تعداد نشریات | 31 |
تعداد شمارهها | 757 |
تعداد مقالات | 7,162 |
تعداد مشاهده مقاله | 10,347,609 |
تعداد دریافت فایل اصل مقاله | 6,937,277 |
Triple factorization of non-abelian groups by two maximal subgroups | ||
Journal of Algebra and Related Topics | ||
مقاله 1، دوره 2، شماره 2، اسفند 2014، صفحه 1-9 اصل مقاله (351.18 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
A. Gharibkhajeh* ؛ H. Doostie | ||
Islamic Azad University | ||
چکیده | ||
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$ for their triple factorizations by finding certain suitable maximal subgroups, which these subgroups are define with original generators of these groups. The related rank-two coset geometries motivate us to define the rank-two coset geometry graphs which could be of intrinsic tool on the study of triple factorization of non-abelian groups. | ||
کلیدواژهها | ||
Rank؛ Rank-two geometry؛ triple factorization؛ two geometry؛ dihedral groups؛ projective special linear groups؛ projective special linear groups | ||
آمار تعداد مشاهده مقاله: 3,407 تعداد دریافت فایل اصل مقاله: 2,553 |