تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,108 |
تعداد مشاهده مقاله | 10,240,292 |
تعداد دریافت فایل اصل مقاله | 6,897,884 |
اثر افزودن بیوچار در جیرههای حاوی پروبیوتیک بر متغیرهای تخمیر برونتنی، شاخصهای سلامت، باکتریهای رکتوم و آنزیمهای خون گوسالههای هلشتاین | ||
تحقیقات تولیدات دامی | ||
دوره 11، شماره 4، بهمن 1401، صفحه 1-19 اصل مقاله (953.04 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2023.23067.1727 | ||
نویسندگان | ||
محمدحسین سیرجانی1؛ جواد رضائی* 2؛ مجتبی زاهدی فر3؛ یوسف روزبهان4 | ||
1دانشجوی دکتری تغذیه دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس | ||
2دانشیار تغذیه دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس | ||
3دانشیار تغذیه نشخوارکنندگان، مؤسسه تحقیقات علوم دامی، سازمان تحقیقات، آموزش و ترویج کشاورزی (AREEO)، کرج، ایران | ||
4استاد تغذیه نشخوارکنندگان، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس | ||
چکیده | ||
در این پژوهش، تأثیر افزودن بیوچار (چوب انار و آلو) در جیرههای حاوی لاکتوباسیل (مخلوط L. plantarum، L. rhamnosus و Enterococcus faecium) و مخمر (S. boulardii) بر تخمیر، جمعیت میکروبی، متان و ظرفیت آنتیاکسیدانی برونتنی (سه تکرار) و همچنین شاخصهای سلامت، باکتریهای رکتوم و آنزیمهای خون گوسالههای هلشتاین (10 تکرار) در دوره پیش (10 تا 75 روزگی) و پس از شیرگیری (76 تا 100 روزگی) بررسی شد. جیرهها عبارت بودند از: 1- شاهد (فاقد پروبیوتیک و بیوچار)، 2- شاهد+لاکتوباسیل، 3- شاهد+مخمر، 4- شاهد+بیوچار، 5- شاهد+لاکتوباسیل-بیوچار، و 6- شاهد+مخمر-بیوچار. مصرف جداگانه لاکتوباسیل، مخمر و بیوچار موجب بهبود گوارشپذیری، باکتریهای سلولولیتیک و ظرفیت آنتیاکسیدانی برونتنی شد (05/0>P)، اما، بهترین پاسخ با مصرف پروبیوتیک-بیوچار مشاهده شد. تیمارهای پروبیوتیک و پروبیوتیک-بیوچار، جمعیت پروتوزوآ را کاهش داد (05/0>P). تولید متان در تمامی تیمارهای حاوی افزودنی کاهش یافت و کمترین مقدار مربوط به لاکتوباسیل-بیوچار و مخمر-بیوچار بود (05/0>P). افزودنیها موجب بهبود مصرف خوراک (066/0=P) و افزایش معنیدار رشد گوسالهها شدند (05/0>P) و بیشترین رشد مربوط به تیمارهای پروبیوتیک-بیوچار بود. با مصرف پروبیوتیکها و بیوچار، جمعیت کلیفرمهای رکتوم کاهش پیدا کرد، نمره مدفوع و میانگین امتیاز سلامت حیوانات بهبود یافت، و برترین تیمارها، مخلوط پروبیوتیک-بیوچار بودند (05/0>P). غلظت آنزیمهای خون تغییر نکرد، بهجز لاکتات دهیدروژناز که در دوره پیش از شیرگیری در گروههای افزودنی (بهویژه پروبیوتیک-بیوچار) کمتر از شاهد بود (05/0>P). در مجموع، افزودن بیوچار به جیرههای حاوی پروبیوتیک (لاکتوباسیل و/یا مخمر) موجب بهبود تخمیر برونتنی، کاهش کلیفرمهای رکتوم و بهبود شاخصهای سلامت شد و میتواند به عنوان یک راهکار برای تقویت اثربخشی پروبیوتیکها در گوسالههای نوزاد توصیه شود. | ||
کلیدواژهها | ||
افزودنی میکروبی؛ بیوچار؛ تخمیر برونتنی؛ شاخصهای سلامت؛ گوساله | ||
مراجع | ||
AFRC. 1993. Energy and Protein Requirements of Ruminants. Agricultural and Food Research Council, Technical Committee on Responses to Nutrients. Wallingford (UK): CABI Publishing. Anele U. Y., Südekum K.-H., Hummel J., Arigbede O. M., Oni A. O., Olanite J. A., Böttger C., Ojo V. O. and Jolaosho A. O. 2011. Chemical characterization, in vitro dry matter and ruminal crude protein degradability and microbial protein synthesis of some cowpea (Vigna unguiculata L. Walp) haulm varieties. Animal Feed Science and Technology, 163: 161-169. Ayad M. A., Benallou B., Saim M. S., Smadi M. A. and Meziane T. 2013. Impact of feeding yeast culture on milk yield, milk components, and blood components in Algerian dairy herds. Journal of Veterinary Science and Technology, 5: 1-5. Azimzadeh