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Abstract. The existence of different solution approaches that generate approximations to the optimal
Pareto frontiers of a multi-objective optimization problem lead to different sets of non-dominated solu-
tions. To evaluate the quality of these solution sets, one requires a comprehensive evaluation measure to
consider the features of the solutions. Despite various evaluation measures, the deficiency caused by the
lack of such a comprehensive measure is visible. For this reason, in this paper, by considering some eval-
uation measures, first we evaluate the quality of the approximations to the optimal Pareto front resulting
from the decomposition-based multi-objective evolutionary algorithm equipped with four decomposition
approaches and investigate the related drawbacks. In the second step, we use the concept of Gaussian
degree of closeness to combine the evaluation measures, and hence, we propose a new evaluation mea-
sure called the quasi-Gaussian integration measure. The numerical results obtained from applying the
proposed measure to the standard test functions confirm the effectiveness of this measure in examining
the quality of the non-dominated solution set in a more accurate manner.

Keywords: Multi-objective optimization, evolutionary algorithm, evaluation measure, Pareto frontier, decomposi-
tion.
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1 Introduction

Extensive studies have been conducted in multi-objective optimization problems (MOPs, for Multi-
objective problem). Considering various constraints to adapt these problems to the real world indicates
the importance of such issues in different sciences, especially in basic and engineering sciences. We
refer the reader to [2, 8, 11, 14, 21] for more details.
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For instance, in 2022, Guo and Zhang proposed a simulation-based approach integrating Light Gra-
dient Boosting Machine (LightGBM) and NSGA-III1 to realize the automatic evacuation evaluation and
adaptive optimization at metro stations in Singapore [8]. In 2022, Sharma and Chahar briefly explained
multi-objective optimization algorithms and their variants together with their pros and cons [21]. In each
category, they discussed in depth the representative algorithms, as well as applications of various multi-
objective algorithms in various fields of engineering. In the same year, Manni and Nicolini conducted
a synthetic review of the models of MOPs and their applications to the design of climate-responsive
buildings and neighborhoods [14]. They identified the knowledge gaps and considered the future trends
in automation in the design of buildings.

In recent years, due to the considerable development of various algorithms for the MOPs, various
evaluation measures have been proposed to evaluate the generated approximate Pareto frontiers (PFs).

Generally, the quality of the approximations to the PF can be evaluated based on the following
structural properties [25].

• The distance between the optimal PF and its approximations; how the points are distributed on the
approximations?

• How do the approximations cover the whole PFs?

In some studies, including Knowles et al. [13] and Zitzler et al. [26], various approaches have been
proposed to examine the evaluation measures. In these studies, the most appropriate measures are defined
as assigning a vector of values, considering the types of quality characteristics for approximations to the
PFs. In 2003, a survey was conducted [19] on several evaluation measures, in which the measures were
categorized according to their structural characteristics.

Given that the evaluation measures can be considered as maps that assign scores to the approxima-
tions, Zeitler et al. studied three evaluation measures, namely, the quality measure, the ranking measure
(using a standard statistical test), and the probability function measure. According to their findings, each
measure provides different results, and hence, the rank assignments for approximations to PFs, which
are derived from these measures, are different, although these three measures can be valid for the eval-
uation of the quality of solutions produced by the utilized solution approaches [27]. Collette and Siarry
proposed some evaluation measures to evaluate and hence, compared the quality of two approximations
to the PFs [4]. In [3], Cheng et al. first examined the PF evaluation measures of an MOP and then
divided the evaluation measures into three categories: approximate front-based, reference point-based,
and Pareto optimal front-based. Also, they analyzed the advantages and drawbacks of different evalua-
tion measures. In 2014, Jiang et al. [12] studied the relationship between different evaluation measures
and the processing time of concave and convex PFs.

In 2015, Riquelme et al. [20] examined the most common evaluation measures in various studies and
ranked them according to their characteristics and applications. In this ranking, the top five measures
were introduced as the volume increase measure, that is, the Hyper Volume (HV) measure, Inverted Gen-
eration Distance (IGD), Diversity measure, Overall Non-dominated Vector Generation (ONVG) mea-
sure and, the c- and R-metric binary measures. Although the HV and the IGD measures were the most
well-known measures, the HV could not be an appropriate measure due to the exponential computational
complexity. Recently, researchers have paid more attention to the binary measures (which examine the

1Non-dominated sorting genetic algorithm III (NSGA-III)
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quality of two PFs) and the IGD measure (which evaluates the distance between the approximate and
optimal frontiers) compared to other measures. In [1], Charles et al. reviewed fifty-seven measures to
evaluate the performance of multi-objective evolutionary optimization methods up to 2020, of which HV
and binary measures were the most common measures. According to their findings, as the number of
objectives and reference points increases, the cost of computations increases dramatically.

