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Abstract. This paper presents a covering algorithm for solving bound-constrained global minimization problems
with a differentiable cost function. In the proposed algorithm, we suggest to explore the feasible domain using
a one-dimensional global search algorithm through a number of parametric curves that are relatively spread and
simultaneously scan the search space. To accelerate the corresponding algorithm, we incorporate a multivariate
quasi-Newton local search algorithm to spot the lowest regions. The proposed algorithm converges in a finite num-
ber of iterations to an ε-approximation of the global minimum. The performance of the algorithm is demonstrated
through numerical experiments on some typical test functions.
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1 Introduction
In this paper we consider the following bound-constrained global optimization problem:

min
x∈D

f (x), (P)

where D = {x ∈ Rn|l ≤ x≤ u}, l,u ∈ Rn and the objective function f (x) : Rn → R is not necessarily convex but
differentiable whose gradient function ∇ f satisfies the Lipschitz condition with an a priory unknown Lipschitz
constant M, 0 < M < ∞, i.e.,

‖∇ f (x)−∇ f (y)‖ ≤M‖x− y‖. (1)

The problem (P) is of interest in many real-world problems, in particular in chemical and electrical applications
[1, 28]. Many methods for solving problems of this kind have been proposed and are classified into deterministic
and stochastic ones.

As is well known, the stochastic population-based algorithms such Spherical Search algorithm (SS) [15], Par-
ticle Swarm Optimization (PSO) [21, 24], Differential Evolution (DE) [22] and its improved variant Quantum-
inspired Differential Evolution (QDE) [6], Harmony Search (HS) [11], etc. are practically the most efficient and
the most used, for their simplicities and effectiveness. However, these methods have no guarantees to find a global
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optimal solution in a finite number of iterations and there are no theoretical results for their convergence to the
global minimum. There are several parameters to be adjusted; if these parameters are not tuned appropriately, the
solution obtained can be trapped into a local minimum. Moreover, most of them are computationally expensive.
One of the reasons for this is the fact that the differentiability of the objective function is not efficiently exploited
during the search. Due to the lack of guidance by a gradient during the searching process, their effectiveness is rel-
atively inferior in terms of convergence speed for smooth problems. To enhance their performance for this class of
problems, various combinations of evolutionary algorithms with gradient based local search procedures have been
proposed [9,28]. On the other hand, the deterministic methods such as DIRECT algorithms [3], Branch and Bound
algorithms [16] or the approach based on the introduction of an auxiliary function [20] etc., provide a theoretical
guarantee of locating the global optimum within a prescribed precision ε , unfortunately these techniques suffer
from computational difficulties when the dimension of the problem increases or the search space is relatively large.

In this paper, we present a deterministic covering algorithm by exploiting the first derivative’s information. The
proposed algorithm converges in a finite number of iterations to an ε-approximation of the global minimum. Our
method is based on the use of the Alienor dimensionality reduction technique that transforms a multidimensional
problem into a unidimensional one, using a space-filling curve, and then use a one-dimensional global optimization
algorithm to approximate the global minimum. Despite the advantage of the latter, the large number of evaluations
of f can make it inconvenient, particularly when the dimension of space is relatively high. This is mainly due to
the use of a single curve that is supposed to closely approximate all points in the feasible domain D, for a good
overview, see [18, 25, 26].

In order to overcome this drawback, we suggest to convert the problem (P) into a unidimensional one by
running successively a number of α−dense (space-filling) curves that become progressively denser and simulta-
neously cover the search space. In the early phases of the algorithm, the curves are generated with a densification
parameter α , which is relatively large, but they are sufficiently spread to cover a vast region, then the parameter
α progressively decreases as the algorithm evolves. Throughout the generated α − dense curves, we explore the
search space using a one-dimensional algorithm (with relatively large step-lengths) that is adapted to the current
values of the first derivative and accelerates the search process.

Due to the lack of convexity, the objective function may exhibit violent variations with a large number of local
minima, so we incorporate a quasi-Newton local search algorithm to speed-up our algorithm. Actually, one of
the most effective quasi-Newton methods for solving large-scale bound differentiable optimization problems is
the so called L-BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-Schanno) [4] where ’B’ stands for bound.
It is considered as one of the most successful large-scale bound-constrained optimization methods that allows to
explore promising regions with a moderate generation of evaluation points. The proposed algorithm will be called
DRQN (Dimensionality-Reduction- Quasi-Newton algorithm).

We explore the search space D using the new accelerated one-dimensional global optimization search algorithm
to spot the attraction zones of the local minima. When a new record obtained by the one-dimensional exploration
algorithm is lower than the preceding one, it is taken care of by the L-BFGS-B local search algorithm as a starting
point to select a lower region of D and make a descent towards a new local minimum. The last solution thus
obtained gives a new speed up opportunity in the one-dimensional exploration algorithm (see Figures 4 - 7 below).

The advantage of our one-dimensional algorithm is that it generates points that are relatively distant in regions
where f takes high values and denser in regions where f takes small values. Due to the use of the first derivative’s
information, the used one-dimensional algorithm generates much less points. Furthermore, it is well adapted to our
case since the record obtained by the latter can be exploited by the L-BFGS-B local search algorithm to spot a new
local minimum, and the last obtained record will be exploited by the proposed one-dimensional search algorithm
to quicken the search for the global minimum over another curve (see the DRQN Algorithm 5.2). This procedure
cannot be realized with other one-dimensional covering algorithms such as Branch and Bound type or the different
extensions of Pyavskii-Shubert algorithm [8, 18], despite their efficiencies.

This paper is organized as follows. We describe the new approximated unidimensional problem and its prop-
erties in Section 2. Then, the one-dimensional exploration algorithm is presented in Section 3 and the L-BFGS-B
algorithm used in the local search procedure in Section 4. In Section 5, we describe our proposed algorithm
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DRQN for solving (P) and we prove its convergence to the global minimum. Numerical results are reported and
some conclusions drawn.

2 The approximated unidimensional problem and its properties
We start this section by giving some notations, then we describe the new approximated unidimensional problem and
its properties. Denote by f ∗ the global minimum of f (·) in D⊂Rn, i.e., minD f = f ∗ ∈R, x∗ is a global minimizer
of the problem (P) and fε denotes the approximated global minimum. The ∇ f (x) designates the gradient of f at
the point x, µ stands for the Lebesgue measure on Rn and d(·, ·) for the Euclidean distance. For x ∈ Rn, xT stands
for the transpose of x. ‖x‖ is the Euclidean norm of x and xT y is the scalar product of x and y.

The Alienor dimensionality reduction technique has been elaborated at the beginning of the eighties by Cher-
ruault and Guillez [5]. The basic idea is to use a parametric transformation allowing to simplify the above problem
into a problem depending on a single variable by means of a continuous parametric α−dense curve.

For solving the initial problem (P), we first associate an α−dense search curve ϕα in D defined by:

ϕα : [0,Tα ] → D

t → (ϕ
(α)
1 (t), . . . ,ϕ(α)

n (t)),

where the variable t is termed the search variable. The minimization of the initial problem (P) is then approximated
by a problem (P′) depending on the single variable t:

min
t∈[0,Tα ]

fϕ(t), (P′)

where
fϕ(t) = f (ϕα(t)) = f (ϕ(α)

1 (t), . . . ,ϕ(α)
n (t)).

In other words, the objective function f which depends on several variables is approximated by a function of a
single variable fϕ and the search space will be the interval [0,Tα ].

Before describing the properties of the compound approximated function fϕ , let us first recall some definitions
that will be needed below.

Definition 1. We say that a subset S of D (D ⊂ Rn) is α−dense in D, if for all x ∈ D, there exists a point x′ ∈ S
such that d(x,x′)≤ α .

Definition 2. A curve ϕα : [0,Tα ]→ D,Tα > 0, is called α − dense in D, if for all x ∈ D, there exists t ∈ [0,Tα ]

such that d(x,ϕα(t))≤ α , where ϕα(t) = (ϕ
(α)
1 (t), ...,ϕ(α)

n (t)).

The following result, established by Ziadi et al. [25], gives a method to generate an α−dense curve.

Theorem 1. Let ϕα(t)= (ϕ
(α)
1 (t), ...,ϕ(α)

n (t)) : [0,Tα ]→
n
∏
i=1

[li,ui] be a continuous function and let θ1,θ2, ...,θn−1,α

be strictly positive numbers such that:
(a) ϕ

(α)
n is surjective;

(b) For any i = 1,2, ...,n−1,ϕ(α)
i reaches its bounds li and ui in every closed interval of length θi;

(c) For any i = 1,2, ...,n−1 and for any interval I of [0,Tα ], we have

µ (I)< θi =⇒ µ

(
ϕ
(α)
i+1(I)

)
<

α√
n−1

,

where µ(·) is Lebesgue measure. Then, for t ∈ [0,Tα ], the curve ϕα(t) is α−dense in
n
∏
i=1

[li,ui].
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Based on the above result, we give here an example of an α−dense curve that will be used in our numerical
study.

