تعداد نشریات | 31 |
تعداد شمارهها | 743 |
تعداد مقالات | 7,077 |
تعداد مشاهده مقاله | 10,162,827 |
تعداد دریافت فایل اصل مقاله | 6,862,249 |
نقشه یابی ارتباطی صفات فیزیولوژیک و بیوشیمیایی گندم با استفاده از نشانگرهای SNP در شرایط بهینه و تنش کمبود روی | ||
تحقیقات غلات | ||
دوره 12، شماره 2، شهریور 1401، صفحه 187-205 اصل مقاله (3.23 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/cr.2023.23561.1752 | ||
نویسندگان | ||
نسرین ولی پور1؛ هادی علی پور* 2؛ رضا درویش زاده3 | ||
1دانش آموخته کارشناسی ارشد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
2دانشیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
3استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
چکیده | ||
مقدمه: تنشهای محیطی نظیر تنش کمبود عناصر غذایی، تهدیدات جدی برای تولیدات کشاورزی محسوب میشوند. عنصر روی از جمله عناصر ضروری کممصرف، اما با ارزش تغذیهای بالا است که نقش مهمی در رشد ریشه، افزایش عملکرد محصول، مقاومت گیاه در برابر بیماریها، فتوسنتز، یکپارچگی غشای سلولی، تشکیل دانه گرده، تولید انرژی و افزایش آنزیمهای آنتیاکسیدانی و کلروفیل در بافتهای گیاهی دارد. علاوه بر این، روی برای تولید هورمونهای گیاهی مانند اسید آبسیزیک، اکسین، جیبرلینها و سیتوکینین ضروری و کمبود آن باعث اختلال در تکثیر سلولهای گیاهی میشود. میزان روی دانه گندم بین 20 تا 30 میلیگرم در کیلوگرم است. حدود 50 درصد از خاکهایی که برای تولید غلات در دنیا استفاده میشوند، مقدار روی قابل استفاده کافی ندارند. یکی از راهکارهای مقابله با کمبود روی، اصلاح ارقام روی-کارا است و بنابراین انجام تحقیقات پایه بهمنظور شناسایی ژنهای کنترل کننده آن ضروری است. در تحقیق حاضر 64 رقم گندم بهاره تحت شرایط بهینه و تنش کمبود روی مورد مطالعه گرفت و هدف از آزمایش، شناسایی مکانهای ژنومی کنترل کننده صفات فنولوژیک، فیزیولوژیک و بیوشیمیایی با استفاده از روش GWAS مبتنی بر LD بر اساس نشانگرهای SNP بود. مواد و روش ها: بهمنظور نقشهیابی در سطح ژنوم عملکرد و صفات فیزیولوژیک و بیوشیمیایی در ارقام گندم نان، تعداد 64 رقم گندم بهاره به صورت یک آزمایش گلدانی در قالب طرح لاتیس ساده تحت دو شرایط بهینه و تنش کمبود روی در مزرعه تحقیقاتی دانشگاه ارومیه کشت شدند. صفات مطالعه شده شامل روز تا جوانهزنی، روز تا سنبلهدهی، روز تا گردهافشانی، روز تا رسیدگی فیزیولوژیک، طول پرشدن دانه، دمای کانوپی، کلروفیل کل، شاخص سطح برگ، وزن تر و خشک اندام هوایی، محتوای آب نسبی برگ، غلظت روی اندام هوایی، غلظت پروتئین دانه و عملکرد دانه بودند. ارزیابی ژنوتیپی جمعیت با استفاده از 36360 نشانگر SNP انجام شد. برای تعیین ساختار جمعیت، از تجزیه به مؤلفههای اصلی (PCA) استفاده و نتایج PCA بهجای ماتریس Q بهعنوان متغیر کمکی جهت انجام تجزیه ارتباطی در نظر گرفته شد. برای انجام تجزیه ارتباطی و شناسایی نشانگرهای پیوسته با ژنهای کنترل کننده صفات مورد مطالعه نیز از دو روش GLM و MLM استفاده و ارتباطهای نشانگر- صفت (MTA) معنیدار بهطور جداگانه برای هر یک از شرایط آزمایشی شناسایی شد. یافته های تحقیق: نتایج تجزیه ارتباطی با استفاده از روش GLM تعداد 145 ارتباط نشانگر- صفت (MTA) تحت شرایط بهینه و 135 MTA تحت شرایط تنش کمبود روی شناسایی کرد، در حالیکه با استفاده از روش MLM تعداد 165 MTA تحت شرایط بهینه و 142 MTA تحت شرایط تنش کمبود روی شناسایی شد. بیشترین و کمترین تعداد ارتباط نشانگر- صفت معنیدار با هر دو روش GLM و MLM تحت شرایط بهینه، بهترتیب برای صفت وزن خشک و طول دوره پرشدن دانه شناسایی شد، در حالیکه تحت شرایط تنش کمبود روی، بیشترین تعداد ارتباط نشانگر- صفت معنیدار با هر دو روش تجزیه ارتباطی مربوط به صفت محتوای آب نسبی برگ و کمترین تعداد مربوط به صفات غلظت پروتئین دانه و غلظت روی اندام هوایی بود. از ارتباطهای نشانگر- صفت معنیدار شناسایی شده در این آزمایش، میتوان بهمنظور افزایش کارایی برنامههای بهنژادی از طریق فرایند انتخاب بهکمک نشانگر استفاده کرد. نتیجه گیری: نتایج مطالعه حاضر، کارایی استفاده از روش نقشهیابی ارتباطی و مدلهای GLM و MLM را در شناسایی نشانگرهای پیوسته با صفات ارزیابی شده در گندم نشان داد. همچنین، اطلاعات بهدست آمده از این آزمایش نشان داد که نشانگرهای SNP ابزار توانمندی برای ارزیابی تنوع ژنتیکی و تهیه ساختار جمعیتهای گندم هستند و میتوانند از طریق انتخاب بهکمک نشانگر در برنامههای بهنژادی مورد استفاده قرار گیرند. البته لازم است نشانگرهای شناسایی شده در جمعیتهای بزرگتر مورد بررسی قرار گیرند تا از ارتباط آنها با صفات مورد مطالعه اطمینان حاصل شود. در این مطالعه چندین مکان ژنی مشترک نیز برای صفات مورد مطالعه شناسایی شد که میتوان از آنها بهمنظور گزینش همزمان چند صفتی در برنامههای بهنژادی آینده استفاده کرد. | ||