In general, based on the studies conducted so far, each of the measures evaluates a PF by considering
a specific feature. Accordingly, the rankings of different approximations to an optimal PF may be differ-
ent, which leads to misleading results. Hence, in this paper, we propose a technique based on the concept
of Gaussian closeness inspired by the concept of fuzzy dominance [18]. This approach provides some
necessary conditions for a comprehensive measure to analyze the quality of different PFs, considering
several characteristics simultaneously. To do so, this approach introduces a new integrated evaluation
measure using the concept of Gaussian closeness and a weight vector corresponding to the utilized eval-
uation measures, as well as using a reference (ideal) point obtained from the data under consideration.
In general, this scalar measure is a weighted combination of some essential factors that affect the quality
of a set of non-dominated solutions.

This paper is organized as follows. In Section 2, we briefly describe the multi-objective evolutionary
algorithm based on decomposition (MOEA/D) equipped with different decomposition approaches. Also,
we recall some well-known evaluation measures from the literature. In Section 3, we introduce a new
evaluation measure proposed for evaluating the performance of solution approaches used to solve the
MOPs. In Section 4, considering three different evaluation measures, we analyze the experimental results
in light of applying the new measure to the benchmark problems. Finally, we present a brief conclusion
outlining our achievements and ideas for future works in Section 5.

2 Description of the problem

In order to show the necessity of suggesting a comprehensive evaluation measure, first of all, we need to
briefly describe the general structure of the MOEA/D algorithm when it is equipped with four different
decomposition approaches or solution approaches. Then, using the most common evaluation measures
of the literature, we examine the quality of approximate PFs resulting from each solution approach.

Definition 1 ( [24]). In general, the mathematical model of an MOP is defined as

Min F(X) = ( f1(X), f2(X), . . . , fm(X)) s.t. X ∈Ω. (1)

Herein Ω is the solution space and F : Ω→ Rm is a vector function in Rm. If the objective functions are
continuous and the solution space Ω is given by

Ω = {X ∈ Rn|h j(X)≥ 0, j = 1, . . . , p},

in which the functions h j(X) are continuous, then the problem (1) is said to be a continuous MOP. Since
the objectives of (1) are often conflicting, it is usually not possible to find a point in Ω that simultaneously
minimizes all the objectives.
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2.1 The variants of MOEA/D

In 1999, Miettinen studied the nonlinear MOP [17]. In 2001, some scalarization optimization approaches
(to which we refer as decomposition approaches for short) were provided in [16]. Using these solution
approaches, the MOEA/D generates an approximation to the optimal PF by solving some single-objective
optimization sub-problems. We choose four arbitrary decomposition approaches which are used in the
literature only to show the way our evaluation approach works. These are the Tchebycheff [17], boundary
intersection (BI) [5], penalty-based BI (PBI) [15], and Gaussian (Ga) [23] decomposition approaches.

In order to express the main structure of our approach, without loss of generality, we begin with a
discussion of the Ga approach.

In the following discussion, let λ = (λ1,λ2, . . . ,λm)
T be a real-valued weight vector, and the vector

Z∗ = (z∗1,z
∗
2, . . . ,z

∗
m) be the reference point (the ideal point) defined as follows.

z∗i = min{ fi(X)|X ∈Ω}, i = 1, . . . ,m. (2)

• The Ga approach [23]
In this decomposition approach, the single-objective optimization problem which is used in MOEA/D
can be expressed as

max gGa(X | λ,Z∗) s.t. X ∈Ω, (3)

where

gGa(X | λ,Z∗) =
m

∏
i=1

qi(X | λ,Z∗). (4)

In the equation (4), the Gaussian values qi, which are related to the functions fi in (1), are calculated
using the Gaussian function

qi(X | λ,Z∗) = exp

(
−1
2

(
λi fi(X)− z∗i

σ

)2
)
. (5)

Here, the vectors λ= (λ1,λ2, . . . ,λm)
T andZ∗ = (z∗1,z

∗
2, . . . ,z

∗
m) are defined as before, and the parameter

σ is defined as a positive real number. A small σ indicates that the values qi are more sensitive to the
distance from the fis to the reference point Z∗, and a great value for σ can be interpreted similarly.

