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 One of the topics of curiosity in recent years in miscellaneous sciences such 

as physics and engineering is to attain analytical solutions to evolution 

equations. In this work, a novel modification of the simplest equation 

method has been suggested to solve the nonlinear system of the partial 

differential equation.  As an example, the proposed methods have been 

applied to achieve the exact solutions of the coupled generalized 

Schrödinger–Boussinesq system and Boussinesq-type coupled system. By 

giving specific values to the parameters, private answers are obtained and 

the plots of solutions are drawn. The newly-used method is highly accurate, 

flexible, effective, and programmable to solve systems of differential 

equations. 
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1. Introduction 

Nonlinear coupled partial differential equations play an important role in various scientific fields, 

especially in mathematics and physics. Most problems and scientific phenomena occur nonlinearly. 

Therefore, researchers have long been interested in numerical and analytical solutions. In the last 

decade, various methods have been introduced and used for this purpose [1-15]. One of the most 

important and simplest of these methods is the simplest equation method (MSE method) [13-15]. 

The primary merits of procedure used in this research over other analytical methods is that ( )   is 

not satisfy in any special equation.  

In this method, to solve a system of equations, first, it will be converted into an equation and then 

the desired method will be applied.  The present paper's motivation is to develop the above-

mentioned method to directly solve a system of differential equations. The structure and steps of 
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proposed method with the help of mathematical software is quite simple. To demonstrate the ability 

and capability of the method exact solutions and especially soliton solutions of two famous and 

widely used coupled system callbed the coupled generalized Schrödinger–Boussinesq system and 

the Boussinesq-type coupled system equation  have been attained. 

John Scott Russell first described soliton phenomenon in 1834. The "translation wave" was the name 

he gave to the phenomenon that was reproduced in a wave reservoir. A wave propagating at a 

constant rate and shape in a nonlinear dispersive system is called soliton. 

 

We can say that a solitary wave called Soliton satisfies to the following three conditions: 

1. They are constant shape. 

 2. They are localized within a region. 

3. In interaction with other solitons they come out unchanged (except phase shift). 

 

The continuation process of the article is as follows. Section 2 describes the coupled modified simple 

equation (CMSE) method. In Section 3, the CMSE method is used to obtain the exact answer of the 

coupled generalized Schrödinger–Boussinesq system. The Boussinesq-type coupled system equation 

is discussed in Section 4. Finally, a conclusion is presented in Section 5.  

2. The CMSE method 

To explain, Coupled modified simplest equation method, the following nonlinear system of PDE 

should be noted: 

( )

( )

, v, , , , ,... 0,

, v, , , , ,... 0.

x t x t

x t x t

F u u u v v

G u u u v v

=


=

                                                                                                        (1) 

By using the nonlinear complex transformation  

,x t  = −                                                                                                                                      (2) 

Where   and   are nonzero parameters, Eq. (2) turns to a system of ODE 

( )

( )

, v, , ,... 0,

, v, , ,... 0.

f u u v

g u u v

  =


  =

                                                                                                                      (3)                                                                                         

  In this method, we get the following form for solution of (3) 

   
0

0

( )
( ) ,

( )

( )
( ) .

( )

i
N

i

i

i
M

i

i

u a

v b

 


 

 


 

=

=

  
=  

  


 
=  

 





                                                                                                                (4)                                                                                                                         

Where 'ia s and  'ib s  are unknown constants and ( )   is an unknown function.  
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To obtain the number M , and N  we strike a balance between the sentences with the highest 

derivative order and the highest nonlinear order in EQ. (3). In this step, we place Eq. (4) in to the 

ODE obtained. Therefore, a polynomial of  
( )

( )

 

 


 and its derivatives will be obtained. By 

considering the coefficients of ( )i −  as zero, a system of equations that can be obtained to 

determine unknown constants, ( )  and ( )  . Finally, solutions of Eq. (1) will be obtained by 

placing obtained results into Eq. (4). 