Example 1. Consider the function ϕα(t) : [0, π

θn
]→ D such that

ϕ
(α)
1 (t) =

u1 + l1
2
− u1− l1

2
cos(θ1t) ,

ϕ
(α)
2 (t) =

u2 + l2
2
− u2− l2

2
cos(θ2t) ,

...

ϕ
(α)
n (t) =

un + ln
2
− un− ln

2
cos(θnt) ,

where α > 0 and θ1,θ2, ...,θn are parameters given by

θ1 = 1,

θ2 =
α

π (|l2|+ |u2|)
,

θ3 =
α2

π2 (|l2|+ |u2|)(|l3|+ |u3|)
,

...

θn =
αn−1

πn−1 (|l2|+ |u2|)(|l3|+ |u3|) . . .(|ln−1|+ |un−1|)
.

By Theorem 1, the parametrized curve ϕα(t) = (ϕ
(α)
1 (t), . . . ,ϕ(α)

n (t)) is α−dense in D. On the other hand, it
is easy to show that the function ϕα is Lipschitzian with constant

Lϕ =
1
2

(
n

∑
i=1

θ
2
i (ui− li)

2

) 1
2

,

and by a straightforward calculation, the Lipschitz constant of its derivative dϕα

dt is

Mϕ =
1
2

(
n

∑
i=1

θ
4
i (ui− li)

2

) 1
2

.

Figures 1 and 2 represent a densification of the square [−1,2]2 and the cube [−1,2]3 by the support of the given
curve with different α’s.

2.1 Properties of the approximated unidimensional problem (P′)

Since the objective function f of the initial problem (P) is continuously differentiable, it follows that the compound
univariate function fϕ is continuously differentiable and its derivative function satisfies the following Lipschitz
condition with constant M = L 2

ϕ ·M+L ·Mϕ , where L is the Lipschitz constant of the objective function f , i.e.

∀t1, t2 ∈
[

0,
π

θn

]
,
∣∣∣d fϕ

dt
(t1)−

d fϕ

dt
(t2)
∣∣∣≤M |t1− t2|. (2)
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a: Support of the curve with α = 0.3. b: Support of the curve with α = 0.1.

Figure 1: Support of the curve in the bidimensional case.

a: Support of the curve with α = 0.5. b: Support of the curve with α = 0.2.

Figure 2: Support of the curve in the three-dimensional case.

Also, for all t1, t2 ∈
[
0, π

θn

]
, we have∣∣∣∣d fϕ

dt
(t1)−

d fϕ
dt

(t2)
∣∣∣∣= ∣∣∣∣∇ f (ϕα (t1))

T · dϕα

dt
(t1)−∇ f (ϕα (t2))

T · dϕα

dt
(t2)
∣∣∣∣

≤
∥∥∥∥dϕα

dt
(t1)
∥∥∥∥ · ‖∇ f (ϕα (t1))−∇ f (ϕα (t2))‖+‖∇ f (ϕα (t2))‖ ·

∥∥∥∥dϕα

dt
(t1)−

dϕα

dt
(t2)
∥∥∥∥

≤Lϕ ·M ‖ϕα (t1)−ϕα (t2)‖+L ·Mϕ |t1− t2|

≤L 2
ϕ ·M |t1− t2|+L ·Mϕ |t1− t2| .

It suffices to take M = L 2
ϕ ·M+L ·Mϕ as Lipschitz constant for d fϕ

dt .

3 The one-dimensional search algorithm
In the literature there exist several methods for minimizing a univariate function over an interval [a,b] and whose
first derivative satisfies a Lipschitz condition. Most of these methods rely on the use of an a priory known value
of the Lipschitz constant or an estimate of it during the search process. The majority of the proposed approaches
aim to construct support functions that are close to the objective function [8, 12]. These approaches, by their very
constructions, do not consider exploiting new information linked to the multidimensional local search. The idea
we propose here is to use an algorithm which iteratively generates points following the scheme

tk+1 = tk + rk,
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where rk is the step-length which depends on the evaluation of tk, on the record obtained at the step k and on the
desired accuracy.

In the case where the function to be minimized has a Lipschitz gradient, Evtushenko [7] suggested a covering
algorithm on an interval [a,b]. Since our approximate function fϕ has a Lipschitz gradient, by the Lagrange
formula, for all t1, t2 ∈ [a,b], we have

fϕ(t2) = fϕ(t1)+
∫ 1

0

d fϕ

dt
(t1 + t(t2− t1)) · (t2− t1)dt

= fϕ(t1)+
∫ 1

0

(
d fϕ

dt

(
t1 + t(t2− t1)

)
−

d fϕ

dt
(t1)
)
· (t2− t1)dt +

d fϕ

dt
(t1) · (t2− t1).

On the other hand, we have for all 0≤ t ≤ 1(
d fϕ

dt

(
t1 + t(t2− t1)

)
−

d fϕ

dt
(t1)
)
· (t2− t1)≥−

∣∣∣d fϕ

dt
(t1 + t (t2− t1))−

d fϕ

dt
(t1)
∣∣∣.∣∣∣t2− t1

∣∣∣
≥−M t (t2− t1)2.

Hence

fϕ(t2)≥ fϕ(t1)−M (t2− t1)2
∫ 1

0
t dt +

d fϕ

dt
(t1) · (t2− t1)

≥ fϕ(t1)+
d fϕ

dt
(t1) · (t2− t1)−

M

2
(t2− t1)2, (3)

from which

fϕ(t1)+
d fϕ

dt
(t1) · (t2− t1)+

M

2
(t2− t1)2 ≥ fϕ(t2)≥ fϕ(t1)+

d fϕ

dt
(t1) · (t2− t1)−

M

2
(t2− t1)2. (4)

Let {t j}1≤ j≤k be the sequence of feasible points obtained when evaluating fϕ . It easy to check that if for a
certain t̃ ∈ [a,b], there exists a j ∈ {1, ...,k} such that

M

2
(t̃− t j)

2−
d fϕ

dt
(t j) · (t̃− t j)≤ fϕ(t j)+ ε−R∗k ,

then
R∗k− ε ≤ fϕ(t̃),

where R∗k = min
j=1,...,k

fϕ(t j) is the record value obtained up to the step k. Therefore to have the possibility of reducing

the feasible region, it is necessary to exclude the intervals with centres

c j = t j +
1

M

d fϕ

dt
(t j),

and width

r j =
1

M

((d fϕ

dt
(t j)
)2

+2M
(

fϕ(t j)−R∗k + ε
)) 1

2
.

In the Evtushenko algorithm, the evaluation points {tk} are generated following the scheme
t1 = a+ ε

M

tk+1 = tk + 1
M

d fϕ
dt (tk)+

1
M

((
d fϕ
dt (tk)

)2
+2M

(
fϕ(tk)−R∗k + ε

)) 1
2
+ ε

M ,

where the record value R∗k is updated at each step k and the search process stops when a point tk > b.
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Figure 3: Trial points produced by Evtushenko’s algorithm while minimizing the plotted function.

Remark 1. For an ε-optimal solution of problem (P) in a finite number of iterations, the mixed DRQN algorithm
must localize the global minimum of the approximated function fϕ , say f ∗ϕ , over [0,π/θn] with an accuracy ε/2
and the difference between f ∗ϕ and the global minimum f ∗ has to be ε/2 as well (see the proof of Theorem 2 below).
Then, the exploration points {tk} are generated following the modified scheme

t1 =
√

ε

M ,

tk+1 = tk + 1
M

d fϕ
dt (tk)+

1
M

((
d fϕ
dt (tk)

)2
+2M

(
fϕ(tk)−R∗k +

ε

2

)) 1
2
+
√

ε

M ,
(5)

and the search process stops when a point tk > π/θn.

The implementation of this algorithm has the advantage of not using complicated auxiliary calculations such
as constructing minorant functions, which considerably reduces the calculation time. This choice avoids missing
the global minimum of fϕ ; moreover, the record R∗k is exploited to quicken the search. To illustrate the effect of
the acceleration, Figure 3 represents the points generated following the Evtushenko scheme (5) for minimizing the
plotted function over the interval [−5,5].

4 The L-BFGS-B local search algorithm
The L-BFGS-B algorithm (Limited Memory BFGS for Bound Constrained Optimization) [4] is a quasi-Newton
type algorithm, it is an extension of L-BFGS algorithm (limited memory BFGS) to handle simple bounds. Due to
its ability to deal with bounds on the variables, it is considered as one of the most successful large-scale bound-
constrained optimization methods. It generates a sequence of points

{
x j
}

j≥0 ⊂ Rn starting from an initial point
x0 ∈ Rn following the procedure

x j+1 = x j +λ jd j, (6)

where λ j > 0 is a step-length which is determined by a line search procedure (usually chosen in such a way that it
satisfies the Wolfe line search conditions) to ensure a sufficient decrease of f and d j (the descent direction) is of
the form

d j =−H j∇ f (x j), (7)

where H j is the inverse Hessian approximation matrix updated by the following formula

H j+1 =V T
j H jVj +ρks jsT

j , (8)
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with

y j = ∇ f (x j+1)−∇ f (x j), s j = x j+1− x j, ρ j =
1

yT
j s j

, Vj = I−ρ jy jsT
j .