In (3), the optimal value of gGa(X | λ,Z∗) belongs to (0,1], to which we refer to the degree of
closeness of the vector F(X) to the vector Z∗. In other words, as the optimal value of (3) approaches
to 1, the objective vector F(X∗) tends to the reference point Z∗. It can be easily proved that the optimal
solution of (3) is an optimal solution of (1) (see Theorem 1 of [23]).

2.2 The structure of MOEA/D

In the first step, MOEA/D decomposes the MOP (1) into N single-objective optimization sub-problems
and then solves these sub-problems simultaneously. In each generation, this algorithm forms a popula-
tion of the best solutions obtained for the sub-problems. The neighborhood relations among these sub-
problems are defined based on the distances between their weight vectors. Since the optimal solutions
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of the neighboring sub-problems are close to each other due to the continuity of the problem, each sub-
problem in MOEA/D is optimized only using the information of the neighborhood of the corresponding
sub-problem [24].

More precisely, we assume that the decomposition approach used in MOEA/D is the Gaussian de-
composition approach. We also assume that λ1,λ2, . . . ,λN is a set of weighted vectors with uniformly
distribution, and the vector Z∗ is the reference point obtained from (2). In other words, the approximate
PF of problem (1) can be resulted from solving the N single-objective optimization sub-problems con-
cerning each of the decomposition approaches. Here, we use the Ga approach (3) for instance, where the
objective function j of the sub-problem related to λ j is defined as

gGa(X | λ j,Z∗) = exp

(
−1
2

(
λ j f j(X)−Z∗

σ

)2
)
. (6)

It is worth noting that, since the function gGa(·) is continuous withe respect to the vector λ, the opti-
mal solution gGa(X | λ j,Z∗) approaches the optimal solution gGa(X | λk,Z∗) as the weight vector λ j

approaches the weight vector λk. Hence, any information about gGa obtained from the weight vectors
close to λ j is helpful for the optimization of problem (1). In MOEA/D, we define a neighborhood of
the weight vector λ j as a set of weight vectors with respect to the Euclidean distance from λ j, and ac-
cordingly, the neighborhood of the jth sub-problem is considered as all the sub-problems corresponding
to the neighborhood of weight vectors λ j. The final PF contains the best solution found among all the
sub-problems. To optimize a sub-problem in MOEA/D, only the current solutions of the neighboring
sub-problems are examined. To understand how the MOEA/D works, we refer the reader to [24].

The process of embedding the Ga approach (3) in MOEA/D is described in Algorithm 1. In Step,
(2-4) of the MOEA/D described in [24], we use the Ga approach to compare the two Pareto solutions.

It is worth noting that for a more careful investigation, we choose the values of the parameters N
and T the same as those in [24]. Moreover, we consider the operators used in Steps (2-1) and (2-2) as a
single-point crossover and a traditional mutation with a probability of 0.01, respectively. In Step (2-4),
according to the concept of Gaussian closeness, newly generated solutions are added to the set of Pareto
solutions (namely, the APF) if the Gaussian degree of closeness of the corresponding vector of objective
functions to the reference point Z∗ is higher than all neighboring solutions in the APF.

As mentioned before, many evaluation measures exist in the literature that have been used to eval-
uate and hence, compare the performance of MOEAs. These measures examine and rank different PFs
concerning some characteristics of the structure of the PFs. In what follows, it is necessary to briefly
introduce three well-known evaluation measures used by many researchers (see [7, 23], and [24] for
example).

• The measure of distance from the reference point (The measure M1) [10]
In this measure, a reference point of an MOP is considered, and the (Euclidean) distances from the
points on the PF to the reference point are calculated. The lower the average distance of the PF
points from the reference point, the higher the quality of the PF.

• The IGD measure (The measure M2) [24]
Suppose that A is an approximation to the PF, and P∗ is a set of points along the optimal PF which
are uniformly distributed. The average distance of A from P∗ is defined by

D(A,P∗) =
∑v∈P∗ d(v,A)
|P∗|

,
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Algorithm 1 MOEA/D based on the Ga approach (MOEA/GD)

Input: The number of sub-problems (N), the cardinality of each neighborhood set (T ), the weight
vectors

{
λ 1,λ 2, . . . ,λ N

}
with uniform distribution, and the stopping criterion

Output: An approximate PF (APF).
Step 1. Initialization phase

(1-1) APF := { } .