             

3- Application MSE method to coupled generalized Schrödinger–Boussinesq system 

In this part we use the above method for the coupled generalized Schrödinger–Boussinesq system 

(CGSBs), as the following form  

22

,

3 3( ) ( )

t xx

tt xxxx xx xx xx

iu u u uv

v v v v u





+ + =


− + + =
                                                                                    (5) 

For this goal, we use the transformation ( )( , ) ( , ) ,i x tu x t p x t e  +=  So, Eq. (1) convert to 

 

2

2 2

( ) p ( 2 ) 0,

3 3( ) ( )

xx t x

tt xxxx xx xx xx

p pv i p p

v v v v p

   



 − − + − + + =


− + + =
                                                                       (6)                                                     

So we derive 

2

2 2

( ) p 0,

2 0,

3 3( ) ( ) .

xx

t x

tt xxxx xx xx xx

p pv

p p

v v v v p

  





 − − + − =


+ =


− + + =

                                                                                     (7) 

we introduce a complex variable , defined as                                                                       

          ,x t  = −   

 So, above equation turns to the following system of ODE,  

      

2 2

2 2 4 (4) 2 2 2

( ) p 0,

2 0,

(3 ) 3 (3 ) 0.

p pv

p p

v v v p

   

 

   

 − − + − =


 − + =
  + − + − =

                                                                         (8)   

From the second equation of (8), we get 

    2 =  

So 

2 2

2 2 4 (4) 2 2 2

( ) p 0,

(12 ) 3 (3 ) 0.

p pv

v v v p

   

    

 − − + − =


 + − + − =
                                                                            (9) 

By twice integration from second equation (9), we derive 
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2 2

2 2 2 2

( ) p 0,

(12 ) 3 0.

p pv

v v v p

   

  

 − − + − =


+ − + − =

                                                                                             (10) 

Homogeneous balance between linear and nonlinear terms in each equation of (10) leads to 

2,

2.

M

N

=


=                                                                                                                                        (11) 

So (4) convert to  

   

2

2 1 0 2

2

2 1 0 2

( ) , 0,

( ) , 0,

p a a a a

v b b b b

 


 

 


 

     
= + +     

    


    
= + +    

   

                                                                                    (12) 

 Putting (12) in the first equation of (10) and equalizing coefficient ( )i − to zero, leads to 

 2

0 0 0 0 0 0,a a k a a b − + − − =                                                                                                         (13) 

 ( )2 2

1 0 1 1 0 1( ) 0,a a b a b a      + − − − − + =                                                                              (14) 

( )2 2 2 2 2 2

2 1 2 0 2 1 1 2 0 22 3 2 ( ) 0,a a a a b a b a b a                − + − + + + − + =                          (15) 

( )2 2 2 3

2 1 1 2 2 110 2 0,a a a b a b      − + − − =                                                                                  (16) 

2 4

2 2 2(6 ) 0.a a b − =                                                                                                                     (17) 

 

And by placing (12) in the second equation of (10), we derive 

 

 2 2 2

0 0 0 03 12 0,b a b b − + + =                                                                                                         (18) 

 2 2

1 1 1 1 0 0 1b (12 6 2 ) 0,b b bb a a     − + + + − =                                                                            (19) 

( )2 2 2 2 2 2 2 2

2 1 2 2 2 2 0 0 2 1 12 3 2 12 6 2 3 0,b b b b b b b a a a b               − + − + + + − − + =                (20) 

( )2 2 2 3

2 1 1 2 1 210 2 6 2 0,b b bb a a      + − + − =                                                                               (21) 

2 2 2 4

2 2 3( 6 3 ) 0,b a b − − + =                                                                                                             (22) 

 

From Eq (17) and (22), we have 

 

              
2 2

2 26 , 6 2.b a = =                                                                                                    (23) 

Substituting (23) into (16) and (21) leads to  

( )2

1 160 2 4 6 2 0,a b   − − + =                                                                                                (24) 

( )2

1 160 34 12 2 0,b a   + − =                                                                                                    (25) 

 

From (24), we have 

1 1

2

2 3

30

a b

 

 +
= −
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So,  

1 1

2

2 3

30

a b

Ae



+

−

 =                                                                                                                              (26) 

 

By replacing (26) into (25), It can be result 

1 12a b= ,                                                                                                                                      (27) 

so, (26) convert to 
1

26

b

Ae



−

 = .  Solving Eqs (13) and (18), leads to 

Case 1:  
0 00, 0a b= =  

Case 2:  2

0 0

1
0, (12 )