The L-BFGS-B algorithm is based on the gradient projection method and uses a limited memory matrix H to
approximate the inverse Hessian of the objective function by using the last m̃ (typically m̃ = 5) correction pairs
{si,yi}|i∈ j−m̃,..., j−1. For a given iteration j, the matrix H j that approximates the inverse Hessian at a point x j is
updated and the objective function is approximated by a quadratic model as

q j(x) = f (x j)+∇ f (x j)
T (x− x j)+

1
2
(x− x j)

T H j(x− x j).

At each iteration, the L-BFGS-B algorithm minimizes q j(x) subject to D, using the gradient projection strategy to
determine a set of active constraints, followed by a minimization of q j(x) regarding the active bounds as equality
constraints. The computation for the generalized Cauchy point and the subspace minimization are the most crucial
phases at each iteration j (for more details see [4]). The objective of the Cauchy point computation is to minimize
the quadratic approximation of the objective function q j(x), starting from the current point x j, on the path defined
by the projection of the steepest descent direction on the feasible domain. After the Cauchy point xc is obtained,
the quadratic function q j(x) is minimized over the free variables subject to their lower and upper bounds, i.e. the
variables that are identified as inside the feasible design space, and then backtracked into the feasible design space
to obtain x̃. The new search direction is computed as d j = x̃ j−x j and a step-length λ j is determined in such a way
that it satisfies the strong-Wolfe conditions (SW ) to compute the new design variable x j+1

f (x j +λ jd j)− f (x j)≤ c1λ j∇ f (x j)
T d j,

|∇ f (x j +λ jd j)
T d j| ≤ c2|∇ f (x j)

T d j|, (SW )

where 0 < c1 < 1/2 and c1 < c2 < 1. The matrix H j+1 is then computed based on the new point x j+1 using the L-
BFGS update formula and a new iteration is started. The algorithm stops when, for a point x j, the norm of the pro-
jected gradient (in the sup-norm sense) onto the feasible design space is small, i.e ‖PD (x j−∇ f (x j))− x j‖∞ ' 0.
Recently, new limited memory BFGS algorithms have been proposed for optimization problems, see [2, 14].

5 The proposed DRQN algorithm

5.1 Algorithm description
As we mentioned earlier, the principle behind our algorithm is to generate consecutively a number of α − dense
curves that are relatively spread and cover simultaneously the feasible domain using relatively large step-lengths.
In the earlier phases of the algorithm, the curves are generated with a densification parameter α which is relatively
large but are sufficiently spread out to cover a vast region; the parameter α then decreases progressively with
the evolution of the algorithm. The domain is explored through the generated α − dense curves using the one-
dimensional search algorithm which localizes the local minima attraction zones. If a new record has thus been
registered, the L-BFGS-B local search algorithm uses this record to select the lowest sub-region of D so to descend
to a new local minimum. The last solution thus obtained is exploited by the one-dimensional exploration algorithm
to quicken the search process through the generated α−dense curves (see Figures 4 - 7).

As is well known in Lipschitzian one-dimensional global optimization, when the Lipschitz constant (or an
estimate of it) is relatively large, an important number of evaluation points is generated because the step-length
becomes very small. To overcome this drawback, the explicit use of the Lipschitz constant is here circumvented.
The idea is to use a sequence of controls over the gradient ∇ f . That is, we find two increasing sequences {M j} and
{L j} of positive constants that control the growth of M and L. Clearly there exists j̃ ∈N∗ such that M j̃ > M,L j̃ > L
and for all x,y ∈ D we have
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‖∇ f (x)−∇ f (y)‖ ≤M j̃‖x− y‖, (9)

and consequently, for all t1, t2 ∈ [0,Tα ] we have∣∣∣d fϕ

dt
(t1)−

d fϕ

dt
(t2)
∣∣∣≤M j̃|t1− t2|. (10)

This condition theoretically justifies the convergence of the algorithm in a finite number of iterations given the
desired accuracy ε > 0 (see Theorem 2 below). At the step j, a well spread curve is generated which is α j−dense
depending on M j. The one-dimensional algorithm goes on to explore the objective function over this curve, it has
also a variable step-length depending on M j as well and also on the record obtained during the j− 1 preceding
steps. The local search intervenes when a new record point detected by the one-dimensional exploration algorithm
is lower than the older one.

The first few terms of the sequences M j and L j are taken sufficiently small during the first phases of the
algorithm so that the one-dimensional exploration algorithm can use relatively large step-lengths; but during the j
iterations we increase the parameters M j and L j by setting M j = ξ ·M j−1 and L j = ξ ·L j−1,ξ > 1 to have a denser
curve with smaller one-dimensional step-lengths. After a certain number of iterations, the set of the generated
points will be somewhat dense in the regions where f takes small values and much less dense elsewhere (see
Figure 3). This phenomenon is allowed by our variable exploration step-length which depends on the region where
the feasible point lies and increases as f increases.

As is said in Remark 1, in order to have an ε-optimal solution of problem (P), the algorithm must localize the
global minimum of the approximated function fϕ , noted f ∗ϕ , over [0,π/θn] with an accuracy ε/2 and the difference
between f ∗ϕ and the global minimum f ∗ has to be ε/2 as well. Then from (5), at an iteration j, the search points
generated by the modified one-dimensional algorithm are given as follows

t1 =
√

ε/M j,

tk+1 = tk + 1
M j

d fϕ j
dt (tk)+ 1

M j

(( d fϕ j
dt (tk)

)2
+2M j

(
fϕ j(tk)− fε +

ε

2

)) 1
2
+
√

ε

M j
,

where fϕ j(t) = f
(
ϕα j(t)

)
in which ϕα j is the curve of Example 1 having the densification parameter α j, fε is

the record value of the mixed algorithm DRQN and M j = L 2
ϕ j
.M j +L j.Mϕ j is a term of an increasing sequence

covering M , see the algorithm below. The algorithm stops when we obtain a curve whose parameter densification
α j is lower than a threshold αmin.

5.2 The DRQN algorithm

Remark 2. The first terms of the sequences
{

L j
}

j∈N and
{

M j
}

j∈N should be sufficiently small during the first
steps of the algorithm, to have large enough step-lengths. The adjustment of these parameters depends essentially
on the size of the search space D, a larger domain would demand smaller ξ , M1 and L1 for lesser evaluation points.

To illustrate the minimization process by the DRQN algorithm, we present in Figures 4 - 7 respectively the
graphs of the Bird, Drop-Wave, Modified Langerman and Schaffer 2 functions together with the work done by
DRQN, through the trial points produced by the algorithm, to spot a global minimizer.

6 Convergence of the DRQN algorithm
The following theorem establishes the convergence of the DRQN algorithm without a stopping criterion.
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Figure 4: Minimization process of the Bird function: global minimizer x∗=(4.7010,3.1529) with global minimum
f (x∗) =−106.764537.

Figure 5: Minimization process of the Drop-Wave function: global minimizer x∗ = (0,0) with global minimum
f (x∗) =−1.

Theorem 2. The combined algorithm DRQN converges in a finite number of evaluation points towards the global
minimum of problem (P) within the accuracy ε > 0.

Proof. Let f ∗ be the global minimum of f on D and fε its approximate value obtained by the proposed algorithm.
We denote by f ∗ϕ j

the global minimum of the approximated function fϕ j on [0,Tα j ].
Without a stopping criterion, it is expected that the DRQN algorithm generates a sequence of points {tk}k∈N∗

that is everywhere dense in D. Indeed, as j increases, the DRQN algorithm generates the sequences {α j} j∈N∗ ,
{M j} j∈N∗ , {L j} j∈N∗ and {M j} j∈N∗ ; the sequences {M j} j∈N∗ and {L j} j∈N∗ are geometric with the first terms
M1 > 0,L1 > 0 and comment ration ξ > 1 and tend to infinity, whereas the sequence {α j} j∈N∗ is geometric with
the first term α1 > 0 and comment ration 0 < 1/ξ < 1 and tends to zero. Therefore, from (9) there exists j̃ ∈ N∗
such that α j̃ ≤

√
ε/M and for all x,y ∈ D we have{∣∣ f (x)− f (y)

∣∣≤ L j̃‖x− y‖
‖∇ f (x)−∇ f (y)‖ ≤M j̃‖x− y‖
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Algorithm 1: Pseudo-code of the DRQN algorithm
Input: Objective function f , define the α−dense curve ϕα(.) and let Lϕ and Mϕ respectively the

Lipschitz constants of the curve ϕα and ϕα

dt , the accuracy of the computation of the global minimum
ε , multiplicative factor ξ > 1, αmin a densification parameter of the last generated curve to stop the
algorithm.