(1-2) Find the T weight vectors which are closest to λi with respect to the Euclidean distance for each
weight vector λi. Let B(i) = {i1, i2, . . . , iT} be the set of indices of vectors λi1 ,λi2 , . . . ,λiT , the T
closest weight vectors to λi.

(1-3) Generate an initial population X1,X2, . . . ,XN of solutions randomly, and calculate the objective
values FV i = F

(
X i
)

i = 1, . . . ,N of (1).

(1-4) Calculate the initial reference vector Z∗ = (z∗1,z
∗
2, . . . ,z

∗
m)

T by considering (2).

Step 2. Updating phase

(2-1) Reproduction: Choose two random solutions Xk and X l with k, l ∈ B(i), and use a crossover
operator to generate a new solution Y .

(2-2) Improvement: Apply a local search method to Y and generate an improved solution Y ′.

(2-3) Update the vector Z∗: For any j, if z∗j > f j(Y ′), then set z∗j := f j(Y ′), j = 1, . . . ,m.

(2-4) Update the Neighboring solutions: For each j ∈ B(i), if gGa(Y ′λ j,Z∗) ≥ gGa(X jλ j,Z∗), set
X j := Y ′ and FV j := F(Y ′).

(2-5) Update the APF: If no vectors in APF dominate F(Y ′), then APF := APF∪F(Y ′). Remove all the
vectors which are dominated by F(Y ′) from the APF.

Step 3. Stopping criteria If the stopping criteria are met, consider the APF as an approximation to the
PF and then stop. Otherwise, return to Step 2.

where d(v,A) is the minimum Euclidean distance v from the points in A.
It is noteworthy that one can evaluate both the convergence and diversity of A, if the cardinality of
P∗ is large enough to define the PF [24]. To obtain a small value for D(A,P∗), the set A should be
close to the PF and also, no part of the PF should be missed.

• The GEM measure (The measure M3) [23]

Considering the structural nature of the measure M1, and based on the Gaussian degree of close-
ness, Zahiri et al. introduced the Gaussian evaluation measure (GEM) to maintain the benefits of
M1 and calculate the degree of dominance of points on the PFs. In this measure, after examining
the Gaussian closeness of each A j to the vector Z∗j , which is denoted by gGa

j ( j = 1, . . . ,K), the
frontiers are sorted in the descending order of gGa

j ( j = 1, . . . ,K) (the arrangement A1,A2, . . . ,AK
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results from the implementation of K different decomposition approaches in the MOEA/D), and
the PF with the maximum value of gGa is selected as the best approach.

2.3 Some notes on the evaluation measures

Although different evaluation measures can be found in the literature to evaluate the performance of
various approaches available for solving the MOP, taking the structures of these measures into account,
it may not be possible to use a specific measure to evaluate the PFs comprehensively. More precisely, the
measure M1 only considers the distance or closeness of the non-dominated solutions to a reference point,
and is less sensitive to the structure of the PF [10]. The measure M2 does not work well for the PFs which
are not uniformly distributed, or those for which the diversity of solutions to the PF is low [22]. Also,
when we consider the evaluation measure M3, no attention is paid to the distribution or diversification of
the solutions as factors that affect the quality of the PF, even though a scalar value (including the concepts
of Pareto dominance and degree of closeness of the PF solutions to a reference point) is assigned to each
PF [23].

In general, measuring the quality and ranking the PFs resulting from different solution approaches
depend on the structure of the problems. Hence, it makes sense to design an evaluation measure consid-
ering the structural characteristics. To do that, in the next section, we present a technique to integrate the
evaluation measures while preserving the advantages of each utilized measure. Doing so, we are going to
provide some necessary conditions to rank the solution approaches, irrespective of the number of utilized
evaluation measures.

3 The integrated evaluation measure

As mentioned before, each evaluation measure focuses on some special characteristics of the structure
of a PF. For example, the measure M2 implicitly addresses the dispersion and diversity of a frontier.
Also, some measures in the literature, such as the quality measure (see [7, 24] for more details), only
consider the number of non-dominated solutions on a frontier. Based on the nature of M3, even though
this measure focuses on some factors affecting the quality of a PF, one observes that the measure cannot
to consider all the structural factors needed for evaluating the quality of non-dominated solutions set.
Therefore, to carefully study the performance of different solution approaches generating different PFs,
it is necessary to use different evaluation measures. Nevertheless, based on the experimental results,
making such an effort might produce misleading results. We describe it in more detail in Section 4.