کلیدواژهها | ||
ارتباط نشانگر- صفت؛ تنش عناصر غذایی؛ ساختار جمعیت؛ گندم بهاره؛ نقشهیابی در سطح ژنوم | ||
سایر فایل های مرتبط با مقاله
|
||
اصل مقاله | ||
این مقاله حاوی یک فایل تکمیلی برای شکل های مقاله است. | ||
مراجع | ||
Alipour, H. 2016. Association mapping of important agronomic traits in bread wheat. Ph.D. Dissertation, University of Tehran, Tehran, Iran. (In Persian).##Al-Maskri, A.Y., Sajjad, M. and Khan, S.H. 2012. Association mapping: A step forward to discovering new alleles for crop improvement. International Journal of Agriculture and Biology 14: 153-160.##Alomari, D.Z., Eggert, K., Von Wiren, N., Alqudah, A.M., Polley, A., Plieske, J., Ganal, M.W., Pillen, K. and Röder, M.S. 2018. Identifying candidate genes for enhancing grain Zn concentration in wheat. Frontiers in Plant Science 9: 1313. http://doi.org/10.3389/fpls.2018.01313.##Bernardo, R. 2013. Genome wide markers for controlling background variation in association mapping. The Plant Genome 6 (1): 2012-11. https://doi.org/10.3835/plantgenome2012.11.0028.##Bouis, H.E. and Welch, R.M. 2010. Biofortification—A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science 50: 20-32.##Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y. and Buckler, E.S. 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633-2635.##Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I. and Lux, A. 2007. Zinc in plants. New Phytologist 173: 677-702.##Breseghello, F. and Sorrells, M.E. 2006. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172: 1165-1177.##Cakmak, I. and Kutman, U.Á. 2018. Agronomic biofortification of cereals with zinc. A review. Europian Journal of Soil Science 69: 172-180.##Chao, S., Dubcovsky, J., Dvorak, J., Luo, M.C., Baenziger, S.P., Matnyazov, R., Clark, D.R., Talbert, L.E., Anderson, J.A., Dreisigacker, S. and Glover, K. 2010. Population-and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11: 1-17.##Chu, C.G., Xu, S.S., Friesen, T.L. and Faris, J.D. 2008. Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Molecular Breeding 22: 251-266.##Cuthbert, J.L., Somers, D.J., Brûlé-Babel, A.L., Brown, P.D. and Crow, G.H. 2008. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theoretical and Applied Genetics 117: 595-608.##Edae, E.A., Byrne, P.F., Manmathan, H., Haley, S.D., Moragues, M., Lopes, M.S. and Reynolds, M.P. 2013. Association mapping and nucleotide sequence variation in five drought tolerance candidate genes in spring wheat. The Plant Genome 6 (2): 2013-04. https://doi.org/10.3835/plantgenome2013.04.0010.##Edwards, D., Batley, J. and Snowdon, R.J. 2013. Accessing complex crop genomes with next-generation sequencing. Theoretical and Applied Genetics 126: 1-11.##FAO. 2022. FAOSTAT. Agriculture Organization of the United Nations. Statistical Database. Crop Prospects and Food Situation#4, December 2022. Ultima consulta 26.##Graham, R.D. and Rengel, Z. 1993. Genotypic variation in zinc uptake and utilization by plants. In: Robson, A.D. (Ed.). Zinc in Soils and Plants. Developments in Plant and Soil Sciences. Vol. 55. Springer, Dordrecht. pp: 107-118. https://doi.org/10.1007/978-94-011-0878-2.