V., Assadi-Alamouti A., Khadem A., Bagheri Varzaneh M. and Mohammad Moradi J. 2016. Effects of supplementation of a symbiotic product on growth performance and health of Holstein calves. Research on Animal Production (Scientific and Research), 6(12): 105-114. (In Persian). Benzie I. F. F. and Strain J. J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Analytical Biochemistry, 239: 70-76. Blümmel M., Steingss H. and Becker K. 1997. The relationship between in vitro gas production, in vitro microbial biomass yield and15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77: 911-921. Chen L., Ren A., Zhou C. and Tan Z. 2017. Effects of Lactobacillus acidophilus supplementation for improving in vitro rumen fermentation characteristics of cereal straws. Italian Journal of Animal Science, 16(1): 52-60. Davis C. L. and Drackley J. K. 1998. The Development, Nutrition, and Management of the Young Calf (1st ed.). Iowa (USA): Iowa State University Press. Dehority B. A. 2003. Rumen Microbiology (1st ed.). Nottingham (UK): Nottingham University Press. Denev S. A., Peeva T. Z., Radulova R., Stancheva N., Stanykova G., Beev G., Todorova P. and Tchobanova S. 2007. Yeast cultures in ruminant nutrition. Bulgarian Journal of Agricultural Science, 18: 357-374. Di Gioia D. and Biavati B. 2018. Probiotics and Prebiotics in Animal Health and Food Safety (1st ed.). Gewerbestrasse (Switzerland): Springer International Publishing. Didarkhah M. and Sarir H. 2018. Effects of probiotic and peribiotic supplements on production performance of dairy cows. Animal Production, 20(2): 293-304. (In Persian). El-Tawab M. A., Youssef I. M. I., Bakr H. A., Fthenakis G. C. and Giadinis N. D. 2016. Role of probiotics in nutrition and health of small ruminants. Polish Journal of Veterinary Sciences, 19(4): 893-906. Fonty G. and Chaucheyras-Durand F. 2006. Effects and modes of action of live yeasts in the rumen. Biologia, 61(6): 741-750. Forbes B. A., Sahm D. F. and Weissfeld A. S. 2007. Diagnostic Microbiology (12th ed.). Missouri (USA): Mosby, Elsevier. Gerlach A. and Schmidt H. P. 2014. The use of biochar in cattle farming. The Biochar Journal, Arbaz, Switzerland. ISSN 2297-1114. Hansen H. H., Storm I. D. and Sell A. M. 2012. Effect of biochar on in vitro rumen methane production. Acta Agriculturae Scandinavica, Section A–Animal Science, 62(4): 305-309. Kawakami S. I., Yamada T., Nakanishi N., Cai Y. and Ishizaki H. 2010. Leukocyte phagocytic activity with or without probiotics in Holstein calves. Research Journal of Biological Sciences, 4: 13-16. Khalid M. F. and Sarwar M. 2011. Response of growing lambs fed on different vegetable protein sources with or without probiotics. International Journal of Agriculture & Biology, 13(3): 332-338. Klein R., Nagy O., Tóthová C. and Chovanová F. 2020. Clinical and diagnostic significance of lactate dehydrogenase and its isoenzymes in animals. Veterinary Medicine International, 2020: 5346483. Kurtz D. M. and Travlos G. S. 2017. The Clinical Chemistry of Laboratory Animals (3rd ed.). Boca Raton, FL (USA): CRC Press, Taylor & Francis Group, LLC. Le O. T., Schofield B., Dart P. J., Callaghan M. J., Lisle A. T., Ouwerkerk D., Klieve A. V. and McNeill D. M. 2017. Production responses of reproducing ewes to a by-product-based diet inoculated with the probiotic Bacillus amyloliquefaciens strain H57. Animal Production Science, 57(6): 1097-1105. Lettat A., Noziere P., Silberberg M., Morgavi D. P., Berger C. and Martin C. 2012. Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep. BMC Microbiology, 12(1): 142. McDonald P., Edwards R. A., Greenhalgh J. F., Morgan C. A., Sinclair L. A. and Wilkingson R. G. 2011. Animal Nutrition (7th ed.). Essex (UK): Prentice Hall. Menke K., Raab L., Salewski A., Steingass H., Fritz D. and Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science, 93(1): 217-222. Mirheidari A., Torbatinejad N. M., Hassani S. and Shakeri P. 2018a. Effects of pistachio by-product biochar on performance, microbial protein, some of ruminal fermentation parameters and blood metabolites in fattening lambs. Animal Sciences Journal, 30(117): 151-62. (In Persian). Mirheidari A., Torbatinejad N. M, Hassani S. and Shakeri P. 2018b. Effect of different levels of walnut shell and chicken manure biochar on ruminal fermentation parameters and methane production. Journal of Ruminant Research, 1: 1-16. (In Persian). Mirheidari A., Torbatinejad N. M., Shakeri P. and Mokhtarpour A. 2019. Effects of walnut shell and chicken manure biochar on in vitro fermentation and in vivo nutrient digestibility and performance of dairy ewes. Tropical Animal Health and Production, 51: 1-8. Mojabi A. 2011. Veterinary Clinical Biochemistry (2nd ed.). Tehran (Iran): Noorbakhsh Publishing. (In Persian). Mosoni P., Chaucheyras‐Durand F., Béra‐Maillet C. and Forano E. 2007. Quantification by real‐time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. Journal of Applied Microbiology, 103(6): 2676-2685. Mosoni P., Martin C., Forano E. and Morgavi D. P. 2011. Long-term defaunation increases the abundance of cellulolytic Ruminococci and Methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep. Journal of Animal Science, 8: 783-791. NRC. 2001. Nutrient requirements of Dairy Animals (7th ed.). Washington, DC (USA): National Academy Press. Porsavathdy P., Phongphanith S., Preston T. R. and Leng R. A. 2017. Methane production in an in vitro rumen fermentation of molasses-urea was reduced by supplementation with fresh rather than dried cassava (Manihot esculenta, Crantz) leaves and by biochar. Livestock Research for Rural Development, 29(3): 41. Prasai T. P., Walsh K. B., Bhattarai S. P., Midmore D. J., Van T. T., Moore R. J. and Stanley D. 2016. Biochar, bentonite and zeolite supplemented feeding of layer chickens alters intestinal microbiota and reduces Campylobacter load. PLoS One, 11(4): e0154061. Qadis A. Q., Goya S., Ikuta K., Yatsu M., Kimura A., Nakanishi S. and Sato S. 2014. Effects of a bacteria-based probiotic on ruminal ph, volatile fatty acids, and bacterial flora of Holstein calves. Journal of Veterinary Medical Science, 76(6): 877-885. Qiao G. H., Shan A. S., Ma N., Ma Q. Q. and Sun Z. W. 2010. Effect of supplemental Bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. Journal of Animal Physiology and Animal Nutrition, 8: 429-436. Radzikowski D. 2017. Effect of probiotics, prebiotics and synbiotics on the productivity and health of dairy cows and calves. World Scientific News, 78: 193-198. Rashidi N., Khatibjoo A., Taherpour K., Akbari Gharaei M. and Shirzadi H. 2018. Effect of licorice extract, probiotic, antifungal and biochar on performance of broiler chickens fed aflatoxin B1 contaminated diet. Animal Production, 20(1): 145-157. (In Persian). Saleem