Accordingly, in this section, using the concept of degree of closeness to the best, we integrate nu-
merical results obtained from the different evaluation measures. This approach can be introduced as a
new evaluation measure that on the one hand evaluates the quality of different approximations to the
PFs concerning different characteristics and on the other hand, overcomes the challenge of using several
measures simultaneously to evaluate the quality of PFs. In what follows, we explain the details of this
proposed approach as a new evaluation measure.

3.1 The quasi-Gaussian integrated measure

Assume that S evaluation measures are used to evaluate approximations to the PF resulting from im-
plementing of K solution approaches for an MOP. Moreover, assume that the measure vector V k =
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(vk
1, . . . ,v

k
S) represents the scalar values of the S evaluation measures produced by the kth solution ap-

proach (k = 1, . . . ,K). To evaluate, and hence to rank, the vectors V 1,V 2, . . . ,V K corresponding to the K
solution approaches, the following three steps are considered.

In the first step, we calculate the components of the reference point Z∗ = (z∗1, . . . ,z
∗
S) by calculat-

ing the best scalar value among the K solution approaches. In other words, by considering K solution
approaches, we calculate the z∗i corresponding to the measure i as

z∗i := optKk=1

(
vk

i

)
, i = 1, . . . ,S.

Here, opt indicates maximum or minimum, depending on the type of the evaluation measure.
In the second step, we consider the weight vector

−→
λ = (λ1, . . . ,λS) ∈ (0,1]S. A scalar value Qk

obtained from integrating the S evaluation measures considering the solution approach k can be calculated
as

Qk = Q(V k | λ,Z∗) =
S

∏∏∏
i=1

exp

(
−1
2

(
λivk

i − z∗i
σk

)2
)
. (7)

Here, the value of the parameter σk is set to 0.5. In general, this parameter depends on the values of
all the measures used to evaluate the solution approach k.

Since we are going to introduce an evaluation technique for approximations to the PF, sensitivity
analysis of this parameter is not considered in this paper.

It is clear that the value of Qk corresponding to the solution approach k is a scalar in (0,1]. Therefore,
as Qk gets closer to 1, the quality of solutions generated by the solution approach k increases.

It is worth noting that in general, the components of the vector λ can be defined as a convex linear
combination that depends on the importance of the evaluation measures. In this paper, the importance of
all evaluation measures is identical and equals 1 (that is,

−→
λ =:

−→
1 =(1, . . . ,1) ∈ RS).

In the third and so, final step, the maximum values Qk are considered as an evaluation measure
for ranking the solution approaches with respect to their performance to generate the non-dominated
solutions set. Intuitively speaking, according to Table 1, we can consider the solution approach p as the
best approach among the K solution approaches if Qp = max

k=1,...,K
Qk.

In what follows, for a more convenient description, we call the proposed integrated measure as the
quasi-Gaussian integration measure and denote it by GIM.

Table 1: Integration of several evaluation measures to determine the best solution approach.

Solution approach
Measures

measure 1 measure 2 · · · measure K Qk

Approach 1 v1
1 v1

2 · · · v1
S Q1

...
...

Approach p vp
1 vp

2 · · · vp
S QP

...
...

Approach K vK
1 vK

2 · · · vK
S QK

The solution approach p is
selected as the best one.

Qp = max
k=1,...,K

Qk
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3.2 Theoretical discussion

In this section, we discuss some theoretical issues related to the proposed GIM. First of all, we show that
if all utilized evaluation measures select a solution approach p as the best solution approach, then GIM
also introduces the same solution approach as the superior one. Without loss of generality, assume that
all evaluation measures are of the minimum type (that is, the minimum value is chosen as the best). To
prove this claim, suppose that all S utilized evaluation measures find the solution approach p as the best
solution approach. In other words, according to the notations used in Table 1, the measure vector of the
solution approach p, namely, V p =

(
vp

1 ,v
p
2 , . . . ,v

p
S

)
, is obtained as follows.

vp
i =

K
min
k=1

vk
i , i = 1,2, . . . ,S.

Thus,
−1
2σ2

S

∑
i=1

(
vp

i − z∗i
)2

>
−1
2σ2

S

∑
i=1

(
vk

i − z∗i
)2

, p 6= k, k = 1,2, . . . ,K.

Since the exponential function exp(x) is strictly increasing, we obtain

exp

(
−1
2σ2

S

∑
i=1

(
vp

i − z∗i
)2

)
> exp

(
−1
2σ2

S

∑
i=1

(
vk

i − z∗i
)2
)

⇒
S

∏
i=1

exp
(
−1
2σ2

(
vp

i − z∗i
)2
)
>

S

∏
i=1

exp
(
−1
2σ2

(
vk

i − z∗i
)2
)
, p 6= k, k = 1,2, . . . ,K.

