تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,108 |
تعداد مشاهده مقاله | 10,240,267 |
تعداد دریافت فایل اصل مقاله | 6,897,870 |
نشانههای انتخاب مرتبط با صفت تعداد بره در هر نوبت زایش میشهای بلوچی | ||
تحقیقات تولیدات دامی | ||
دوره 11، شماره 4، بهمن 1401، صفحه 47-60 اصل مقاله (1.1 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2023.21129.1665 | ||
نویسندگان | ||
محمد مهدی کثیریان1؛ محسن قلی زاده* 2؛ قدرت الله رحیمی میانجی3؛ محمد حسین مرادی4 | ||
1دانشآموخته دکتری، گروه علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
2دانشیار، گروه علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
3استاد، گروه علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
4دانشیار، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک | ||
چکیده | ||
تعداد بره در هر زایش، یکی از مهمترین صفات اقتصادی و تولیدمثلی در گوسفند است. در این پژوهش از دادههای 96 رأس میش نژاد بلوچی تعیین ژنوتیپ شده با استفاده از ریزآرایههای نانویی گوسفندی K50 برای شناسایی نواحی ژنومی مورد انتخاب مرتبط با تعداد بره در هر زایش در گوسفند استفاده شد. میشها بر اساس دادههای فنوتیپی پنج شکم زایش به دو گروه مورد (دوقلوزا) و شاهد (تکقلوزا) تقسیم شدند. برای شناسایی نشانههای انتخاب از آمارههای FST و XP-EHH به ترتیب در بسته نرمافزاری FST و EHH و برای تجزیه هستیشناسی ژنهای شناسایی شده در مناطق مورد انتخاب از پایگاه داده DAVID استفاده شد. نتایج این پژوهش منجر به شناسایی 14 ناحیه ژنومی روی کروموزومهای 1 و 2 (دو ناحیه برای هر کدام)، 3، 7، 9، 14، 18، 22 و 23 (هر کدام یک ناحیه) و کروموزوم X (3 ناحیه) با آماره FST و 9 ناحیه ژنومی روی کروموزومهای 13،12،2 و 22 (یک ناحیه برای هر کدام)، 7 (سه ناحیه) و X (دو ناحیه) با آماره XP-EHH شد. برخی از ژنهای شناسایی شده در مناطق مورد انتخاب با تعداد بره در هر زایش (ACVR1 وTGIF1 )، رشد تخمدان و فولیکول (DDX24) و باروری (FOXH1) مرتبط بودند. در مسیرهای زیستی شناسایی شده، دو مسیر پاسخ دفاعی و تحرک سلولی دارای نقش مهمی در نرخ تخمکریزی و تعداد بره در هر زایش بودند. نتایج این مطالعه نشان داد که ژنهای ACVR1 و TGIF1را میتوان به عنوان ژنهای کاندید مرتبط با تعداد بره در هر زایش در برنامههای اصلاح نژادی گوسفند در نظر گرفت. | ||
کلیدواژهها | ||
آماره FST؛ آماره XP-EHH؛ تعداد بره در هر زایش؛ گوسفند بلوچی؛ نشانههای انتخاب | ||
مراجع | ||
Abasi-Mashei B., Rahimi-Mianji G. H., Nejati-Jawarami A., Moradi M. H. and Son K. 2017. Genomic scan for selection signature associated with mastitis in German Holestin cow. Iranian Journal Animal Science, 48: 453-461. (In Persian). Abdoli R., Zamani P., Mirhosseini S. Z., Ghavi Hossein-Zadeh N. and Almasi M. 2019. Genetic parameters and trends for litter size in Markhoz goats. Revista Colombiana de Ciencias Pecuarias, 32(1): 58-63. Aldawood N., Alrezaki A., Alanazi S., Amor N., Alwasel S. and Sirotkin A. 2020. Acrylamide impairs ovarian function by promoting apoptosis and affecting reproductive hormone release, steroidogenesis and autophagy-related genes. Ecotoxicology and Environmental Safety, 197: 110595-1105599. Al-Lawama M., Albaramki J., Altamimi M. and El-Shanti H. 2019. Congenital glucose-galactose malabsorption: A case report with a novel SLC5A1 mutation. Clinical Case Reports, 7: 51-53. Akey J. M., Zhang G., Zhang K., Jin L. and Shriver M. D. 2002. Interrogating a high-density SNP map for signatures of natural selection. Genetics Research, 12: 1805-1814. Bonde J. P., Flachs E. M., Rimborg S., Glazer C. H., Giwercman A., Ramlau-Hansen C. H. and Bräuner E. V. 2016. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: A systematic review and meta-analysis. Human Reproduction Update, 23: 104-125. Dolebo A. T., Khayatzadeh N., Melesse A., Wragg D., Rekik M., Haile A., Rischkowsky B., Rothschild M. and Mwacharo J. M. 2019. Genome-wide scans identify known and novel regions associated with prolificacy and reproduction traits in a sub-Saharan African indigenous sheep (Ovis Aries). Mammalian Genome, 11: 339-352. Esmaeili fard S. M., Hafezian S. H., Gholizadeh M. and Abdolahi Arpanahi R. 2019. Gene set enrichment analysis using genome-wide association study to identify genes and biological pathways associated with twinning in Baluchi sheep. Animal Production Research, 8(2): 63-80. (In Persian). Farhangfar H., Molaei M., Naeimipour H. 2007. Using the logistic regression model in estimating the phenotypic trend of twinning trait in Baluchi ewes of Abbas Abad Station, Mashhad. Modern Genetics, 3: 31-34. (In Persian). Fariello M. I., Servin B., Tosser-Klopp G., Rupp F. and Moreno C. 2014. Selection signatures in worldwide sheep populations. International Sheep Genomics Consortium, 8: 103813-103817 Gautier M. and Vitalis R. 2012. rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics, 8: 1176-1177. Gholizadeh M., Rahimi-Mianji G. H. and Nejati-Javaremi A. 2015. Genomewide association study of body weight traits in Baluchi sheep. Journal of Genetics, 94: 143-146. Jafaroghli M., Safari A., Shadparvar A. A. and N. Ghavi Hossein-Zadeh. 2019. Genetic analysis of ewe productivity traits in Baluchi sheep. Iranian Journal of Applied Animal Science, 9(4): 651-657. Kijas J. W., Lenstra J. A., Hayes B., Boitard S., Porto Neto L. R., San Cristobal M., Servin B., McCulloch R., Whan V. and Gietzen K. 2012. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 2: 100-118. Knight P. G. and Glister C. 2006. TGF-beta superfamily members and ovarian follicle development. Reproduction, 14: 191-206. Kosgey L. S., Baker R. L., Udo H. M. J. and van Arendonk J. A. M. 2006. Success and failures of small ruminant breeding programmes in the tropics: A review. Small Ruminant Research, 61: 13-28. La Y., liu Q., Zhang L. and Chu M. 2019. Single nucleotide polymorphisms in SLC5A1, CCNA1, and ABCC1 and the association with litter size in small-tail Han sheep. Animals, 7: 432-439. Ma H., Fang C., Liu L., Wang Q., Aniwashi J., Sulaiman Y. and Abudilaheman K. 2019. Identification of novel genes associated with litter size of indigenous sheep population in Xinjiang, China using specific-locus amplified fragment sequencing. Peer Journal, 26: 80-79. Manzari Z., Mehrabani-Yeganeh., Nejati-Javaremi H., Moradi M. H. and Gholizadeh M. 2019. Detecting selection signatures in three Iranian sheep breeds. Animal Genetics, 50: 298-302. McBride D., Carré W., Sontakke S. D., Hogg C. O. and Law A. 2012. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction, 144: 221-233. Menezo Y. J., Silvestris E., Dale B. and Elder K. 2016. Oxidative stress and alterations in DNA methylation: Two sides of the same coin in reproduction. Reproduction, 33: 668-683. Melé M., Ferreira P. G., Reverter F., DeLuca D. S., Monlong J., Sammeth M., Young T. R., Goldmann J. M., Pervouchine D. D. and Sullivan T. J. 2015. The human transcriptome across tissues and individuals. Science, 348: 660-665. Moradi M. H., Nejati-Javaremi A., Moradi-Shahrbabak M., Dodds K. G. and McEwan J. C. 2012. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genetics, 71: 1-19. Nosrati M., Asadollahpour-Naini H., Amiri Z. and Esmaielzadeh A. 2018. Whole genome sequence analysis to detect signatures of positive selection for high fecundity in sheep. Reprouduction in Domestic Animals, 52: 358-364. Pasandideh M., Rahimi-Mianji G., Gholizadeh M. and Fontanesi L. 2017. Detection of genomic regions affecting reproductive traits in Baluchi sheep using high density markers. Animal Production Research, 6(3): 29-41. (In Persian). Pourtahmasebian Ahrabi M., Eskandarinasab M. P. and Zandi Baghcheh Maryam M. B. 2020. Estimation of genetic parameters and genetic trend of litter size in under selection flock of Afshari sheep. Animal Production Research, 9(2): 23-35. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A., Bender D., Maller J., Sklar P., de Bakker P. I., Daly M. J. and Sham P. C. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81: 559-575. Rafati M., Mohamadhashem F., Hoseini A., Hoseininasab F. and Ghari S. R. 2016. A novel ACVR1 mutation detected by whole exome sequencing in a family with an unusual skeletal dysplasia. European Journal of Medical Genetics, 59: 330–336. Sabeti P. C., Schaffner S. F., Fry B., Lohmueller J., Varilly P., Shamovsky O., Palma A., Mikkelsen T. S., Altshuler D. and Lander E. S. 2007. Positive hatural selection in the human lineage. Science, 312: 1614-1620. Shimizu T., Jayawardana B. C., Nishimoto H., Kaneko E., Tetsuka M. and Miyamoto A. 2006. A: Involvement of the bone morphogenetic protein/receptor system during follicle development in the bovine ovary: hormonal regulation of the expression of bone morphogenetic protein 7 (BMP-7) and its receptors (ActRII and ALK-2). Molecular and Cellular Endocrinology, 249: 78-83. Taghizadeh K., Gholizadeh M., Moradi M. H. and Rahimi Mianji G. 2020. Investigation of copy number variation in Baluchi sheep genome using comparative analysis of PennCNV and QuantiSNP algorithms. Animal Production Research, 9(1): 29-44. (In Persian). Wang Y., Niu Zh., Zeng Zh., Jiang Y., Jiang Y., Ding Y., Tang S., Shi H. and Ding X. 2020. Using high-density SNP array to reveal selection signatures related to prolificacy in Chinese and Kazakhstan sheep breeds. Animals, 151: 16-33. Weir B. S and Clark-Cockerham C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 36: 1358-1370. Xu S. S., Gao L., Xie X. L., Ren Y. L., Shen Z. Q., Wang F., Shen M., Eyþórsdóttir E., Hallsson J. H., Kiseleva T., Kantanen J. and Li M. H. 2018. Genome-Wide association analyses highlight the potential for different genetic mechanisms for litter size among sheep breeds. Frontiers in Genetics, 118: 452-459. Yadin D., Knaus P. and Mueller T. D. 2016. Structural insights into BMP receptors: Specificity, activation and inhibition. Cytokine Growth Factor Reviews, 27: 13-34. Yuan Z., Zhang J., Li W., Wang W., Li F. and Yue X. 2019. Association of Polymorphisms in Candidate Genes with the Litter Size in Two Sheep Breeds. Animals, 11: 263-271. Zhang Y. E. 2017. Non-Smad signaling pathways of the TGF- family. Cold Spring Harbor Perspectives in Biology, 9: 56-71. Zhou M., Pan Z. Y., Cao X. H., Guo X. F., He X. Y., Sun Q. and Chu M. X. 2018. Single nucleotide polymorphisms in the HIRA gene affect litter size in Small Tail HanSheep. Animal Sicence, 71: 544-552. | ||
آمار تعداد مشاهده مقاله: 405 تعداد دریافت فایل اصل مقاله: 372 |