##Graham, R.D. and Welch, R.M. 1996. Breeding for staple food crops with high micronutrient density. Project paper. Agricultural strategies for micronutrients. International Food Policy Research Institute. 79 p.##Hao, C., Wang, L., Ge, H., Dong, Y. and Zhang, X. 2011. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLOS One 6: e17279.##Hosseini, T.A.S. and Abdolshahi, R. 2011. QTLs mapping controlling bread wheat germplasm (Triticum aestivum L.). Proceedings of the National Conference on Modern Agricultural Sciences and Technologies. September 10-12, 2011, Zanjan, Iran. (In Persian).##Ignaciuk, A. and Mason-D'Croz, D. 2014. Modelling adaptation to climate change in agriculture. OECD Food, Agriculture and Fisheries Papers 57-70.##Jacoby, W.G. 2000. Loess: A nonparametric, graphical tool for depicting relationships between variables. Electoral Studies 9: 577-613.##Jun, T.H., Van, K., Kim, M.Y., Lee, S.H. and Walker, D.R. 2008. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162: 179-191.##Khalid, S. and Amanullah and Ahmed, I. 2022. Enhancing zinc biofortification of wheat through integration of zinc, compost, and zinc-solubilizing bacteria. Agriculture 12 (7): 968.##Khoshgoftarmanesh, A.H. 2007. Assessment of plant nutritional status and optimal fertilizer management. Publication of Isfahan University of Technology, Isfahan, Iran. (In Persian).##Kirigwi, F.M., Van Ginkel, M., Brown-Guedira, G., Gill, B.S., Paulsen, G.M. and Fritz, A.K. 2007. Markers associated with a QTL for grain yield in wheat under drought. Molecular Breeding 20: 401-413.##Krishnappa, G., Khan, H., Krishna, H., Kumar, S., Mishra, C.N., Parkash, O., Devate, N.B., Nepolean, T., Rathan, N.D., Mamrutha, H.M., Srivastava, P., Biradar, S., Uday, G., Kumar, M., Shngh, G. and Singh, G.P. 2022. Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study. Scientific Reports 12: 12444.##Liu, B.H. 2017. Statistical genomics: Linkage, mapping, and QTL analysis. CRC press. United States.##Liu, C., Yu, W., Cai, C., Huang, S., Wu, H., Wang, Z., Wang, P., Zheng, Y., Wang, P. and Ye, N. 2022. Genetic diversity of tea plant (Camellia sinensis (L.) Kuntze) germplasm resources in Wuyi Mountain of China based on single nucleotide polymorphism (SNP) markers. Horticulturae 8: 932.##Lu, F., Lipka, A.E., Glaubitz, J., Elshire, R., Cherney, J.H., Casler, M.D., Buckler, E.S. and Costich, D.E. 2013. Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS Genet 9: e1003215.##Mansori, S., Mehrabi, A.A., Mohammadi, V., Arminian, A. and Roder, M. 2017. Genetic variation, population structure and linkage disequilibrium in durum wheat (Triticum durum Desf.) genotypes using SNP markers. Modern Genetics Journal 1: 157-168.##Marza, F., Bai, G.H., Carver, B.F. and Zhou, W.C. 2006. Quantitative trait loci for yield and related traits in the wheat population Ning7840×Clark. Theoretical and Applied Genetics 112: 688-698.##McDonald, G.K., Genc, Y. and Graham, R.D. 2008. A simple method to evaluate genetic variation in grain zinc concentration by correcting for differences in grain yield. Plant and Soil 306: 49-55.##Mohammadi, V., Ghanadha, M.R., Zali, A.A., Yazdi-Samadi, B. and Byrane, P. 2004. Mapping QTLs for morphological traits in wheat. Iranian Journal of Agricultural Sciences 36: 145-157. (In Persian with English Abstract).##Morgounov, A.I., Belan, I., Zelenskiy, Y., Roseeva, L., Tömösközi, S., Bekes, F., Abugalieva, A., Cakmak, I., Vargas, M. and Crossa, J. 2013. Historical changes in grain yield and quality of spring wheat varieties cultivated in Siberia from 1900 to 2010. Canadian Journal of Plant Science 93: 425-433.##Mourad, A.M., Belamkar, V. and Baenziger, P.S. 2020. Molecular genetic analysis of spring wheat core collection using genetic diversity, population structure, and linkage disequilibrium. BMC Genomics 21: 1-12.