Now, considering equation (7), we obtain Qp as follows

Qp = Q
(

V p|−→1,Z∗
)
> Qk = Q

(
V k|−→1,Z∗

)
, p 6= k, k = 1,2, . . . .,K.

Therefore, based on GIM, we observe that the solution approach p outperforms the other solution ap-
proaches.

Lemma 1. Let the vectors V 1 = (v1
1, . . . ,v

1
S) and V 2 = (v2

1, . . . ,v
2
S) be two non-dominated measure vectors

corresponding to the solution approaches 1 and 2, respectively. Also, let us assume that all the evaluation
measures are of the minimum type. Then, the solution approach 1 outperforms the solution approach 2 if

S

∑
i=1

(
v1

i
)2

<
S

∑
i=1

(
v2

i
)2
.

Proof. Since z∗i = minK
k=1 vk

i (i = 1,2, . . . ,S) , for all i = 1,2, . . . ,S we obtain
(
vk

i − z∗i
)
≥ 0. Now, by

considering the assumption, it is straightforward to show that

S

∑
i=1

(
v1

i − z∗i
)2

<
S

∑
i=1

(
v2

i − z∗i
)2
.
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Therefore, having in mind that exp(x) is strictly increasing, we have

exp

(
−1
2σ2

S

∑
i=1

(
v1

i − z∗i
)2
)

> exp

(
−1
2σ2

S

∑
i=1

(
v2

i − z∗i
)2
)

⇒
S

∏
i=1

exp
(
−1
2σ2

(
v1

i − z∗i
)2
)
>

S

∏
i=1

exp
(
−1
2σ2

(
v2

i − z∗i
)2
)
.

From equation (7) we conclude that

Q1 = Q
(

V 1|−→1,Z∗
)
> Q2 = Q

(
V 2|−→1,Z∗

)
.

Therefore, the solution approach 1 outperforms the solution approach 2.

Remark 1. From Lemma 1 we easily conclude that by considering the proposed GIM, the superiority of
different solution approaches depends on the number of non-domination points and also the amount of
Gaussian closeness of non-dominated points to the reference point.

The following lemma generalizes Lemma 1 to the case where different preferences are allowed for
the evaluation measures.

Lemma 2. Suppose that the vectors V 1 = (v1
1, . . . ,v

1
S) and V 2 = (v2

1, . . . ,v
2
S) are two non-negative and

non-dominated measure vectors corresponding to the two different solution approaches 1 and 2, respec-
tively. Furthermore, assume that all evaluation measures are of the minimum type. Then, the solution
approach 1 outperforms the solution approach 2 if the following conditions are satisfied:

i)
S
∑

i=1

(
v1

i
)2

<
S
∑

i=1

(
v2

i
)2,

ii) λi ≥maxS
k=1

{
z∗k
v1

k

}
, i = 1, . . . ,S.

Herein, the weight vector
−→
λ = (λ1, . . . ,λS) ∈ (0,1]S corresponding to the S evaluation measures and

the reference points z∗i (i = 1,2, . . . ,S) is defined as in Lemma 1.

Proof. According to the assumption,

λi ≥
S

max
k=1

{
z∗k
v1

k

}
, i = 1, . . . ,S.

Then, for all i = 1, . . . ,S, we get

λi ≥
{

z∗i
v1

i

}
⇒
(
λiv1

i − z∗i
)
≥ 0.

As a result, by assuming 0 < λi ≤ 1, from
(
v1

i
)2

<
(
v2

i
)2 we obtain (λiv1

i − z∗i )
2 < (λiv2

i − z∗i )
2, for

i = 1, . . . ,S, and therefore,
S

∑
i=1

(λiv1
i − z∗i )

2 <
S

∑
i=1

(λiv2
i − z∗i )

2.
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Consequently,

exp

(
−1
2σ2

S

∑
i=1

(
λiv1

i − z∗i
)2
)

> exp

(
−1
2σ2

S

∑
i=1

(
λiv2

i − z∗i
)2
)

⇒
S

∏
i=1

exp
(
−1
2σ2

(
λiv1

i − z∗i
)2
)
>

S

∏
i=1

exp
(
−1
2σ2

(
λiv2

i − z∗i
)2
)
.

By considering (7), we obtain Q1 as follows

Q1 = Q
(

V 1|
−→
λ,Z∗

)
> Q2 = Q

(
V 2|
−→
λ,Z∗

)
.

