تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,128 |
تعداد مشاهده مقاله | 10,280,375 |
تعداد دریافت فایل اصل مقاله | 6,912,248 |
Symmetric-diagonal reductions as preprocessing for symmetric positive definite generalized eigenvalue solvers | ||
Journal of Mathematical Modeling | ||
مقاله 6، دوره 11، شماره 2، مهر 2023، صفحه 301-322 اصل مقاله (287.94 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2023.23734.2120 | ||
نویسنده | ||
Morad Ahmadnasab* | ||
Department of Mathematics, Faculty of Science, University of Kurdistan, 66177-15175, Sanandaj, Iran | ||
چکیده | ||
We discuss some potential advantages of the orthogonal symmetric-diagonal reduction in two main versions of the Schur-QR method for symmetric positive definite generalized eigenvalue problems. We also advise and use the appropriate reductions as preprocessing on the solvers, mainly the Cholesky-QR method, of the considered problems. We discuss numerical stability of the methods via providing upper bound for backward error of the computed eigenpairs and via investigating two kinds of scaled residual errors. We also propose and apply two kinds of symmetrizing which improve the stability and the performance of the methods. Numerical experiments show that the implemented versions of the Schur-QR method and the preprocessed versions of the Cholesky-QR method are usually more stable than the Cholesky-QR method. | ||
کلیدواژهها | ||
Symmetric definite generalized eigenvalue problem؛ Cholesky-QR method؛ Schur-QR method؛ QZ method؛ rounding error analysis | ||
آمار تعداد مشاهده مقاله: 148 تعداد دریافت فایل اصل مقاله: 217 |