proj.dimR/I = n− t,
hence the ring R/I is Cohen-Macaulay and so ∆ is Cohen-Macaulay.
In addition, I is perfect, i.e., we have

grade I = height I = dimR− dimR/I = t = proj.dimR/I

see [3, Corollary 2.1.4]. The first equality can also be seen from the
primary decomposition of I and [3, Proposition 1.2.10 (c)].
Finally let p1, . . . , pr be the prime ideals in the primary decomposition
of I. Since I is generated by t = height I elements over the polynomial
ring R, I is unmixed; see [7]. Hence p1, . . . , pr are the minimal prime
ideals of I; see [3, Theorem 2.1.6]. Thus Ass(R/I) = {p1, . . . , pr}. �

Remark 2.3. The ideal I is generated by a regular sequence on R. Thus
the Castelnuovo-Mumford regularity of R/I is k1 + · · ·+ kt− t ; see [4,
Theorem 4.0].

Let ∆ be a simplicial complex and ∆∗ denote the Alexander dual of ∆,
i.e., the simplicial complex

∆∗ = {F ⊆ [n] : [n]− F /∈ ∆}

Corollary 2.4. Consider the graded version of Theorem 2.2. Then the
regularity of R/I∆∗ is

reg (R/I∆∗) = proj.dimR/I − 1.

Proof. Using the primary decomposition of I∆∗ we have

I∆∗ = (x1,1, . . . , x1,t1) ∩ · · · ∩ (xs,1, . . . , xs,ts).

By a known result of Eagon and Reiner, K[∆] is Cohen-Macaulay if
and only if I∆∗ has a linear resolution. Furthermore, proj.dim(K[∆]) =
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reg (I∆∗) by a result of Terai. In view of Theorem 1.5, R/I is Cohen-
Macaulay and proj.dim(K[∆]) = t. Therefore, reg (I∆∗) = t and so
reg (R/I∆∗) = t− 1. �

In the following we have some examples.

Example 2.5. Let S = K[x1, x2] and J = (x1x2) be an ideal of S.
Obviously we have βS0 (S/J) = 1, βS1 (S/J) = 1.

Now let I0 = (x1x2, x3x4) be an ideal of R = K[x1, . . . , x4]. Then
(1.5) implies that βR0 (R/I0) = βS0 (S/J) = 1,

βR1 (R/I0) = βS1 (S/J) + βS0 (S/J) = 1 + 1 = 2,
βR2 (R/I0) = βS1 (S/J) = 1.

Furthermore, applying [3, Excersice 4.4.16 (b)], it is easy to see that

I0 =(x1x2, x3x4) = (x1, x3x4) ∩ (x2, x3x4)

=(x1, x3) ∩ (x1, x4) ∩ (x2, x3) ∩ (x2, x4),

Hence I0 is the Stanley-Reisner ideal of a pure simplicial complex ∆0

consisting of 4 facets all of dimension 1. As a result

dimK[∆0] = dimR/I0 = dim∆0 + 1 = 1 + 1 = 2. 2

Example 2.6. Let S = K[x1, . . . , x4] and J1 = (x1x3, x2x4) be an ideal
of S. Then I1 = (x1x3, x2x4, x5x6) is an ideal of R = K[x1, . . . , x6] and
using Example 2.5 we have

βR0 (R/I1) = βS0 (S/J1) = 1,
βR1 (R/I1) = βS1 (S/J1) + βS0 (S/J1) = 2 + 1 = 3,
βR2 (R/I1) = βS2 (S/J1) + βS1 (S/J1) = 1 + 2 = 3,
βR3 (R/I1) = βS2 (S/J1) = 1.

Furthermore, by the help of [3, Excersice 4.4.16 (b)]

I1 =(x1x3, x2x4, x5x6) = (x1, x2x4, x5x6) ∩ (x3, x2x4, x5x6)

=(x1, x2, x5x6) ∩ (x1, x4, x5x6) ∩ (x3, x2, x5x6) ∩ (x3, x4, x5x6)

=(x1, x2, x5) ∩ (x1, x2, x6) ∩ (x1, x4, x5) ∩ (x1, x4, x6) ∩ (x3, x2, x5)

∩ (x3, x2, x6) ∩ (x3, x4, x5) ∩ (x3, x4, x6).

Thus I1 is the Stanley-Reisner ideal of a pure simplicial complex ∆1

which consists of 8 facets all of dimension 2. One can easily see that

dimK[∆1] = dimR/I1 = dim∆1 + 1 = 2 + 1 = 3. 2
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Example 2.7. Let S = K[x1, . . . , x4] and J2 = (x1x3, x2x4) be an ideal
of S. Then I2 = (x1x3, x2x4, x5x6x7) is an ideal of R = K[x1, . . . , x7]
and similar to Example 2.6 we have

βR0 (R/I2) = 1, βR1 (R/I2) = 3, βR2 (R/I2) = 3, and βR3 (R/I2) = 1.

Furthermore, using [3, Excersice 4.4.16 (b)]

I2 =(x1x3, x2x4, x5x6x7) = (x1, x2x4, x5x6x7) ∩ (x3, x2x4, x5x6x7)

=(x1, x2, x5x6x7) ∩ (x1, x4, x5x6x7) ∩ (x3, x2, x5x6x7) ∩ (x3, x4, x5x6x7)

=(x1, x2, x5) ∩ (x1, x2, x6) ∩ (x1, x2, x7) ∩ (x1, x4, x5) ∩ (x1, x4, x6)

∩ (x1, x4, x7) ∩ (x3, x2, x5) ∩ (x3, x2, x6) ∩ (x3, x2, x7) ∩ (x3, x4, x5)

∩ (x3, x4, x6) ∩ (x3, x4, x7).

Hence I2 is the Stanley-Reisner ideal of a pure simplicial complex ∆2

which consists of 12 facets all of dimension 3. One can easily see that

dimK[∆2] = dimR/I2 = dim∆2 + 1 = 3 + 1 = 4. 2
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