Output: Global minimum fε and global minimizer xε

1 .
// Initialization

2 - Set j = 1 and initialize L1,M1

3 - Set α1 =
√

ε/M1
4 - Set fε = min{ f (l), f (u)} and xε = argmin fε , where l and u are search-space limits

// Main loop

5 while α j > αmin do
6 - Generate α j−dense curve ϕα j , and let Lϕ j and Mϕ j be their Lipschitz constants
7 - Set M j = L 2

ϕ j
.M j +L j.Mϕ j

8 - Set k = 1 and t1 =
√

ε/M j
9 while tk < Tj do

10 - Evaluate fϕ j(tk)
11 if fϕ j(tk)< fε then

// Apply the L-BFGS-B local search algorithm, starting from x0 = ϕα j (tk) and let x̃ the

obtained local minimizer

12 - (x̃, f (x̃))=L-BFGS-B (ϕα j(tk))
13 - Put xε = x̃, fε = f (xε) // Update the record value fε

14 - Set tk+1 = tk + 1
M j

d fϕ j
dt (tk)+ 1

M j

(( d fϕ j
dt (tk)

)2
+2M j

(
fϕ j (tk)− fε + ε

2
)) 1

2

+
√

ε

M j

15 - k = k+1

16 - Set M j+1 = ξ ·M j, L j+1 = ξ · L j // Increase the Lipschitz constants of f and its derivative

17 - Set α j+1 = α j/ξ // Decrease the parameter densification α to generate a denser curve

18 - j = j+1.
// Get the solution

19 - return (xε , fε )

and consequently for all t1, t2 ∈ [0,Tα j̃
] we have

∣∣∣d fϕ j̃

dt
(t1)−

d fϕ j̃

dt
(t2)
∣∣∣≤M j̃|t1− t2|.

Since the algorithm must localize the global minimum of the approximated function fϕ j̃
, noted f ∗ϕ j̃

, on [0,Tα j̃
] with

accuracy ε/2 and the difference between f ∗ϕ j̃
and the global minimum f ∗ has to be ε/2 as well, we now distinguish

two parts (A) and (B) in the proof.
- (A): At the step j̃, the algorithm generates the curve ϕα j̃

(t) : t ∈ [0,Tα j̃
] in D, α j̃−dense with α j̃ = ξ 1− j̃α1. Let

t1, t2, . . . , tN be the points generated by the algorithm during this step for minimizing the composed function fϕ j̃
.

The main iteration during this step is

t1 =
√

ε/M j̃, tk+1 = tk + rk,
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Figure 6: Minimization process of the Modified Langerman function: global minimizer x∗ = (9.68107,0.66665)
with global minimum f (x∗) =−0.96500.

Figure 7: Minimization process of the Schaffer 2 function: global minimizer x∗ = (0,0) with global minimum
f (x∗) = 0.

where

rk =
1

M j̃

d fϕ j̃

dt
(tk)+

1
M j̃

((d fϕ j̃

dt
(tk)
)2

+2M j̃
(

fϕ j̃
(tk)− fε + ε/2

)) 1
2

+

√
ε

M j̃
.

Let f ∗ϕ j̃
be the global minimum of the approximated function fϕ j̃

on [0,Tα j̃
], there exists a t∗ ∈ [0,Tα j̃

] such that

f ∗ϕ j̃
= f
(
ϕ j̃(t

∗)
)
. There are overall only four possibilities depending on relation (4), let us list them in the following

way.
- First case: t∗ ∈ {0,Tα j̃

}, then f ∗ϕ j̃
= min

{
fϕ j̃

(0), fϕ j̃
(Tα j̃

)
}
= min{ f (l), f (u)}, hence fε = f ∗ϕ j̃

.

- Second case: t∗ ∈ (0, t1] then t1− t∗ ≤
√

ε/M j̃. Since the gradient function of fϕ j̃
is Lipschitzian, then from (4)

we have

fϕ j̃
(t1)− fϕ j̃

(t∗)≤
d fϕ j̃

dt
(t∗) · (t1− t∗)+

M j̃

2
(t1− t∗)2.
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Since t∗ is the global minimum of fϕ j̃
on [0,Tα j̃

], then
d fϕ j̃

dt (t∗) = 0, thus

fε − f ∗ϕ j̃
≤ fϕ j̃

(t1)− fϕ j̃
(t∗)≤

M j̃

2
(t1− t∗)2 ≤ ε/2.

- Third case: t∗ ∈ (t1, tN ], where tN is the last point generated by the algorithm at the step j̃ (with tN+1 ≥ Tα j̃
),

then ∃k ∈ 1, . . . ,N−1 such that tk < t∗ ≤ tk+1, with tk+1 = tk + rk, we have two possibilities:
- (i): t∗ ∈

(
tk, tk + rk−

√
ε/M j̃

]
. It follows that

t∗− tk ≤
1

M j̃

d fϕ j̃

dt
(tk)+

1
M j̃

((d fϕ j̃

dt
(tk)
)2

+2M j̃
(

fϕ j̃
(tk)− fε + ε/2

)) 1
2

.

From relation (3), after straightforward calculations, we obtain

fϕ j̃
(tk)− fϕ j̃

(t∗)≤−
d fϕ j̃

dt
(tk) · (t∗− tk)+

M j̃

2
(t∗− tk)2 ≤ fϕ j̃

(tk)− fε + ε/2,

then fε − f ∗ϕ j̃
≤ ε/2.

- (ii): t∗ ∈
(

tk + rk−
√

ε/M j̃, tk+1

]
. It follows that tk+1− t∗ ≤

√
ε/M j̃. Since t∗ is the global minimum of fϕ j̃

on

[0,Tα j̃
], as in the second case it follows that

fε − f ∗ϕ j̃
≤

M j̃

2
(tk+1− t∗)2 ≤ ε/2.

- Fourth case: t∗ ∈ (tN ,Tα j̃
), we have two possibilities:

- (i): Tα j̃
− tN ≤ rN−

√
ε/M j̃. It follows that

t∗− tN ≤
1

M j̃

d fϕ j̃

dt
(tN)+

1
M j̃

((d fϕ j̃

dt
(tN)

)2
+2M j̃

(
fϕ j̃

(tN)− fε + ε/2
)) 1

2

.

Proceeding as in the third case-(i), we obtain fε − f ∗ϕ j̃
≤ ε/2.

- (ii): Tα j̃
− tN ≥ rN−

√
ε/M j̃. It follows that

t∗ ∈
(

tN , tN + rN−
√

ε/M j̃

]
, or t∗ ∈

(
rN−

√
ε/M j̃,Tα j̃

)
.

Proceeding exactly as in the third case and keeping in mind that Tα j̃
≤ tN+1 and ϕ(Tα j̃

) = u, we also find fε − f ∗ϕ j̃
≤ ε

2 .
We deduce that in all cases, there exists t∗ ∈ [0,Tα j̃

] such that fε − f ∗ϕ j̃
≤ ε/2.

- (B): As the curve ϕ j̃ is α j̃−dense with α j̃ ≤
√

ε/M, there exists t̃ ∈ [0,Tα j̃
] such that

d(ϕ j̃(t̃),x
∗)≤ α j̃ ≤

√
ε/M.

Since ∇ f (x∗) = 0 and the gradient function of f has Lipschitz constant M, then from relation (4)

f (ϕ j̃(t̃))− f ∗ ≤ ∇ f (x∗)T .(ϕ j̃(t̃)− x∗)+
M
2
‖ϕ j̃(t̃)− x∗‖2 ≤ ε/2.

It follows that
f ∗ϕ j̃
− f ∗ ≤ f (ϕ j̃(t̃))− f ∗ ≤ ε/2.

From (A) and (B), we deduce that
fε − f ∗ = fε − f ∗ϕ j̃

+ f ∗ϕ j̃
− f ∗ ≤ ε.
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7 Computational experiments
In this section, we present some practical performances of the proposed method applied to a diverse set of typical
test problems found in [23, 30]. All numerical experiments are implemented in the scientific software MATLAB
version R2015a.

In all the experiments, the DRQN algorithm has been implemented taking ε = 10−4, L1 = 10−4,M1 = 10−6

and ξ = 2 for the one-dimensional exploration algorithm, whereas for the local search algorithm L-BFGS-B, we
have used the version of Byrd et al. [4], downloadable from https://github.com/bgranzow/L-BFGS-B, with
the setting parameter m̃ = 5 and H0 = In is set as the identity matrix (the other parameters are set to their default
values). Moreover, in all the computations, the number of evaluations of the objective and gradient functions
involved in the DRQN algorithm is calculated by the following formula

f eval = N f +n×Ng, (11)

where n is the dimension of the problem, N f and Ng are respectively the number of evaluations of the objective
and gradient functions f and ∇ f .

To have an overall picture about the algorithm and its components, we present in Table 2 some detailed results
obtained by the DRQN algorithm for finding the global minima of a certain number of test functions. This will give
us a clue on the work done by each component of our algorithm. In this table, f eval, CPU(s) and num curves are
respectively the number of function evaluations, CPU times in seconds and number of generated α−dense curves,
whereas f eval expl, f eval loc and num cal ls are respectively the number of function evaluations generated by
the one-dimensional exploration algorithm, the number of function evaluations generated by the L-BFGS-B local
search algorithm and the number of calls for the L-BFGS-B local search algorithm.