3
a b  

−
= = +  

Case 3: 2

0 ,b k = − + −  and 2 2 2

0 0 0 03 12 0,b a b b − + + =  

 

Case 1: If 
0 00, 0a b= = , By placing  (23), (26) and (27),  into (14),(15),(19) and (20), we derive 

( )2 2 2

1

2 2 2

1

36 0,

36 (12 ) 0,

b

b

   

  

 − + − + =


+ − =

                                                                                                        (28)                                                                                                    

 

Solving above system leads to 

2 2

111 , 6 12b      = + + = +                                                                                         (29) 

 

Therefore,  

   

2 212 12

212

A
Ae and e B

   
 

 


 
 

+ +

 = = +
+

   

                                                                                                                           

 Placement  and  into Eq. (12), the general solution of Eq. (5) has been resulted 

  

2 2

2

2
2

2

2 2 2 12 ( 2 ) 2 12 ( 2 )
( (11 ) )

2
12 ( 2 )

12 ( 2 )
2

2

2 2 2 12 ( 2 )

12

2

6 2 6 2 12
( , )

12
12

6
( , )

12

x t x t
i x t

x t
x t

x t

A e Ae
u x t e

AA e B
e B

A e
v x t

A
e

     
   

  
  

  



   


  





 

+ − + −
+ + +

+ −
+ −

+ −

 
  
  + 
 =  
   +  +  +  +  

=

+

2

2
2

2 12 ( 2 )

2
12 ( 2 )

( 2 )
2

6 12
,

12

x t

x t
x t

Ae

A
e BB

  

  
 

  



 

+ −

+ −
+ −








  
  +
  
    + +   +   

  (30)  

The plots of above solution for some value of parameters illustrated in Fig. 1. 
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( ).1: plots of  30  1, 1, =-4, =1, =1 and =1.Fig solutions for A B   = =  

 

( ).2 : plots of  30  1, 1, =-4, =1, =1, t=0 and =1.Fig solutions for A B   = =  

 

( ).3 : densityplots of  30  1, 1, =-4, =1, =1, t=0 and =1.Fig solutions for A B   = =  
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( ).4 : densityplots of  in 30  1, 1, =-1, =0.1, =-1.5, and( ,  1.) =Fig and plots for A Bu x t    = =  

 

Case 2: If 
2

0 0

1
0, (12 )

3
a b  

−
= = + , By placing  (23), (26) and (27),  into (14),(15),(19) and (20), 

we derive 

( )2 2 2 2 2

1

2 2 2

1

36 12 (12 ) 0,

36 (12 ) 0,

b

b

      

  

 − + − + + + =


+ + =

                                                                           (31)                                                                                                    

 

Solving above system leads to 

2 2

1

2
9 , 6 12

3
b      = − + − = − −                                                                                  (32) 

 

Therefore,  

   

2 212 12

212

A
Ae and e B

   
 

 


 
 

− − − −

 = = +
+

   

                                                                                                                           

 Placement  and  into Eq. (12), the general solution of Eq. (5) has been resulted 

2 2
2

2
2

2

22 2 2 12 ( 2 ) 2 12 ( 2 )
( ( 9 ) )

3
2

12 ( 2 )
12 ( 2 )

2
2

2 2 2 12 ( 2 )

6 2 6 2 12
( , )

12
12

6
( , )

x t x t
i x t

x t
x t

x t

A e Ae
u x t e

AA e B
e B

A e
v x t

A

     
   

  
  

  

   


  





− − − − − −
+ − + −

− − −
− − −

− − −

 
  
  − − 
 =  
   +  +  − −  − −  

=

−

2

2
2

2 12 ( 2 )
2

2
12 ( 2 )

12 ( 2 )
2

2

6 12 1
(12 ),

3

12
12

x t

x t
x t

Ae

A
e Be B

  

  
  

  
 



  

− − −

− − −
− − −








  
  − −
   − +
    + +   − − −  

  (33)                                                           

The plots of above solution for some value of parameters illustrated in Fig. 2. 