##Peck, A.W., McDonald, G.K. and Graham, R.D. 2008. Zinc nutrition influences the protein composition of flour in bread wheat (Triticum aestivum L.). Journal of Cereal Science 47: 266-274.##Pour-Aboughadareh, A., Poczai, P., Etminan, A., Jadidi, O., Kianersi, F. and Shooshtari, L. 2022. An analysis of genetic variability and population structure in wheat germplasm using microsatellite and gene-based markers. Plants 11 (9): 1205.##Rathan, N.D., Krishna, H., Ellur, R.K., Sehgal, D., Govindan, V., Ahlawat, A.K., Krishnappa, G., Jaiswal, J.P., Singh, J.B., Sv, S., Ambati, D., Singh, S.K., Bajpai, S.K. and Singh, A.M. 2022. Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.). Scientific Reports 12: 7037.##Sahranavard Azartamar, F., Darvishzadeh, R., Ghadimzadeh, M., Azizi, H. and Aboulghasemi, Z. 2015. Identification of SSR loci related to some important agromorphological traits in different oily sunflower (Helianthus annuus L.) lines using association mapping. Crop Biotechnology 10: 73-87. (In Persian with English Abstract).##Schlötterer, C. 2003. Hitchhiking mapping–functional genomics from the population genetics perspective. Trends in Genetics 19: 32-38.##Silveira, J.A.G., de Almeida Viégas, R., da Rocha, I.M.A., de Oliviera Monteiro Moreira, A.C., de Azevedo Moreira, R. and Oliveira, J.T.A. 2003. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. Journal of Plant Physiology 160: 115-123.##Stich, B., Utz, H.F., Piepho, H.P., Maurer, H.P. and Melchinger, A.E. 2010. Optimum allocation of resources for QTL detection using a nested association mapping strategy in maize. Theoretical and Applied Genetics 120: 553-561.##Tabatabaie, S.M.T., Solouki, M., Fakhery, B., Ismailzadeh Moghadam, M. and Mehdinezhad, N. 2004. Linkage mapping of bread wheat quality characteristics in bread wheat under drought stress. Journal of Modern Genetics 13: 281-292. (In Persian with English Abstract).##Tsilo, T.J., Hareland, G.A., Simsek, S., Chao, S. and Anderson, J.A. 2010. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theoretical and Applied Genetics 121: 717-730.##Tuberosa, R., Gill, B.S. and Quarrie, S.A. 2002. Cereal genomics: Ushering in a brave new world. Plant Molecular Biology 48: 445-449.##VanRaden, P.M. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science 91: 4414-4423.##Velu, G., Singh, R.P., Huerta-Espino, J., Peña, R.J., Arun, B., Mahendru-Singh, A., Mujahid, M.Y., Sohu, V.S., Mavi, G.S., Crossa, J. and Alvarado, G. 2012. Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Research 137: 261-267.##Wang, R.X., Hai, L., Zhang, X.Y., You, G.X., Yan, C.S. and Xiao, S.H. 2009. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai×Yu8679. Theoretical and Applied Genetics 118: 313-325.##Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B.E., Maccaferri, M., Salvi, S., Milner, S.G., Cattivelli, L. and Mastrangelo, A.M. 2014. Characterization of polyploid wheat genomic diversity using a high‐density 90 000 single nucleotide polymorphism array. Plant Biotechnology Journal 12: 787-796.##Welch, R.M. 2001. Impact of mineral nutrients in plants on human nutrition on a worldwide scale. In: Horst, W.J., Schenk, M.K., et al., (Eds.). Plant nutrition: Food security and sustainability of agro-ecosystems through basic and applied research Vol. 92. Springer, Dordrecht 284-285.##Zhang, D., Bai, G., Zhu, C., Yu, J. and Carver, B.F. 2010. Genetic diversity, population structure, and linkage disequilibrium in US elite winter wheat. The Plant Genome 3: 117-127.## | ||
آمار تعداد مشاهده مقاله: 457 تعداد دریافت فایل اصل مقاله: 330 |