In order to show the efficiency of the DRQN algorithm, we shall compare its performance with both determin-
istic and stochastic algorithms, by observing the number of evaluations and the time elapsed by each algorithm to
obtain an approximate solution and the best results are styled in bold. In all the experiments every computation
was terminated as successful when a recorded solution error satisfying

| f (xk)− f ∗| ≤ 10−5, (12)

was reached within 5×105 function evaluations and whose calculation time does not exceed 100 seconds; other-
wise, the computation was considered as a failure. The stopping criterion of the DRQN algorithm is replaced by
the stopping condition (12) and the number of function evaluations is calculated by the formula (11).

In Table 3 the DRQN algorithm is compared with four deterministic algorithms: RTEHJ [29], MCS [13],
AEGPS [27] and ACRS [3], where f eval and CPU(s) are respectively the number of function evaluations and
CPU-time in seconds. The Matlab implementations of the algorithms MCS and ACRS are respectively download-
able from https://www.mat.univie.ac.at/~neum/software/mcs/, http://www.glopt.net/softwares.
html and have been used for all the experiments with default parameters setting, whereas for AEGPS and RTEHJ
algorithms we have taken the same parameters as those in [27, 29].

From Table 3 it is clear that the proposed algorithm is practically more performent than the other determin-
istic algorithms since it has managed to be quicker in solving most problems, followed by the AEGPS algo-
rithm. As is well known, the stochastic population-based algorithms are more efficient than the determinis-
tic ones. Table 4 reports numerical results allowing to compare our method with seven stochastic algorithms
(two of them are efficient and recent evolutionary algorithms: EO and COA) EO (Equilibrium Optimizer) [10],
COA [17] (Coyote Optimization Algorithm), DE (Differential Evolution) [22], SPSO (Standard Particle Swarm
Optimization) [24], HS (Harmony Search) [11] and G-CART (Classification and Regression Trees) [19] by ob-
serving the number of function evaluations and the time elapsed by each algorithm to obtain an approximate
solution. The MATLAB implementations of the algorithms DE, SPSO, HS, EO, COA and G-CART are, respec-
tively, downloadable from https://yarpiz.com/231/ypea107-differential-evolution, http://www.

particleswarm.info/Programs, https://github.com/jkpir/COA, http://www.math.canterbury.ac.
nz/~b.robertson/research.html, https://github.com/afshinfaramarzi/Equilibrium-Optimizer,

https://github.com/bgranzow/L-BFGS-B
https://www.mat.univie.ac.at/~neum/software/mcs/
http://www.glopt.net/softwares.html
http://www.glopt.net/softwares.html
https://yarpiz.com/231/ypea107-differential-evolution
http://www.particleswarm.info/Programs
http://www.particleswarm.info/Programs
https://github.com/jkpir/COA
http://www.math.canterbury.ac.nz/~b.robertson/research.html
http://www.math.canterbury.ac.nz/~b.robertson/research.html
https://github.com/afshinfaramarzi/Equilibrium-Optimizer
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Table 1: Test problems.
Problem number Dimension n Problem name Search region global minimum
1 2 Schaffer 2 function [−10,10]2 0
2 2 Drop-Wave function [−10,10]2 -1
3 2 Shubert function [−10,10]2 -186.7309
4 4 Wood function [−30,30]4 0
5, 6, 7, 8, 9, 10 5, 10, 20, 30, 40, 50 Dixon and Price function [−30,30]n 0
11 2 0.01922
12 4 0.03844
13 10 0.096103
14 20 Cosine Mixture function [−30,30]n 0.192206
15 30 0.288309
16 40 0.384412
17 50 0.480515
18, 19, 20, 21, 22, 23 5, 10, 20, 30, 40, 50 Exponential function [−30,30]n 0
24, 25, 26, 27, 28, 29 4, 10, 20, 30, 40, 50 Griewank function [−30,30]n 0
30, 31, 32, 33, 34, 35 5, 10, 20, 30, 40, 50 Levy and Montalvo 1 function [−10,10]n 0
36, 37, 38, 39, 40, 41 5, 10, 20, 30, 40, 50 Levy and Montalvo 2 function [−10,10]n 0
42 2 -1.80130
43 5 Michalewicz function [0,π]n -4.68765
44 8 -7.66375
45 10 -9.66015
46 2 -1.08093
47 5 Modified Langerman function [0,10]n -0.96500
48 7 -0.51700
49 10 -0.96500
50 3 [0,1]3 -3.86278
51 6 Hartamann function [0,1]6 -3.32237
52, 53, 54, 55, 56, 57, 58 5, 8, 10, 20, 30, 40, 50 Neumaier function [−n,n]n −n(n+4)(n−1)/6
59, 60, 61, 62, 63, 64 5, 10, 20, 30, 40, 50 Sum Squares function [−30,30]n 0
65,66, 67, 68, 69, 70 5, 10, 20, 30, 40, 50 Zakharov function [−10,10]n 0
71, 72, 73, 74, 75, 76 4, 10, 20, 30, 40, 50 Rosenbrock function [−10,10]n 0
77, 78, 79, 80, 81, 82 5, 10, 20, 30, 40, 50 Rastrigin function [−30,30]n 0
83, 84, 85, 86, 87, 88, 89, 90 4, 8, 16, 20, 24, 28, 40, 50 Powell function [−30,30]n 0
91, 92, 93, 94, 95, 96 5, 10, 20, 30, 40, 50 Perm’s function (P)n,0.5 [−n,n]n 0
97, 98, 99, 100, 101, 102 5, 10, 20, 30, 40, 50 Ackley function [−30,30]n 0
103 5 −195.8299
104 10 Styblinski-Tang function [−5,5]n −391.6599
105 20 −783.3195
106 30 −1174.9797
107 4 Colville function [−10,10]4 0
108 4 m = 5,−10.1532
109 4 Shekel function [0,10]4 m = 7,−10.4029
110 4 m = 10,−10.5364
111 2 -1
112 5 -2
113 8 Sum of different power function [−1,1]n -4
114 10 -5
115 2 4.98151
116 5 Paviani function [2.001,9.99]n 9.73052
117 10 -45.77847
118 2 5
119 5 3413
120 8 Hyper-ellipsoid function [−5,5]n 17650828
121 10 10405071317
122 2 -1.4914
123 8 Sine envelope function [−10,10]n -10.44047
124 10 -13.41403
125 2 Bird function [−2π,−2π]2 -106.764537

https://www.mathworks.com/matlabcentral/fileexchange/28850-harmony-search-algorithm, and
have been used for all the experiments with a standard setting of associated parameters.

In these comparisons, all functions have been independently run twenty times by the stochastic algorithm under
consideration; the mean number of the evaluations and the mean calculation time for each algorithm have been
reported. If during the trials, a method has failed at least once, the number of failures was reported. For a given

https://www.mathworks.com/matlabcentral/fileexchange/28850-harmony-search-algorithm
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Table 2: Performance of DRQN algorithm on some test problems.
Problem number f eval CPU(s) num curves f eval expl f eval loc num cal ls

5 317 0.1697 3 89 228 4
12 93 0.1014 2 30 63 2
17 1129 0.3068 3 432 697 3
20 11420 2.5007 4 8094 3326 8
31 1706 0.9028 3 101 1605 8
35 38368 17.8303 4 1205 37163 12
49 609583 70.6800 11 600625 8958 10
69 1001 0.2386 3 30 971 5
73 196443 33.2759 8 190075 6368 8
87 1914 0.4627 4 399 1515 4
90 1609 0.5491 3 132 1477 3
95 106487 28.3595 7 96095 10392 10

100 18285 3.7586 5 5309 12976 7

problem, the average number has not been calculated for the algorithm with at least 5 failures in 20 executions;
for failures less than 5, the average of the twenty trials is calculated and, for each failure, the maximal number of
evaluation points or the maximal CPU-time (depending on the failure case) is associated. The mean value is then
displayed with an indication of the number of failures between parentheses.

From Table 4, the numerical results indicate that the proposed algorithm exhibits a better performance. In
particular, the DRQN algorithm is fastest for about 41% of the test problems and it solves about 88% of the test
problems successfully, followed by DE, EO and COA since they solve respectively about 79%, 75% and 74% of the
test problems successfully, SPSO has the fifth best performance with 69% of the test problems; whereas HS and G-
CART, solve respectively about 47% and 39% of the test problems successfully. These outcomes demonstrate that
the DRQN is competitive and converges quickly towards the global minimum in the majority of the test problems.
This is likely due to the fact that the actual adaptive exploitation of the gradient leads towards lower regions with
a moderate number of generated points. However, the proposed algorithm produces a somewhat large number of
evaluations in the case where the attraction region of the global minimizer is very narrow. All things considered,
numerical comparisons indicate that our proposed method seems to be promising and competitive in practice.

8 Conclusions and future research

This paper deals with bound-constrained and non-convex global optimization problems where the objective func-
tion has a Lipschitz gradient. The proposed method is a combination of two procedures; the main procedure is to
scan the feasible domain using a one-dimensional global search algorithm through a number of α−dense curves
that are relatively spread and become progressively denser, thus covering simultaneously the search space. In or-
der to quicken the exploration procedure, we have incorporated a quasi-Newton local search algorithm to spot the
lowest regions. The proposed algorithm converges in a finite number of iterations to an ε-approximation of the
global minimum. Preliminary numerical experiments indicate that the algorithm is promising and competitive in
practice.