282 Z. Ayati and M. Moradi / Computational Sciences and Engineering 2(2) (2022) 275-289 282 

 

 

( ).5 : plots of  33  1, 1, =-1, =0.1, =-1.5 and =1.Fig solutions for A B   = =  

 

( ).6 : plots of  33  1, 1, =1, =0.1, =-1.5 and =1.Fig solutions for A B   = =  

Case 3: lets assume that 

2

0

2 2 2

0 0 0 0

,

3 12 0,

b k

b a b b

 

 

 = − + −


− + + =

                                                                                                      (34)                                                      

 

Placing  (23), (26) and (27),  into (14),(15),(19) and (20) leads t0 

( )2 2 2

0 0 1

2 2 2

0 0 1

36 2 2( ) 2 0,

36 (12 2 2 6 ) 0,

a b b

a b b

   

  

 − − − − + + =

 + − + − =

                                                                        (35)                                                                                                    

 

Solving (34) and (35) result in 

case 3.1: 

2 2 2 2

1 0 011 , 6 12 , 12 , 2(12 )b b a          = + + = − − =− − =− +                             
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Therefore,  

   

2 212 12

212

A
Ae and e B

   
 

 


 
 

− − − −

 = = +
+    

                                                                                                                           

 Placement  and  into Eq. (12), the general solution of Eq. (5) has been resulted 

2 2

2

2
2

2

2 2 2 12 ( 2 ) 2 12 ( 2 )
2 ( (11 ) )

2
12 ( 2 )

12 ( 2 )
2

2

2 2 2 12 (

6 2 6 2 12
( , ) 2(12 )

12
12

6
( , )

x t x t
i x t

x t
x t

x

A e Ae
u x t e

AA e B
e B

A e
v x t

     
   

  
  

 

   
 


  



− − − − − −
+ + +

− − −
− − −

− − −

 
  
  − − 
 =  − + 
   +  +  − −  − −  

=

2

2
2

2 ) 2 12 ( 2 )
2

2
12 ( 2 )

12 ( 2 )
2

2

6 12
12 ,

12
12

t x t

x t
x t

Ae

A
A e Be B

   

  
  

  
 


  

− − −

− − −
− − −








  
  − −
   − −
    + +   − − − −  

         (36) 

case 3.2: 

2 2 2 2

1 0 0

2 2
9 , 6 12 , 8 , 2(12 )

3 3
b b a          = − + − = + = + = +                                

Therefore,  

   

2 212 12

212

A
Ae and e B

   
 

 


 
 

+ +
 

 = =  +
+

   

                                                                                                                           

 Placement  and  into Eq. (12), the general solution of Eq. (5) has been resulted 

2 2
2

2
2

2

22 2 2 12 ( 2 ) 2 12 ( 2 )
( ( 9 ) )

2 3
2

12 ( 2 )
12 ( 2 )

2
2

2 2 2 12 ( 2 )

6 2 6 2 12
( , ) 2(12 )

12
12

6
( , )

x t x t
i x t

x t
x t

x t

A e Ae
u x t e

AA e B
e B

A e
v x t

A

     
   

  
  

  

   
 


  



+ − + −
+ − + −

+ −
+ −

+ −

 
  
  + 
 =  + + 
   +  +  +  +  

=

2

2
2

2 12 ( 2 )
2

2
12 ( 2 )

12 ( 2 )
2

2

6 12 2
8 .

3

12
12

x t

x t
x t

Ae

A
e Be B

  

  
  

  
 


  

+ −

+ −
+ −








  
  +
   + +
    + +   + +  

  (37) 
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( ).7 : plots of  36  1, 1, =-1, =1, =-13 and =1.Fig solutions for A B   = =  

 
( ).8 : plots of  36  1, 1, =1, =1, =-13 and =1.Fig solutions for A B   = =  

 
( ).9 : plots of  37  2, 1, =1, =1, =1 and =1.Fig solutions for A B   = − =  

 

 
 

( ).10 : plots of  37  2, 1, =1, =1, =1, t=1 and =1.Fig solutions for A B   = − =  
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( ).11: densityplots of  37  2, 1, =1, =1, =1,  and =1.Fig solutions for A B   = − =  

 

 

4. Application CMSE method to a Boussinesq-type coupled system 

 

Let’s consider the following Boussinesq-type coupled system,  

      
0,

0.

t xx x x

t xx x x

u v vv u u

v u u v vu

 + + − =


− + + =
.                                                                                                  (38) 

By using ,x t  = −  it has been result  

      

2

2

0,

0.t

u v vv u u

v u u v vu

   

   

   − + + − =


  − − + + =

                                                                                            (39)       

Presumably ( )u   can be illustrated in the form (4). Equating ,v vv   and uu   , leads to 1m n= = . 