A. M., Ribeiro Jr G. O., Yang W. Z., Ran T., Beauchemin K. A., McGeough E. J. and McAllister T. A. 2018. Effect of engineered biocarbon on rumen fermentation, microbial protein synthesis, and methane production in an artificial rumen (RUSITEC) fed a high forage diet. Journal of Animal Science, 96(8): 3121-3130. Sales J. 2011. Effect of Saccharomyces cerevisiae supplementation of ruminal parameters, nutrient digestibility and growth in sheep: A meta-analysis. Small Ruminant Research, 10: 19-29. Saroeun K., Preston T. R. and Leng R. A. 2018. Rice distillers’ byproduct and molasses-urea blocks containing biochar improved the growth performance of local Yellow cattle fed ensiled cassava roots, cassava foliage and rice straw. Livestock Research for Rural Development, 30(9): 162. Sheikh G. G., Ganai A. M., Ahmad Sheikh A. and Mir D. M. 2022. Rumen microflora, fermentation pattern and microbial enzyme activity in sheep fed paddy straw based complete feed fortified with probiotics. Biological Rhythm Research, 53(4): 547-558. Silivong P. and Preston T. R. 2015. Growth performance of goats was improved when a basal diet of foliage of Bauhinia acuminata was supplemented with water spinach and biochar. Livestock Research for Rural Development, 27(3): 58. Souza V. L., Lopes N. M., Zacaroni O. F., Silveira V. A., Pereira R. A. N., Freitas J. A., Almeida R., Salvati G. G. S. and Pereira M. N. 2017. Lactation performance and dietdigestibility of dairy cows in response to the supplementation of Bacillus subtilis spores. Livestock Science, 5: 35-39. Sun P., Wang J. Q. and Deng L. F. 2013. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Animal, 7(2): 216-222. Sun P., Wang J. Q. and Zhang H. T. 2010. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. Journal of Dairy Science, 5: 5851-5855. SVMUNW. 2020. Calf Health Scoring Criteria. University of Wisconsin-Madison Data Collection Tools, Food Animal Production Medicine, University of Wisconsin-Madison, USA. Taghizadeh M., Yousef Elahi M., Mirzaei H. R., Salem A. Z. M., Azarfar A. and Azizi A. 2021. Effect of different levels of yeast in comparison with monensin on the ruminal fermentation parameters and protein degradability in high concentrate diets. Animal Production Research, 10(2): 73-85. (In Persian). Teoh R., Caro E., Holman D. B., Joseph S., Meale S. J. and Chaves A. V. 2019. Effects of hardwood biochar on methane production, fermentation characteristics, and the rumen microbiota using rumen simulation. Frontiers in Microbiology, 10: 1534. Tilley J. M. A. and Terry R. A. 1963. A two‐stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18(2): 104-111. Uyeno Y., Shigemori S. and Shimosato T. 2015. Effect of probiotics/prebiotics on cattle health and productivity. Microbes and Environments, 30(2): 126-132. Vongsamphanh P., Napasirth V., Inthapanya S. and Preston T. R. 2015. Effect of biochar and leaves from sweet or bitter cassava on gas and methane production in an in vitro rumen incubation using cassava root pulp as source of energy. Livestock Research for Rural Development, 27(04): 72. Zhang R., Dong X., Zhou M., Tu Y., Zhang N., Deng K. and Diao Q. 2017. Oral administration of Lactobacillus plantarum and Bacillus subtilis on rumen fermentation and the bacterial community in calves. Animal Science Journal, 88(5): 755-762.
| ||
آمار تعداد مشاهده مقاله: 730 تعداد دریافت فایل اصل مقاله: 522 |