Concerning further developments, other one-dimensional covering algorithms could be exploited; another track
is to incorporate local search procedures which are better performing than the L-BFGS-B algorithm.
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Table 3: Number of function evaluations and CPU-time required by the DRQN algorithm and the other determin-
istic methods to reach the global minimum.

Problem DRQN RTEHJ MCS AEGPS ACRS
number f eval/CPU(s) f eval/CPU(s) f eval/CPU(s) f eval/CPU(s) f eval/CPU(s)

1 301/0.2409 443/0.0911 208/1.4444 1609/0.9766 6529/1.7160
2 320/0.1812 121/0.0662 212/1.5526 137269/20.6520 50232/9.0013
3 61/0.1417 1102/0.0862 205/1.3965 681/0.4950 55692/8.5021
4 465/0.1964 16764/0.9173 822/2.1382 62519/9.7248 fail
5 317/0.1697 25677/1.2402 fail 1534/ 0.5240 fail
6 27929/5.3070 26733/1.4802 fail 47021/8.8143 fail
7 116183/24.9951 fail fail 53392/12.1933 fail
8 134738/32.2898 fail fail 187396/36.3999 fail
9 fail fail fail fail fail

10 fail fail fail fail fail
11 70/0.0971 335/0.0233 222/0.2931 7157/1.9032 7157/1.9032
12 93/0.1014 2292/0.4042 292/1.6050 594/0.3540 8409/2.3244
13 127/0.1110 284040/34.8516 860/2.6876 3390/ 0.8049 9823/3.4008
14 198/0.1266 fail 2678/7.6787 12435/2.1678 fail
15 287/0.1341 fail 5466/19.5829 26649/4.3514 fail
16 472/0.1807 fail 9142/29.1413 45629/7.1427 fail
17 1129/0.3068 fail 13765/47.4710 75609/11.8238 fail
18 374/0.1919 424/0.0307 1255/2.8560 955/0.4863 23097/4.4148
19 7631/1.2491 3816/0.4067 5011/9.1345 9535/1.7359 72331/12.8233
20 11420/2.5007 333116/83.3204 20199/44.6562 12965/2.2772 271243/71.9321
21 11994/2.5795 437387/87.0294 fail 26333/4.1875 fail
22 22353/4.3259 fail fail 45502/6.9854 fail
23 68261/11.3260 fail fail 65665/10.2088 fail
24 7153/1.5798 15764/1.9403 800/2.2542 13973/3.3009 300000/55.9388
25 169/0.1158 317967/48.3792 3200/6.4923 68557/13.3904 fail
26 72/0.2061 454949/72.8232 20000/57.9918 6644/ 1.3298 fail
27 92/0.2148 fail fail 11107/2.0672 fail
28 112/0.2248 fail fail 166072/ 2.9690 fail
29 132/0.2368 fail fail 23037/4.1859 fail
30 499/0.4248 432/0.0309 337/1.8180 917/0.4246 6286/2.1060
31 1706/0.9028 9495/1.5515 748/2.4662 2613/ 0.7154 9534/3.3072
32 6628/2.8975 228991/35.2568 2944/8.4843 6298/1.3603 17892/7.6128
33 14526/6.7263 135520/18.5295 6479/23.7376 23066/4.0663 fail
34 24304/12.1846 401757/69.1811 11487/50.3674 24527/7.9458 fail
35 38368/17.8303 478598/87.9847 17895/49.4480 66424/11.2693 fail
36 102/0.1435 298/0.0191 368/1.6647 1038/0.4507 49528/8.1277
37 1167/0.6198 211701/30.5712 895/2.3140 2972/0.7661 24274/6.6144
38 4522/2.0778 409774/88.72117 2812/5.3231 11117/2.1164 24118/7.4880
39 8571/3.9566 fail 5339/18.4640 23660/4.2189 51665/20.3269
40 14401/6.6602 fail 8654/35.8083 37889/6.6841 fail
41 1075/0.6992 fail 12583/73.0270 51652/8.7678 fail
42 155/0.1457 1052/0.0964 146/1.4823 183/0.2864 fail
43 546/2.8703 129047/42.0626 fail 18122/3.2506 fail
44 38141/7.0891 221113/42.0041 fail fail fail
45 fail fail fail fail fail
46 142/0.1501 4719/1.1473 fail 6380/1.8371 5250/1.8408
47 7259/4.0403 336951/90.9013 fail 25883/8.2362 fail
48 22167/6.8306 14858/13.3722 fail fail fail
49 fail 20948/16.8765 fail fail fail
50 2895/0.2959 635/0.0404 233/9.3358 416/0.4454 3741/0.4844
51 fail fail 429/1.1742 fail 4376/0.6406
59 79/0.0969 812/0.0661 1250/2.4032 869/0.4087 3763/1.1544
60 179/0.1100 3397/0.2835 4879/7.7656 2677/0.6844 8143/2.7144
61 524/0.1616 21399/1.8735 20001/51.6496 6442/1.2603 fail
62 999/0.2486 52268/4.6691 45000/97.6603 27301/4.3689 fail
63 1459/ 0.3188 204131/18.7340 fail 55534/8.4395 fail
64 1999/0.4095 387088/35.2641 fail 80871/12.4093 fail

[2] S. Babaie-Kafaki, Z. Aminifard, S. Ghafoori, Nonmonotone diagonally scaled limited-memory BFGS meth-
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Table 3: (Continued)
Problem DRQN RTEHJ MCS AEGPS ACRS
number f eval/CPU(s) f eval/CPU(s) f eval/CPU(s) f eval/CPU(s) f eval/CPU(s)

65 307/0.1513 773/0.0648 1250/2.6738 3570/0.9253 3514/1.1700
66 377/0.1495 2638/0.2127 5001/7.5070 405965/54.8257 fail
67 545/0.1752 14269/1.2861 20000/26.6835 fail fail
68 1293/0.3662 29821/2.6873 45000/88.9233 fail fail
69 1001/0.2386 59573/5.7198 fail fail fail
70 1289/0.3238 100409/9.6512 fail fail fail
71 707/0.2363 48680/4.3381 1252/2.4560 55980/7.1216 fail
72 1157/0.3110 467463/39.4330 4104/4.4644 29136/8.1583 fail
73 196443/33.2759 fail 12524/13.9042 200335/36.9396 fail
74 418318/85.0012 fail 13779/20.3061 fail fail
75 fail fail 21725/43.2405 fail fail
76 fail fail 31400/43.1281 fail fail
77 10316/1.8507 149261/38.0386 1256/2.3295 893/0.4260 fail
78 32184/6.9592 fail 5000/10.4717 3459/0.8332 fail
79 49088/11.9594 fail 20000/47.3173 7407/1.4242 fail
80 133980/32.0293 fail fail 12791/ 2.2121 fail
81 238558/61.2592 fail fail 22740/4.5859 fail
82 fail fail fail 25524/4.9713 fail
83 272/0.1443 1172/0.1018 800/2.0314 4405/1.0236 5245/ 1.7940
84 475/0.1774 8248/0.7401 3200/4.7220 12048/2.0606 4821/1.8408
85 2015/0.4787 60015/5.6749 12800/28.3240 32149/5.0656 fail
86 1779/0.4250 107655/10.6568 20200/30.1957 40196/6.0393 fail
87 1914/0.4627 198530/19.7912 28800/76.7368 48096/7.4592 fail
88 1754/0.4126 257874/25.9186 fail 56204/ 8.4244 fail
89 10039/2.1806 fail fail 80140/13.0114 fail
90 2005/0.4625 fail fail 100001/15.2575 fail
91 1609/0.5491 867/0.0905 545/2.0357 939/0.4205 3392/1.2948
92 11051/1.7870 6520/1.3023 1274/2.8843 2882/0.8927 fail
93 12565/2.3604 77664/45.1479 3363/8.0638 12553/3.9082 fail
94 57859/12.0364 fail 6472/16.7313 27118/13.0105 fail
95 106487/28.3595 fail 12214/42.1135 42301/ 30.3660 fail
96 fail fail 75762/81.7165 fail fail
97 6493/0.9757 111542/11.5234 1226/2.0866 678/0.3666 12173/2.9952
98 6513/0.9993 230954/24.6094 7.3376/7.3376 3124/0.7492 18254/4.3212
99 13312/2.1586 309522/33.9039 19980/21.5487 10851/1.8860 30244/13.4629