So  

          

1 0 1

1 0 1

( ) , 0,

( ) , 0,

u a a a

v b b b











  
= +   

  


  = +  
 

                                                                                              (40) 

Putting (40) in (39) and equalizing coefficient ( )i − to zero, leads to 

( )2

1 0 1 0 1 1 0,b b b a a a      + − − =                                                                                             (41) 

( )2 2 2 2

1 1 1 0 1 0 1 1( 3 ) 0,b a b b b a a a         − − + + − + + =                                                            (42)  

2 2 2 3

1 1 1(2 ) 0,b a b   + − =                                                                                                             (43) 

( )2

1 0 1 0 1 1 0,a a b b a b      − + + − =                                                                                          (44) 

( )2 2

1 1 1 0 1 0 1 1(3 2 ) 0,a b a a b b a b        + + − − + =                                                                    (45)  

2 3

1 1 1( 2 2 a ) 0,a b  − − =                                                                                                               (46) 

 

By solving Eq. (46), we drive 

 

              1 ,b = −                                                                                                                             (47) 
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By substituting above result into (43), we get 

            1 3 .a =                                                                                                                            (48) 

Replacing (47) and (48) into (42), leads to 

( )3 2 2

0 03 3 0,b a      + + + =                                                                                           (49) 

 

By solving Eq. (49), we obtain 

             
0 0

2

3 3

,

b a

Ae

  




+ +
−

 =                                                                                                       (50) 

Where A is a arbitrary constant. By substituting (47), (48) and (50) into eqs. (41), (44) and (45), we 

get 

2 2

0 02 3 2 4 0,b a  + + =                                                                                                        (51) 

 

By solving the above equation, we derive 

      0 0

1
( 3 ),

2
b a = − +  

   

Therefore, we have 

          
0 03

,

b a

Ae



−

 =      

So,  

          
0 03

0 0

B,
3

b a
A

e
b a







−

= +
−

                                            

placement  and  into Eq. (40), the general solution of Eq. (38) has been obtained 

  

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
( 3 )( ( 3 ) )

2

01
( 3 )( ( 3 )

2

0 0

1
( 3 )( ( 3 )

2

01
( 3 )( ( 3 )

2

0 0

3
( ) ,

B
3

( ) ,

B
3

b a x b a t

b a x b a t

b a x b a t

b a x b a t

Ae
u a

A
e

b a

Ae
v b

A
e

b a











− + +

− + +

− + +

− + +


 = +


+
−


 −
 = +


+ −

                                                            (52)    

The plots of above solution for some value of parameters illustrated in Fig. 3. 
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( ) 0 0.12 : plots of  52  1, 1, =2, a =1,b =1.Fig solutions for A B= =  

 

( ) 0 0.13 : densityplots of  52  1, 1, =2, a =1,b =1.Fig solutions for A B= =  

 

( ) 0 0.14 : plots of  52  1, 1, =-2, a =1,b =1.Fig solutions for A B= =  
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( ) 0 0.15 : densityplots of  52  1, 1, =-2, a =1,b =1.Fig solutions for A B= =  

 

5. Conclusions 

 In the current paper, new modification of a well-known method has been expanded to attain the 

generalized solutions of a system of PDE called coupled modified simple equation. The introduced 

method is applied to search the exact answers of the coupled generalized Schrödinger–Boussinesq 

system and the Boussinesq-type coupled system. The outcomes indicate that the coupled modified 

simple equation method is a powerful method for solving coupled system.  Among the main 

advantages of the presented methods the following features can be considered precisely include 

simplicity, directness, reliability and being computerizable. As it was stated previously, the primary 

merits of procedure used in this research over other analytical methods is that ( )   is not satisfied in 

any special equation. So, the probability to get new and varied solutions by using this method 

increases outstandingly.  
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