تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,246,338 |
تعداد دریافت فایل اصل مقاله | 6,899,970 |
بررسی مقاومت Pull-Off بتن ژئوپلیمری بر پایه سرباره کوره آهن گدازی و پودر زئولیت طبیعی | ||
تحقیقات بتن | ||
مقاله 3، دوره 16، شماره 2 - شماره پیاپی 42، تیر 1402، صفحه 27-45 اصل مقاله (1.87 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jcr.2023.22787.1593 | ||
نویسندگان | ||
سید احمد وزیری* 1؛ رحمت مدندوست2؛ ملک محمد رنجبر تکلیمی3 | ||
1دانشجوی دکترای تخصصی مهندسی عمران، گروه مهندسی عمران، پردیس دانشگاهی، دانشگاه گیلان، رشت، ایران | ||
2استاد گروه مهندسی عمران، دانشکده فنی،دانشگاه گیلان، رشت، ایران | ||
3دانشیار، گروه مهندسی عمران، دانشکده فنی، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
در این مقاله اثر روش عمل آوری (دمای محیط (A)، اوون (O) و آب جوش (BW))، غلظت محلول سدیم هیدروکسید ( 8 و 12 مول در لیتر) و ضخامت دیسک (یعنی 1، 2 و 3 سانتی متر) در مقاومت Pull-Off بتن ژئوپلیمری بر پایه سرباره کوره آهن گدازی و پودر زئولیت طبیعی مورد بررسی قرار گرفته است. نتایج نشان میدهد که مقدار مقاومت Pull-Off بهدستآمده از دیسک با ضخامت 3 سانتیمتر بهطور میانگین 2.6 درصد بیشتر از مقدار بهدستآمده از دیسک با ضخامت 2 سانتیمتر است. این بدان معناست که دیسکهای با ضخامتهای 2 و 3 سانتیمتر مقادیر تقریباً برابری از مقاومت Pull-Off را نتیجه دادهاند. علاوه بر این، مقدار مقاومت Pull-Off به دست آمده از دیسک با ضخامت 2 سانتی متر به طور متوسط 28.4٪ بیشتر از مقدار به دست آمده از دیسک به ضخامت 1 سانتی متر است. بر اساس نتایج بهدستآمده از دیسک با ضخامت 2 سانتیمتر: الف) نسبت مقاومت Pull-Off بدست آمده از نمونههای عمل آوری شده در آب جوش و اوون به نمونه عمل آوری شده در دمای محیط بهترتیب برابر با 1.383 و 1.089 بهدست آمده است. ب) با جایگزینی 20% وزن سرباره کوره آهن گدازی با پودر زئولیت طبیعی، مقاومت Pull-Off به طور متوسط 16.29٪ کاهش می یابد. ج) با افزایش غلظت محلول سدیم هیدروکسید از 8 به 12 مول در لیتر، مقدار مقاومت Pull-Off به طور متوسط 14.48٪ افزایش می یابد. بر اساس نتایج بدست آمده، یک رابطه غیرخطی قوی بین مقاومت فشاری و مقاومت Pull-Off بتن ژئوپلیمری وجود دارد. | ||
کلیدواژهها | ||
آزمایش Pull-Off؛ بتن ژئوپلیمری؛ ضخامت دیسک؛ روش عمل آوری؛ آب جوش؛ غلظت محلول سدیم هیدروکسید | ||
مراجع | ||
[1] Montgomery, F.R., Long, A.E., Basheer, P.A.M., (1989), Assessing surface properties of concrete by in-situ measurements, proceedings IABSE Symposium, Durability of structures, Lisbon, 871-876.
[2] British Standard BS 1881: Part 207. Recommendations for the assessment of concrete strength by near-to-surface tests; 1992.
[3] ASTM C1583/C1583M-13. Standard test method for tensile strength of concrete surfaces and the bond strength or tensile strength of concrete repair and overlay materials by direct tension (Pull-off method). West Conshohocken, PA: American Society for Testing and Materials; 2013.
[4] Long AE, Murray A. The pull-off partially destructive test for concrete. Proceedings of International Conference on In-situ/Non-Destructive Testing of Concrete, ACI SP-82; American Concrete Institute 1984: 327-350.
[5] Y. Bai, P.A.M. Basheer, D.J. Cleland, State of the art applications of the pull-off test in çivil engineering, Int. J. Struct. Eng. 1 (1) (2009) 93–103.