100 18285/3.7586 fail 42050/99.74658 18123/2.9291 40430/23.9930
101 28430/6.3012 fail fail 27806/4.4117 fail
102 24267/5.869 fail fail 36175/5.8309 fail
103 5432/0.6984 109230/9.0916 fail fail 240286/29.3906
104 132908/12.0909 fail fail fail fail
105 fail fail fail fail fail
106 fail fail 509/0.8558 fail fail
107 316/0.1288 427713/37.1732 304/1.1030 45637/5.8335 4186/0.5313
108 12099/1.0093 283691/25.4181 498/1.3183 439/0.2924 12380/1.5156
109 9899/0.6606 236329/20.7825 319/1.0157 156275/15.5351 9215/1.1250
110 8994/1.0954 22785/0.8825 200/0.7338 183937/19.7885 9128/1.0938
111 388/0.1267 44/0.0047 1250/1.3287 203/0.2781 2325/0.2813
112 1209/0.0695 271/0.0153 3200/5.3300 701/0.3340 fail
113 3878/0.1940 15313/0.0620 5000/5.4073 978/0.3816 fail
114 12094/0.9958 24542/2.0367 160/0.8198 1061/0.3859 fail
115 225/0.0343 122/0.0316 397/0.9214 203/0.339 3193/0.5781
116 9858/2.9805 669/0.0375 1293/1.3116 792/0.5269 4606/0.8438
117 15095/5.0059 3687/0.1938 201/0.6210 2753/0.6575 27905/5.3281
118 62/0.0857 115/0.0096 1250/1.2752 193/0.2611 3455/0.4688
119 81/0.0890 862/0.0517 3200/2.7699 543/0.3375 4666/0.6875
120 201/0.1090 2649/0.1583 5001/4.5211 894/0.3656 5143/ 0.9063
121 205/0.1093 4561/0.2741 5001/5.5722 1060/0.4079 7673/1.4844
122 169/0.1242 1036/0.0685 fail 163/0.3400 15968/1.9531
123 1832/0.3171 fail fail 75441/11.7715 fail
124 fail fail fail 89437/14.0512 fail
125 224/0.1312 5063/0.2086 206/0.7312 204/0.4320 fail
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Table 4: Number of function evaluations required by the DRQN algorithm and the other stochastic algorithms to
reach the global minimum.

Problem DRQN DE SPSO HS G-CART EO COA
number f eval/CPU(s) f eval/CPU(s) f eval/CPU(s) f eval/CPU(s) f eval/CPU(s) f eval/CPU(s) f eval/CPU(s)

1 301/0.2409 2640/0.3412 700/0.0716 71232/4.7149 322/0.6959 1422/0.1405 5037/0.2567
2 320/0.1812 6288/0.8093 2996/0.2991 fail(09) 4063/8.1148 1968/0.1484 12220/0.6202
3 61/0.1417 6264/0.8124 4932/0.4895 7436/0.4616 960/1.0887 4300/0.4979 8986/0.4670
4 465/0.1964 91160/12.4980 21272/3.0186 fail(20) 5225/15.7623 188597/17.8046 46454/3.1169
5 317/0.1697 12576/2.0571 5040/1.7474 90375/10.3851(1) 2736/9.2372 fail(20) 30117/1.7171
6 27929/5.3070 fail(10) fail(16) 270541/48.5828(4) fail(20) fail(20) 106814/6.0952
7 116183/24.9951 fail(15) fail(20) fail(18) fail(20) fail(20) 458842/26.1955(4)
8 134738/32.2898 fail(11) fail(20) fail(20) fail(20) fail(20) fail(12)
9 fail fail(06) fail(20) fail(20) fail(20) fail(20) fail(20)

10 fail fail(20) fail(20) fail(20) fail(20) fail(20) fail(20)
11 70/0.0971 1164/0.1744 2456/0.7459 9925/0.7448 779/0.8374 119/0.0984 4775/0.5957
12 93/0.1014 3568/0.5698 5248/1.8088 15270/1.5065 2230/5.4245 2553/0.2374 19465/ 2.3669
13 127/0.1110 9648/3.730 13200/2.1121 35044/4.9306 fail(12) 12255/1.3798 86950/11.2123
14 198/0.1266 42616/6.9917 58484/20.6384 341824/82.7057(4) fail(19) 20843/2.0874 198805/25.8456
15 287/0.1341 107958/18.0329 fail(18) fail(12) fail(20) 24123/2.5333 312475/38.9567(1)
16 472/0.1807 219076/38.0083 fail(20) fail(08) fail(20) 360804/25.3255(2) 361900/47.4209
17 1129/0.3068 438592/81.7535 fail (20) fail(11) fail(20) fail(06) 461700/63.35195(1)
18 374/0.1919 2012/0.3433 1596/0.2180 4516/0.4808 1251/3.9725 2487/0.2635 30475/1.1908
19 7631/1.2491 4492/0.8052 2628/0.5274 12912/1.8332 3138/14.5657 3877/0.4201 77890/3.0394
20 11420/2.5007 9536/1.7367 4800/1.6028 41080/9.5732 7712/33.0923 4432/0.4444 169765/6.7281
21 11994/2.5795 14588/2.6591 200017/93.1265 298260/91.6444 fail(15) 5245/0.5929 251260/10.0687
22 22353/4.3259 19936/3.6051 fail(06) fail(05) fail(20) 5542/0.5397 330025/13.4297
23 68261/11.3260 25804/4.7529 fail(20) fail(09) fail(20) 5510/0.6366 401305/16.8382
24 7153/1.5798 11664/1.9128 267708/41.5324 fail(12) fail(06) 7695/0.5040 27082/1.8662
25 169/0.1158 17620/2.8547 350000/70.7129(3) fail(11) fail(18) 4360/0.4119 122345/8.4421
26 72/0.2061 12640/2.1517 fail(05) 168542/45.3009(3) fail(20) 2145/0.1981 126065/9.0915
27 92/0.2148 18380/3.1482 308953/65.3254(4) fail(20) fail(20) 2455/0.2848 167945/12.3440
28 112/0.2248 23144/3.9049 114496/78.2541(2) fail(20) fail(20) 2605/0.2596 244351/18.3591(1)
29 132/0.368 27964/4.9080 485968/72.3255 (4) fail(20) fail(20) 2845/0.3497 239414/18.4144(04)
30 499/0.4248 2344/0.4420 2680/0.4717 3784/0.4402 2144/6.8838 1954/0.2676 18070/1.1773
31 1706/0.9028 5348/0.9580 3876/0.9780 9092/1.5253 4606/19.2140 7850/0.9805 55045/3.6133
32 6628/2.8975 11176/2.0511 6980/7.0903 28860/7.9062 8934/34.3338 15122/2.2080 119500/7.9855
33 14526/6.7263 17756/3.2792 10140/5.6123 fail(12) fail(12) 22400/2.3058 176785/11.9776
34 24304/12.1846 24716/4.5897 10808/6.2293 fail(06) fail(20) 29120/4.3084 233980/16.1046
35 38368/17.8303 32636/6.3958 20640/18.6353 fail(15) fail(20) 37965/3.8966 289540/20.2766
36 102/0.1435 2416/0.4834 2704/0.4896 3164/0.3508 2212/8.6562 410/0.4330 1468/0.1434
37 1167/0.6198 5340/1.0977 4012/1.0617 9120/1.5242 5033/24.1036 11712/1.4556 3245/0.5514
38 4522/2.0778 11176/2.2628 6464/2.8278 28960/7.8704 20098/92.3578 16160/2.1580 5094/0.8948
39 8571/3.9566 17648/3.3914 10076/6.1021 fail(08) fail(11) 25590/2.2314 14983/1.4832
40 14401/6.6602 24808/5.0135 15220/11.5545 fail(09) fail(20) 34510/2.4687 18094/1.9091
41 1075/0.6992 32820/6.8681 21376/20.3530 fail(17) fail(20) 41530/3.0970 21938/1.5113
42 155/0.1457 708/0.1127 1216/0.1512 1240/0.0871 275/0.3019 862/0.0954 2935/0.3607
43 546/2.8703 3148/0.5283 303504(4)/57.7091 5216/0.5466 fail(05) fail(09) 25525/3.0734
44 38141/7.0891 55780/8.7762(1) 56528/10.0644 26464/3.6214 fail(08) fail(16) 59530/7.7435
45 fail 59580/9.6003 fail(14) 64152/10.1642 fail(15) fail(20) 82990/10.8918
46 142/0.1501 3916/0.7080 64040/11.0479 71216/6.9471(1) 968/3.758 5823/0.9283 fail(05)
47 7259/4.0403 139576/27.6813 54220/11.0580 323496/43.7390(4) 1186/46.4116 400560/42.3869(4) 218963/41.8466(4)
48 22167/6.8306 416516/81.3752(4) 103372(1)/29.2819 393362/71.1899(4) 17586/98.2965 (2) fail(07) fail(07)
49 fail fail(20) 52772(1)/17.3358 fail(9) fail(06) fail(20) 265123/51.0071(4)
50 2895/0.2959 1184/0.1219 2025/0.3030 2056/0.3317 614/0.5701 1057/0.0370 5248/0.2278
51 fail fail(20) fail(20) fail(20) fail(20) fail(20) fail(12)
52 1089/0.2104 fail(15) fail(08) fail(20) fail(20) fail(20) fail(20)
53 110624/28.0399 fail(20) fail(20) fail(20) fail(20) fail(20) fail(20)
54 258762/45.1470 fail(19) fail(20) fail(20) fail(20) fail(20) fail(20)
55 401105/85.9435 fail(17) fail(20) fail(20) fail(20) fail(20) fail(20)
56 fail fail(20) fail(20) fail(20) fail(20) ) fail(20) fail(20)
57 fail fail(20) fail(20) fail(20) fail(20) fail(20) fail(20)
58 fail fail(20) fail(20) fail(20) fail(20) fail(20) fail(20)
59 79/0.0969 3144/0.5018 3368/0.5341 8784/0.9187 1861/6.4064 2715/0.2032 24100/1.2882
60 179/0.1100 6852/1.0677 6028/1.3914 21448/2.9967 4697/23.3924 2772/0.2725 77545/4.1505
61 524/0.1616 14068/2.2329 20852/8.2030 199410/58.4240 10668/51.2878 3335/0.2469 161305/8.7392
62 999/0.2486 22020/3.5101 52156/22.8968 fail(05) fail(06) 3330/0.3138 241770/13.3362
63 1459/ 0.3188 29940/4.8412 100944/57.1542 fail(10) fail(14) 3652/0.3059 320635/17.8487
64 1999/0.4095 38728/6.2800 170308/93.7677(1) fail(18) fail(20) 3962/0.4016 407920/23.1569
65 307/0.1513 9304/1.4173 4184/0.6962 11068/1.1398 983/3.8674 1345/0.1422 28968/2.0255
66 377/0.1495 43744/6.7221 9876/2.4963 20952/3.2574 3935/19.2049 3740/0.4020 119105/8.1767
67 545/0.1752 159940/25.0731 35752/14.6440 fail(12) fail(12) 12175/ 1.2788 392037/26.9962
68 1293/0.3662 371912/61.5703 77124/43.5881 fail(08) fail(18) 29098/3.4381 fail(09)
69 1001/0.2386 fail(10) 135896/98.4727 fail(20) fail(20) 33220/4.0446 fail(12)
70 1289/0.3238 fail(18) 212652/93.8313(3) fail(20) fail(20) 77015/7.9305 fail(12)
71 707/0.2363 20820/3.3032 37148/5.4190 fail(12) fail(12) fail(20) fail(20)
72 1157/0.3110 181320/28.5223 276584(2)/67.5560 fail(20) fail(20) fail(06) 281465/19.0103
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Table 4: Continued.
Problem DRQN DE SPSO HS G-CART EO COA
number f eval/CPU(s) f eval/CPU(s) f eval/CPU(s) f eval/CPU(s) f eval/CPU(s) f eval/CPU(s) f eval/CPU(s)