Therefore, the solution approach 1 outperforms the solution approach 2.

According to Lemma 2, making changes to the values of λi’s makes changes to the closeness of the
vi’s to the reference point. This conclusion reveals the role played by the vector λ for the ranking of the
PFs.

4 The experimental results

According to what we discussed in Section 3, we numerically examine the performance and accuracy
of the proposed evaluation measure, namely, GIM. We use a standard set of library problems. The
benchmarks enable us to investigate the performance of MOEA intuitively. In 2002, Deb et al. [6]
introduced one of the most common test problems conceived for the MOPs, called DTLZ, which took
its name from the researchers who proposed it, namely, Deb, Thiele, Laumanns and Zitzler [6]. These
problems are of minimum type, each of which includes special features such as convex or concave PFs,
and spherical fronts with uniform or non-uniform distribution, as well as various local optimal PFs.

Here, as mentioned before, we embed four decomposition approaches, namely, the Gaussian, Tcheby-
cheff, BI, and BIP approaches, in MOEA/D (see Section 2), and denote them by DGe, DTe, DBI and DBIP

respectively, to generate the four approximations to the PFs.
To discuss the performance of the four decomposition approaches generating approximate PFs, sim-

ilar to [9] and [22], the value of σ is set to 0.5. Moreover, the related parameters including the problem
dimensions, the number of iterations, and the cardinality of the initial population are set to 3, 100 and
50, respectively. Moreover, all the weight vectors and also, the initial populations utilized for the four
decomposition approaches, are the same.

We analyzed the performance of the four solution approaches applied to the DTLZ instances with
respect to the three evaluation measures (i.e., M1, M2, M3)1 , and then re-evaluated them by using the
proposed GIM. Accordingly, we ranked the approximate PFs and hence, identified the best solution
approach. The numerical results are reported in Table 21 . Note that the measures M1 and M2 are of
minimum type, and M3 is of maximum type.

1 The value P∗ (the optimal PF) of DTLZs is adapted from https://www.cs.cinvestav.mx/˜emoobook/apendix-e/apendix-
e.html.

1Computations are done in a system with CPUE5\ 2650v3@2.3 GHz intel(R) Xeon(R)RAM32GB, and MOEA/D was
coded in MATLAB software.

https://www.cs.cinvestav.mx/~{}emoobook/apendix-e/apendix-e.html
https://www.cs.cinvestav.mx/~{}emoobook/apendix-e/apendix-e.html
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(a) Approximations of the PFs of DTLZ2 using Algorithm
1 with the four solution approaches

(b) Pareto optimal PF of DTLZ2

Figure 1: The PF of DTLZ2.

By considering DTLZ1, Table 2 allows us to compare the quality of approximations to the PF that
are generated by the four solution approaches. Based on these results, considering the measure M3, DGa

performs better than the three others, DBIP is in the second rank and, DTe and DBI are in the third
position, that is, their performances are the same. Also, DGa is found as the superior solution approach
considering the other two evaluation measures, namely, M1 and M2. However, considering the measure
M2, DBIP, DTe and DBI take the second to the fourth ranks, respectively. Note that by considering
the measure M1, the solution approaches DTe, DBIP and DBI are in the second to the fourth ranks,
respectively. As shown in this table, all the three measures M1,M2, M3, and hence the proposed GIM,
find DGe as the superior solution approach. This is in line with Lemma 1.

The related results of DTLZ2 can be described as follows. As the second test function indicates,
the ranks of the decomposition approaches depend on the utilized evaluation measures. In other words,
various evaluation measures lead to different rankings (conflicting ranks). A closer look at Table 2
reveals the fact that considering the measures M1 and M3 for DTLZ2, non-dominated solutions generated
by DGa, DTe and DBIP have the same quality. In this case, DBI is the weakest solution approach.
Nevertheless, if we choose the measure M2, the PF related to DBI has the highest quality and hence, DBI

outperforms three others.
The results of GIM are in line with the above discussion. Since the results of the three measures are

nearly the same, GIM indicates that all solution approaches have the same performance and are slightly
superior to DTe.

Now, let us consider the approximations to the PF which are generated by the four solution ap-
proaches. Although we observe that these approximations are not particularly superior to each other (see
Figure 1), Remark 2 below may be derived.