[6] Bungey, J.H., Madandoust, R., (1992), Factors influencing pull-off tests on concrete, Magazine of Concrete Research, 44, No. 158, 21–30. https://doi.org/10.1680/macr.1992.44.158.21
[7] Bungey, JH, Soutsos, MN., (2001), Reliability of partially-destructive tests to assess the strength of concrete on site. Constr Build Mater;15(2–3):81–92. https://doi.org/10.1016/S0950-0618(00)00057-X
[8] Ramos, N.M.M. , Simões, M.L., Delgado, J.M.P.Q., Freitas, V.P., (2012), Reliability of the pull-off test for in situ evaluation of adhesion strength, Construction and Building Materials 31, 86–93. https://doi.org/10.1016/j.conbuildmat.2011.12.097
[9] Bungey, J.H., Millard, S.G., (1996), Testing of concrete in structures, third ed., Blackie Academic & Professional: an imprint of Chapman & Hall.
[10] Neville, A.M., (1995), Properties of concrete, fourth ed., London, Longman.
[11] Madandoust, R., (1990), Strength Assessment of Lightweight Concrete, Ph.D. Thesis, University of Liverpool.
[12] Austin, S., Robins, P., Pan, P., (1995), Tensile bond testing of concrete repairs, Materials and Structures, 28, 249-259. https://doi.org/10.1007/BF02473259
[13] Bungey, J.H., Madandoust, R. (1994), Evaluation of non-destructive strength testing of lightweight concrete. Proc. ICE, Structs & Bldgs, 104, Aug., 275–283. https://doi.org/10.1680/istbu.1994.26778
[14] Malhotra, V.M., Carino, N.J. (Eds.), (2004), Handbook on Nondestructive Testing of Concrete: Second Edition, CRC Press LLC, ASTM International.
[15] Bonaldo, E., Barros, J.A.O., Lourenco, P.B., (2005), Bond characterization between concrete substrate and repairing SFRC using pull-off testing, International Journal of Adhesion & Adhesives 25, 463–474.https://doi.org/10.1016/j.ijadhadh.2005.01.002
[16] Bungey, J.H., Madandoust, R., (1989), Insitu strength assessment of lightweight concrete, IABSE Symposium, Lisbon, 847-852.
[17] Vaysburd, A.M., McDonald, J.E., (1999), An Evaluation of Equipment and Procedures for Tensile Bond Testing of Concrete Repairs, Technical Report REMR-CS-61, Prepared for Headquarters, U.S. Army Corps of Engineers.
[18] Weerheijm J. ‘‘Understanding the Tensile Properties of Concrete”, 2013, London: Woodhead Publishing Limited: 19-51.
[19] اکبری معاف، امیرحسین. (1398). ارزیابی روش Pull Off برای تعیین مقاومت بتن خودتراکم سبک حاوی لیکا و اسکوریا. پایان نامه کارشناسی ارشد. دانشگاه آزاد اسلامی مرکز لشت نشا-زیباکنار.
[20] شهیدزاده عربانی، اکبر. (1398). بررسی پارامترهای موثر بر آزمایش نیمه مخرب Pull Off. پایان نامه کارشناسی ارشد. دانشگاه گیلان.
[21] Ghavidel, R., Madandoust, R., & Ranjbar, M. M. (2015). Reliability of pull-off test for steel fiber reinforced self-compacting concrete. Measurement, 73, 628-639. https://doi.org/10.1016/j.measurement.2015.06.013
[22] BS EN 1542, (1999), Products and systems for the repair of concrete structures – Test methods – Measurements of bond strength by pull-off. British Standards Institution, London.