73 196443/33.2759 fail(08) fail(20) fail(20) fail(20) fail(11) fail(20)
74 418318/85.0012 fail(06) fail(20) fail(20) fail(20) fail(11) fail(20)
75 fail fail(11) fail (20) fail(20) fail(20) fail(20) fail(20)
76 fail fail(20) fail(20) fail(20) fail(20) fail(20) fail(20)
77 10316/1.8507 5320/0.8668 176788/32.1008(4) 10364/0.9935 fail(05) 2110/0.2490 42237/2.4866
78 32184/6.9592 14116/2.3429 fail(06) 23636/3.3730 fail(20) 3270/0.3835 101705/5.7970
79 49088/11.9594 50600/8.4894 fail(20) 455048/89.1896(4) fail(20) 5113/0.6139 212825/12.2736
80 133980/32.0293 142708/23.7796 fail(20) fail(12) fail(20) 5053/0.6253 308071/18.0668
81 238558/61.2592 360420/60.3150 fail(20) fail(20) fail(20) 11343/4.5432 412420/24.6229
82 fail fail(20) fail(20) fail(20) fail(20) fail(05) 486871/29.5983
83 272/0.1443 8064/1.2501 4004/0.5319 37844/3.2007 1516/4.7361 2111/0.2346 16762/1.1745
84 475/0.1774 28348/4.6969 30976/5.3752 427400/74.3949(3) 12546/58.0914 3951/0.3130 66562/4.6974
85 2015/0.4787 158152/25.4620 140676/39.1219 fail(17) fail(10) 5158/0.4171 314482/22.6776
86 1779/0.4250 317080/52.3128 230492/79.7261 fail(20) fail(12) 5197/0.4372 465442/34.1212(4)
87 1914/0.4627 491152/80.9260 353980/96.0873 fail(20) fail(20) 3815/0.3131 fail(12)
88 1754/0.4126 fail(10) fail(20) fail(20) fail(20) 4986/0.5942 fail(20)
89 10039/2.1806 fail(20) fail(08) fail(20) fail(20) 5607/0.7565 fail(20)
90 2005/0.4625 fail(17) fail(14) fail(20) fail(20) 5453/0.7089 fail(20)
91 1609/0.5491 3036/0.5258 3292/0.4883 7096/0.8679 1932/6.9557 5115/0.8070 24408/3.0958
92 11051/1.7870 7456/1.3319 7324/1.7166 25920/4.8751 6208/32.2524 11330/3.9301 93117/13.3153
93 12565/2.3604 18388/5.8843 42476/20.2240 297420/89.3301(2) fail(10) 18572/14.1780 258768/87.5680
94 57859/12.0364 102456/18.3595 132320/98.1886(2) fail(05) fail(12) 26070/35.5304 fail(12)
95 106487/28.3595 49820/39.6211 fail(09) fail(11) fail(20) 5380/69.6549 fail(17)
96 fail 72772/85.9157 fail(06) fail(20) fail(20) fail(05) fail(20)
97 6493/0.9757 5044/0.6717 5336/0.7293 24600/2.3562 6114/26.4751 1753/ 0.2079 42550/2.2356
98 6513/0.9993 9908/1.3178 7344/1.4622 34952/4.6243 6176/29.2344 3442/ 0.4205 107440/5.6991
99 13312/2.1586 19260/2.6075 12308/3.9865 fail(20) fail(08) 4052/0.4592 229720/12.4291

100 18285/3.7586 28344/4.0764 fail(08) fail(20) fail(20) 4452/0.4845 327355/18.0816
101 28430/6.3012 38264/5.4343 fail(20) fail(20) fail(20) 4887/0.6036 412285/23.1954
102 24267/5.7869 48432/6.9138 fail(20) fail(20) fail(20) 5194/ 0.6911 491995/28.2281(2)
103 5432/0.6984 fail(10) 5860/1.0060 252736/16.6449(4) 3475/8.3538 300450/10.0423(3) fail(12)
104 132908/12.0909 fail(10) 302560/ 84.9217(4) 159228/16.8822(3) fail(14) 300309/10.5323(4) fail(20)
105 fail fail(15) fail(11) 360825/66.7224(4) fail(14) fail(8) fail(20)
106 fail fail(20) fail(20) fail(17) fail(20) fail(14) fail(20)
107 316/0.1288 14040/1.3116 4965/0.7962 fail(12) 2128/3.9982 21037/4.2304(2) 21418/0.8759
108 12099/1.0093 17220/1.6057 53640/6.8815(1) 158996/9.4665 1803/3.2096 5625/0.1834 18820/0.8066
109 9899/0.6606 29304/2.7425 3930/0.6217 fail(14) fail(9) 19070/0.6691 90880/3.5973
110 8994/1.0954 100016/9.6665 4175/0.6783 fail(20) 17808/64.8135 106310/3.4598 37324/1.4100
111 388/0.1267 224/0.0279 375/0.1015 736/0.2079 610/0.2962 180/0.0111 652/0.0284
112 1209/0.0695 712/0.0806 1390/0.2385 1584/0.1141 1882/3.1155 455/0.0236 3463/0.1509
113 3878/0.1940 1216/0.1330 63865/15.7746 3288/0.3112 4279/9.7487 860/0.0438 7000/0.3192
114 12094/0.9958 1424/0.1558 22840/6.0558 4560/0.4991 5824/14.0280 1335/0.0675 8692/0.3895
115 225/0.0343 508/0.0705 875/0.1247 1720/0.0939 291/ 0.2005 650/0.0315 2272/0.1147
116 9858/2.9805 2096/0.2438 2705/0.4778 8632/0.6452 1596/3.3528 2228/0.1002 15904/0.7973
117 15095/5.0059 5604/0.6293 5305/1.2836 22644/2.5355 4495/13.5779 6710/0.2953 54388/2.6292
118 62/0.0857 624/0.0772 1215/0.1566 816/0.0477 400/1.3025 360/0.0217 2788/0.1493
119 81/0.0890 2272/0.2669 3130/0.5142 2958/0.2296 1877/4.7355 840/0.0441 18712/0.9746
120 201/0.1090 4136/0.5079 4604/0.9945 6100/0.6276 3853/13.4257 1230/0.0623 43108/2.2697
121 205/0.1093 5400/ 0.6523 5625/1.3057 8968/1.0345 5285/ 19.5989 1410/0.0767 60816/3.1984
122 169/0.1242 592/0.0724 332/0.0454 fail(9) 279/0.3894 325/0.0173 fail(10)
123 1832/0.3171 422200/50.5455(4) 170472/36.1353 50096/5.0071 fail(13) 11190/0.5444 85696/4.9491
124 fail 415376/47.0313 227362/43.0603 fail(20) fail(20) fail(14) fail(11)
125 224/0.1312 2224/ 0.2202 2855/0.3663 14444/1.2814 645/0.4473 1410/0.0475 4720/0.1925
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