تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,108 |
تعداد مشاهده مقاله | 10,240,210 |
تعداد دریافت فایل اصل مقاله | 6,897,834 |
استفاده از باکتریهای مصرف کننده اسید و بافرهای مختلف برای بهبود هضم و تخمیر جیرههای پرکنسانتره | ||
تحقیقات تولیدات دامی | ||
دوره 11، شماره 4، بهمن 1401، صفحه 21-36 اصل مقاله (1.11 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2023.22294.1705 | ||
نویسندگان | ||
فرشته وفایی1؛ مرتضی چاجی* 2 | ||
1دانشآموخته کارشناسی ارشد تغذیه دام، گروه علوم دامی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان | ||
2استاد، گروه علوم دامی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان | ||
چکیده | ||
این پژوهش با هدف مطالعه تاثیر استفاده از باکتری مصرف کننده اسید و بافرهای مختلف شیمیایی بر قابلیت هضم و تخمیر جیرههای پرکنسانتره انجام شد. فراسنجههای تولید گاز تعداد ۱۲ تیمار آزمایشی شامل ۱- جیره شاهد (یا پایه فاقد افزودنی)، ۲- جیره پایه+ سه میلی لیتر باکتری مگاسفرا السدنی (cfu/mL 10۸ × ۵/1)، ۳ تا ۱۲- یک درصد از پنج بافر بنتونیت سدیم، بیکربنات سدیم، اکسید منیزیم، زئولیت، سدیم سسکوئی کربنات به تنهایی یا همراه با باکتری مگاسفرا السدنی در زمانهای مختلف اندازگیری و محاسبه شد. اثر تیمارهای آزمایشی بر پتاسیل و نرخ تولیدگاز، عامل تفکیک، تولید توده زنده میکروبی، بازده تولید توده زنده میکروبی، pH، غلظت نیتروژن آمونیاکی و قابلیت هضم ظاهری ماده خشک و جمعیت پروتوزوآ معنیدار بود (05/0>P) و غیر از نیتروژن آمونیاکی، همه فراسنجهها در تیمارهای حاوی بافر بیشتر از شاهد بودند. بیشترین پتانسیل تولید گاز (۲۶/۶۸ میلیلیتر)، تولید توده زنده میکروبی (۳۱/۲۱۲ میلیگرم)، بازده تولید توده زنده میکروبی (۷۹ درصد) مربوط به تیمار حاوی بیکربنات سدیم + باکتری مگاسفرا السدنی بود (05/0>P). بیشترین pH و نیتروژن آمونیاکی به ترتیب مربوط به تیمار حاوی باکتری (۶۰/۶) و شاهد (۳۰/۲۷ میلیگرم در ۱۰۰ میلیلیتر) بود. کل جمعیت پروتوزوآ در تیمار بنتونیت سدیم + باکتری بیشترین مقدار بود. در کل، نتایج آزمایش حاضر نشان داد که استفاده از بافرها باعث بهبود شرایط هضم و تخمیر شدند و هر کدام از بافرها روی یک یا چند فراسنجه تاثیر بیشتری نسبت به بقیه داشتند. بهعلاوه، باکتری مصرف کننده اسید به عنوان تنظیم کننده pH، آثاری قابل رقابت با بافرهای شیمیایی به ویژه بافر بیکربنات و حتی در مواردی بهتر داشت. | ||
کلیدواژهها | ||
بافرهای شیمیایی؛ باکتری مگاسفرا السدنی؛ جمعیت پروتوزوآ؛ فراسنجههای تولید گاز؛ قابلیت هضم | ||
مراجع | ||
Abdl-Rahim M. A. 2010. In vitro manipulation of rumen fermentation efficiency by fumaric acid –bentonitecoupled addition as an alternative to antibiotics. Journal of Agricultural Science, 2(2): 174-180. Aderinboye R. Y., Akinlolu A. O., Adeleke M. A., Najeem G. O., Ojo V. O. A., Isah O. A. and Babayemi O. J. 2016. In vitro gas production and dry matter degradation of four browse leaves using cattle, sheep and goat inocula. Slovak Journal of Animal Science, 49(1): 32-43. Aikman P. C., Henning P. H., Humphries D. J. and Horn C. H. 2011. Rumen pH and fermentation characteristics in dairy cows supplemented with Megasphaera elsdenii NCIMB 41125 in early lactation. Journal of Dairy Science, 94: 2840-2849. Asadi A., Kiani A., Azarfar A. and Valipour A. 2016. Effects of Metafix with or without Monensin on performance and blood metabolites in Farahani lambs. Iranian Journal of Animal Science, 47: 421-428. (In Persian). Baah J. M., Ivan A. N., Hristov K. M., Koenig L. M., Rode T. and McAllister A. 2007. Effects of potential dietary antiprotozoal supplements on rumen fermentation and digestibility in heifers. Animal Feed Science and Technology, 137: 126-137. Beauchemin K. A. and Yang W. Z. 2005. Effects of physically effective fiber on intake, chewing activity, and ruminal acidosis for dairy cows fed diets based on corn silage. Journal of Dairy Science, 88: 2117-2129. Bach A., Guasch I., Elcoso G., Duclos J. and Khelil-Arfa H. 2018. Modulation of rumen pH by sodium bicarbonate and a blend of different sources of magnesium oxide in lactating dairy cows submitted to a concentrate challenge. Journal of Dairy Science, 101(11): 9777-9788. Blümmel M., Steingaβ H. and Becker K. 1997. The relationship between in vitro gas production, in vitro microbial biomass yield and 15 N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77(6): 911-921. Brigatti M. F., Galan E. and Theng B. K. J. 2006. Strauctures and mineralogy of clay minerals. Handbook Clay Science, Elsevier Ltd. Broderick G. A. and Kang J. H. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63: 64-75. Calsimiglia S., Cardozo P. W., Ferrer A. and Bach A. 2008. Changes in rumen microbial fermentation are due to combined effect of type of diet and pH. Journal of Animal Science, 86: 702-711. Carro M. D., Valdés C., Ranilla M. J. and González J. S. 2000. Effect of forage to concentrate ratio in the diet on ruminal fermentation and digesta flow kinetics in sheep. Journal of Animal Science, 70: 127-134. Danesh Mesgaran M., Amini J., Paktinat M. 2013. In vitro usage of various non-organic compounds to subdue acidogenic value and enhance the fermentation of alfalfa hay-based diets by mixed rumen microbiota. Journal of Livestock Production, 4(10): 165-170. Dehority B. A. 2003. Rumen microbiology (2nd ed.). London: Academic Press. Pp. 11-151. Der Bedrosian M. 2009. The effect of sodium bicarbonate or live yeast culture Saccharomyces cerevisiae on the metabolism and production of lactating dairy cows. Ph.D. Dissertation, University of Delaware, Newark, Delaware. Direkvandi E., Mohammadabadi T. and Salem A. Z. 2020. Oral administration of lactate producing bacteria alone or combined with Saccharomyces cerevisiae and Megasphaera elsdenii on performance of fattening lambs. Journal of Applied Animal Research, 48(1): 235-243. Dixon J. B., Kannewischer I., TenorioArvide M. G. and Barrientos Velazquez A. L. 2008. Aflatoxin sequestration in animal feeds by quality-labelledsmectite clays: an introductory plan. Applied Clay Science, 40: 201-208. Dschaak C., Eun M., Young J. S., Stott A. J. and Peterson S. 2010. Effects of supplementation of natural zeolite on intake, digestion, ruminal fermentation, and lactational performance of dairy cows. The Professional Animal Scientist, 26: 647-654. Ekrami S. H. S. 2009. Utilization of growth promoters and bentonite in sheep rations. Ph.D. Dissertation, University of Al-Azhar, Egypt. Faichney G. J., Teleki E. and Brown G. H. 2004. Effect of physical form of lucene hay on digestion and rate of passage in sheep. Australian Journal of Agricultural Research, 55: 1253-1262. Fenn P. D. and Leng R. A. 1989. Wool growth and sulfur amino acid entry rate in sheep fed roughage based diets supplemented with bentonite and sulfur amino acids. Australian Journal of Agricultural Research, 40: 889-896. Gasmi Boubaker A., Kayouli C. and Buldgen A. 2005. In viro gas produvtion and its relationship to in situ disappearance and chemical composition of some Mediterrnean browse species. Animal Feed Science and Technology, 123-124: 303-311. Ghoniem A. H., El–Bltagy E. A. and Abdou A. A. 2018. Effect of supplementation dry yeast or bentonite and their combination as feed additives on productive performance of lactating buffalos. Journal of Animal and Poultry Production, 9(11): 423-431. Harrison J. R., White R., Kincaid E., Block T., Jenkins N. and Pierre S. T. 2012. Effectiveness of potassium carbonate sesquihydrate to increase dietary cation-anion difference in early lactation cows. Journal of Dairy Science, 95(7): 3919-3925. Hu W. and Murphy M. R. 2005. Statistical evaluation of early- and mid-lactation dairy cow responses to dietary sodium bicarbonate addition. Animal Feed Science and Technology, 119: 43-54. Khalifeh M. J., Mohammadabadi T., Chaji M., Salari S. and Khalil M. 2012. The effect of different levels of sodium bentonite on in vitro fermentation and digestibility of soybean meal. In: Proceedings of the 15th AAAP Animal Science Congress, 26-30 November. Thailand. Pp. 3133-3135. Khoujeh B., Gharehbash A. M., Bayat Kouhsar J. and Moslemipour F. 2016. Effect of using different sources of buffer on digestibility and fermentation parameters in In vitro situation. Proceedings of the 7th Iranian Congress on Animal Science, Karaj, Iran. (In Persian). Koul V., Kumar U., Sareen V. K. and Singh S. 1998. Effect of sodium bicarbonate supplementation on ruminal microbial populations and metabolism in buffalo calves. Indian Journal of Animal Science, 68: 629-631. Krause K. M. and Combs D. K. 2003. Effects of forage particle size, forage source and grain fermentability on performance and ruminal pH in midlactation cows. Journal of Dairy Science, 86: 1382-1397. Kung L. and Hession A. O.1995. Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with (Megasphaera elsdenii). Journal of Animal Science, 73(1): 250-256. Mao S., Huo W., Liu J., Zhang R. and Zhu W. 2017. In vitro effects of sodium bicarbonate buffer on rumen fermentation, levels of lipopolysaccharide and biogenic amine, and composition of rumen microbiota. Journal of the Science of Food and Agriculture, 97(4): 1276-1285. McDaniel M. R. 2009. The effects of dosing feedlot cattle with Megasphaera elsdenii strain NCIMB 41125 prior to the introduction of a grain-rich diet. Ph.D. Dissertation, Kansas State University, Kansas. McDonald P., Edwards R. A., Greenhalgh J. F. D., Morgan C. A., Sinclair L. A. and Wilkinson R. G. 2011. Animal Nutrition (7th ed.). Harlow United Kingdom: Longman Group. Pp. 30-693. Meissner H. H., Henning P. H., Leeuw K. J., Hagg F. M., Horn C. H., Kettunen A. and Apajalahti J. H. A. 2014. Efficacy and mode of action of selected non-ionophore antibiotics and direct-fed microbials in relation to Megasphaera elsdenii NCIMB 41125 during in vitro fermentation of an acidosis-causing substrate. Livestock Science, 162: 115-125. Menke K. H, and Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid Animal. Research and Development, 28: 7-55. Mojtahedi M. 2013. Identification of nanostructure and nanoporous bentonite adsorbents and their efficiency on aflatoxin b1 detoxification in vitro and in vivo. Ph.D. Dissertation, Ferdowsi University of Mashhad, Mashhad, Iran. (In Persian). Mohammadabadi T., Bakhtiari M. A. and Alimirzaei P. 2018. Isolation and identification of lactate-producing and utilizing bacteria from the rumen of Najdi goats. Indian Journal of Small Ruminant, 24(2): 276-280. Norollahi H. 2007. Effect of fattening period on growth and carcass characteristics of male Turkey-Ghashghaii lambs. Pajohesh and Sazandegi, 75: 132-137. (In Persian). Orskov E. R. and McDonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, 92: 499-503. Papi N. and Mostafa Tehrani A. 2017. Effects of dietary concentrate levels on growth performance, feed intake and carcass characteristics of fattening shall male lambs. Journal of Ruminant Research, 5(2): 59-70. (In Persian). Philippeau C., Lettat A., Martin C., Silberberg M., Morgavi D. P., Ferlay A. and Nozière P. 2017. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high-or low-starch diets. Journal of Dairy Science, 100(4): 2637-2650. Plaizier J. C., Danesh Mesgaran D., Derakhshani H., Golder H., Khafipour E., Kleen J. L., Lean I., Loor J., Penner G. and Zebeli Q. 2018. Enhancing gastrointestinal health in dairy cows: A review. Animal, 12(2): 399-418. Prabhu R., Altman E. and Eiteman M. A. 2012. Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions. Applied and Environmental Microbiology, 78: 8564-8570. Silanikove N., Landau S., Kababya D., Bruckental I. and Nitsan Z. 2006. Analytical approach and effects of condensed tannins in carob pods (Ceratonia siliqua) on feed intake, digestive and metabolic responses of kids. Livestock Science, 99: 29-38. Stevenson A. E. and Glare N. T. 1963. Measurement of feed intake by grazing cattle and sheep. New Zealand Journal of Agricultural Research, 6(1-2): 121-126. Sulzberger S. A., Kalebich C. C., Melnichenko S. and Cardoso F. C. 2016. Effects of clay after a grain challenge on milk composition and on ruminal, blood, and fecal pH in Holstein cows. Journal of Dairy Science, 99(10): 8028-8040. Theodorou M. K., Williams B. A., Dhanoa M. S., McAllan A. B. and France J. A. 1994. Simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48: 185-197. Vaghar Seyedi, S.M., Mojtahedi M., Ghiasi S.A. and Fathi Nasri M.H. 2018. Buffering capacity of some native alkalizer and buffer compounds and their effect on in vitro gas production and digestibility. Iranian Journal of Animal Science Research, 11 (40): 425-436. (In Persian). Wallace R. J. and Newbold C. J. 1991. Effect of bentonite on fermentation in the rumen simulation technique (Rusitec) and rumen ciliate protozoa. Journal of Agricultural Science, 116: 163-175. Wang Y. H., Xua M., Wang F. N., Yz Z. P., Yao J. H., Zan L. S. and Yang F. X. 2009. Effect of dietary starch on rumen and small intestine morphology and digesta pH in goats. Livestock Science, 122: 48-52. Zebeli Q., Terrill S. J., Mazzolari A., Dunn S. M., Yang W. Z. and Ametaj B. N. 2012. Intraruminal administration of Megasphaera elsdenii modulated rumen fermentation profile in mid-lactation dairy cows. Journal of Dairy Research, 79(01): 16-25. | ||
آمار تعداد مشاهده مقاله: 388 تعداد دریافت فایل اصل مقاله: 329 |