[23] Jindal BB. Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review. Construction and Building Materials. 2019 Dec 10;227:116644. https://doi.org/10.1016/j.conbuildmat.2019.08.025
[24] Cao X, Li X, Zhu Y, Zhang Z. A comparative study of environmental performance between prefabricated and traditional residential buildings in China. Journal of cleaner production. 2015 Dec 16;109:131-43. https://doi.org/10.1016/j.jclepro.2015.04.120
[25] Bernal SA, de Gutiérrez RM, Pedraza AL, Provis JL, Rodriguez ED, Delvasto S. Effect of binder content on the performance of alkali-activated slag concretes. Cement and concrete research. 2011 Jan 1;41(1):1-8. https://doi.org/10.1016/j.cemconres.2010.08.017
[26] Singh B, Ishwarya G, Gupta M, Bhattacharyya SK. Geopolymer concrete: A review of some recent developments. Construction and building materials. 2015 Jun 15;85:78-90. https://doi.org/10.1016/j.conbuildmat.2015.03.036
[27] Reddy MS, Dinakar P, Rao BH. A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous and Mesoporous Materials. 2016 Nov 1;234:12-23. https://doi.org/10.1016/j.micromeso.2016.07.005
[28] Manjunath R, Narasimhan MC. An experimental investigation on self-compacting alkali activated slag concrete mixes. Journal of Building Engineering. 2018 May 1;17:1-12. https://doi.org/10.1016/j.jobe.2018.01.009
[29] Saha S, Rajasekaran C. Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Construction and Building Materials. 2017 Aug 15;146:615-20. https://doi.org/10.1016/j.conbuildmat.2017.04.139
[30] Wang Y, Liu X, Zhang W, Li Z, Zhang Y, Li Y, Ren Y. Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer. Journal of Cleaner Production. 2020 Jan 20;244:118852. https://doi.org/10.1016/j.jclepro.2019.118852
[31] Bondar D, Lynsdale CJ, Milestone NB, Hassani N, Ramezanianpour AA. Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cement and Concrete Composites. 2011 Feb 1;33(2):251-60. https://doi.org/10.1016/j.cemconcomp.2010.10.021
[32] Hosan A, Haque S, Shaikh F. Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures: a comparative study. Journal of Building Engineering. 2016 Dec 1;8:123-30. https://doi.org/10.1016/j.jobe.2016.10.005
[33] Chithambaram SJ, Kumar S, Prasad MM. Study on Effect of Sodium Hydroxide Concentration on Geopolymer Mortar. InSustainable Construction and Building Materials 2019 (pp. 651-658). Springer, Singapore. https://doi.org/10.1007/978-981-13-3317-0_58
[34] Ruiz-Santaquiteria C, Skibsted J, Fernández-Jiménez A, Palomo A. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cement and Concrete Research. 2012 Sep 1;42(9):1242-51. https://doi.org/10.1016/j.cemconres.2012.05.019
[35] Fang G, Ho WK, Tu W, Zhang M. Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Construction and Building Materials. 2018 May 30;172:476-87.https://doi.org/10.1016/j.conbuildmat.2018.04.008
[36] McDonald M, Thompson JL. Sodium silicate a binder for the 21st century. National silicates and PQ Corporation of Industrial Chemicals Division. 2006:1-6.
[37] Sun Z, Vollpracht A, van der Sloot HA. pH dependent leaching characterization of major and trace elements from fly ash and metakaolin geopolymers. Cement and Concrete Research. 2019 Nov 1;125:105889. https://doi.org/10.1016/j.cemconres.2019.105889
[38] Aliabdo AA, Elmoaty AE, Salem HA. Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Construction and building materials. 2016 Oct 1;123:581-93. https://doi.org/10.1016/j.conbuildmat.2016.07.043
[39] Mermerdaş K, Algın Z, Oleiwi SM, Nassani DE. Optimization of lightweight GGBFS and FA geopolymer mortars by response surface method. Construction and Building Materials. 2017 May 15;139:159-71.https://doi.org/10.1016/j.conbuildmat.2017.02.050
[40] محمدی فتیده, رنجبر, & ملک محمد. (2021). ارزیابی زمان گیرش و مقاومت فشاری خمیر ژئوپلیمر حاوی سرباره کوره آهنگدازی و زئولیت. نشریه مهندسی سازه و ساخت, 8(2), 177-187..
[41] Erfanimanesh, A., & Sharbatdar, M. K. (2020). Mechanical and microstructural characteristics of geopolymer paste, mortar, and concrete containing local zeolite and slag activated by sodium carbonate. Journal of Building Engineering, 32, 101781. https://doi.org/10.1016/j.jobe.2020.101781
[42] Değirmenci, F. N. (2018). Utilization of natural and waste pozzolans as an alternative resource of geopolymer mortar. International Journal of Civil Engineering, 16(2), 179-188. https://doi.org/10.1007/s40999-016-0115-1
[43] Nurruddin, M. F., Sani, H., Mohammed, B. S., & Shaaban, I. (2018). Methods of curing geopolymer concrete: a review. International Journal of Advanced and Applied Sciences, 5(1), 31-36. https://doi.org/10.21833/ijaas.2018.01.005
[44] Adam, A. A., & Horianto, X. X. X. (2014). The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. Procedia engineering, 95, 410-414. https://doi.org/10.1016/j.proeng.2014.12.199
[45] Nuruddin, M. F., Malkawi, A. B., Fauzi, A., Mohammed, B. S., & Al-Mattarneh, H. M. (2016). Effects of alkaline solution on the microstructure of hcfa geopolymers. In Engineering Challenges for Sustainable Future-Proceedings of the 3rd International Conference on Civil, offshore and Environmental Engineering, ICCOEE (Vol. 2016).
[46] Yewale, V. V., Shirsath, M. N., & Hake, S. L. (2016). Evaluation of efficient type of curing for geopolymer concrete. Evaluation, 3(8).
[47] Yunsheng, Z., Wei, S., Qianli, C., & Lin, C. (2007). Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of hazardous materials, 143(1-2), 206-213. https://doi.org/10.1016/j.jhazmat.2006.09.033
[48] Kong, L., Fan, Z., Ma, W., Lu, J., & Liu, Y. (2021). Effect of Curing Conditions on the Strength Development of Alkali-Activated Mortar. Crystals, 11(12), 1455. https://doi.org/10.3390/cryst11121455
[49] Nasr, D., Pakshir, A. H., & Ghayour, H. (2018). The influence of curing conditions and alkaline activator concentration on elevated temperature behavior of alkali activated slag (AAS) mortars. Construction and Building Materials, 190, 108-119. https://doi.org/10.1016/j.conbuildmat.2018.09.099
[50] Aydın, S., & Baradan, B. (2012). Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Materials & design, 35, 374-383. https://doi.org/10.1016/j.matdes.2011.10.005
[51] Altan, E., & Erdoğan, S. T. (2012). Alkali activation of a slag at ambient and elevated temperatures. Cement and Concrete Composites, 34(2), 131-139. https://doi.org/10.1016/j.cemconcomp.2011.08.003
[52] Chi, M. (2012). Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Construction and Building Materials, 35, 240-245. https://doi.org/10.1016/j.conbuildmat.2012.04.005
[53] ASTM C33. (2003). ASTM C33 standard specifications for concrete aggregates. ASTM Standard Book.
[54] ASTM, A. (2018). C39/C39M-18. Standard Test Method for Compressive Strength of Concrete, ASTM International.
[55] Peng, Y.; Guo, R.; Lin, Z.; Zhang, M. (2021). Review on influencing factors of mechanical properties of fly ash geopolymer. B. Chin. Ceram. Soc. 40, 858–866.
[56] Adam, A. A., & Horianto, X. X. X. (2014). The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. Procedia engineering, 95, 410-414. https://doi.org/10.1016/j.proeng.2014.12.199.
[57] Bakharev, T., Sanjayan, J. G., & Cheng, Y. B. (1999). Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cement and concrete research, 29(10), 1619-1625. https://doi.org/10.1016/S0008-8846(99)00143-X
[58] Altan, E., & Erdoğan, S. T. (2012). Alkali activation of a slag at ambient and elevated temperatures. Cement and Concrete Composites, 34(2), 131-139. https://doi.org/10.1016/j.cemconcomp.2011.08.003
[59] Jia, Y., Zhang, Y., & Zhang, W. (2009). Preparation, properties and mechanism of slag based geopolymer. J. Wuhan Univ. Techno, 31, 120-125.
[60] Hadi, M. N., Farhan, N. A., & Sheikh, M. N. (2017). Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Construction and Building Materials, 140, 424-431. https://doi.org/10.1016/j.conbuildmat.2017.02.131
[61] Olivia M, Nikraz H. Properties of fly ash geopolymer concrete designed by Taguchi method. Materials & Design (1980-2015). 2012 Apr 1;36:191-8. https://doi.org/10.1016/j.matdes.2011.10.036
[62] Aliabdo AA, Elmoaty AE, Salem HA. Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Construction and Building Materials. 2016 Sep 15;121:694-703. https://doi.org/10.1016/j.conbuildmat.2016.06.062
[63] De Sensale GR. Strength development of concrete with rice-husk ash. Cement and concrete composites. 2006 Feb 1;28(2):158-60. https://doi.org/10.1016/j.cemconcomp.2005.09.005
[64] Papa, E., Medri, V., Amari, S., Manaud, J., Benito, P., Vaccari, A., & Landi, E. (2018). Zeolite-geopolymer composite materials: Production and characterization. Journal of cleaner production, 171, 76-84. https://doi.org/10.1016/j.jclepro.2017.09.270. | ||
آمار تعداد مشاهده مقاله: 331 تعداد دریافت فایل اصل مقاله: 230 |