Remark 2. Referring to Figure 1 and Table 2, we observe that by integrating the four approximations of
PFs, we obtain the definition of the final PF. In other words, for some cases, considering both criteria of
diversity and quality, the frontiers which are generated by several solution approaches (with different or
even the same ranks) seem to be complement to each other to form a good approximation to the whole
PF.
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Table 2: Ranking of the solution approaches by using the proposed GIM.

Test problems
Solution approach

Evaluation measure
M1 M2 M3 GIM

DTLZ1

DGa 0.4666 0.0102 0.8454 1
DTe 2.6349 1.4533 0.0024 3.1×10−6

DBI 79.5844 13.3375 0.0024 0
DBIP 2.8918 1.2708 0.0044 1.02×10−6

The best solution
approach

DGa

DTLZ2

DGa 1.000 0.4014 0.1353 0.9021
DTe 1.002 0.1859 0.1353 0.9997
DBI 1.0298 0.1744 0.1201 0.9978
DBIP 1.000 0.4014 f0.1353 0.9021

The best solution
approach

DTe

DTLZ3

DGa 1.9995 1.2824 0.1353 1.000
DTe 2.5067 1.7531 0.0024 0.3838
DBI 138.4056 f7.7071 f0.1348 0
DBIP 2.0006 1.3925 0.0044 0.9761

The best solution
approach

DGa

DTLZ4

DGa 1.000 0.4222 0.1353 1.000
DTe 1.000 0.4206 0.1353 1.000
DBI 1.2800 0.5127 0.1353 0.8405
DBIP 1.000 0.5521 0.1353 0.9660

The best solution
approach

DGa and DTe

DTLZ5

DGa 1.000 0.4997 0.1353 1.000
DTe 1.0006 0.3178 0.1353 0.9496
DBI 1.0488 0.5461 0.1353 1.000
DBIP 1.000 0.4997 0.1353 1.000

The best solution
approach

DGa, DBI ,DBIP

DTLZ6

DGa 1.000 0.0471 0.1353 1.000
DTe 1.000 0.1935 0.1353 0.9581
DBI 2.7600 1.9451 0 0
DBIP 1.000 0.0471 0.1353 1.000

The best solution
approach

DBIP and DGa

DTLZ7

DGa 2.8817 0.3512 0.6137 0.9960
DTe 3.9942 0.3063 0.6056 0.0841
DBI 16.6344 2.5208 0.6056 0
DBIP 2.8817 0.9527 0.6139 0.4335

The best solution
approach

DGa

For the case DTLZ3, similar to DTLZ2, the approximations to the PF resulting from the four decom-
position approaches are compared. By considering the three measures M1, M2 and M3, we are unable to
rank the decomposition approaches, appropriately. In particular, when the measure M1 is considered, we
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(a) Approximations of the PFs of DTLZ6 using Algorithm 1
with the four decomposition approaches

(b) The optimal PF of DTLZ6

Figure 2: Approximations to the PFs for DTLZ6.

observe that DGa and DBIP perform identically, and they outperform both DTe and DBI . In this case, DBI

is the worst one. However, if the measure M2 is considered, DBI and DGa outperform the others.

Remark 3. The rank of a PF depends on how the approximations of the PFs are evaluated, and it seems
that GIM overcomes this drawback.

Similar arguments apply to the instances of DTLZ3, DTLZ4, DTLZ5, DTLZ6 and DTLZ7. The
approximations of the PFs resulting from applying the four decomposition approaches to DTLZ5 and
DTLZ6 show that the solution approaches are not particularly superior to each other. Hence, the idea of
merging the different fronts to make a better approximation of the PF becomes more evident. For the
sake of brevity, we only depicted the approximations for DTLZ6 in Figure 2.

For DTLZ6, the numerical results presented in Table 2 indicate the superiority of the performance of
the three approaches DGa, DTe and DBIP over DBI , irrespective of the utilized measure. So, GIM obtains
the same result.

Remark 4. The obtained experimental results are in line with the lemmas stated in Section 3.1.

Remark 5. Based on the obtained results, considering several evaluation measures, no particular
heuristic algorithm exists to perform well for all MOPs. Therefore, the issue of integrating the PFs
resulting from all the utilized solution approaches can be the basis of introducing a new technique that
produces a non-dominant set of solutions, considering the diversity and quality criteria simultaneously.
This idea underlies the future studies of the researchers.

5 Conclusion

According to the experimental results, finding different evaluation measures to evaluate the quality of
Pareto frontiers produced by multi-objective optimization methods is a challenging task. In other words,
as the number of evaluation measures increases, the ranking of the solution approaches is made more
complex, and in some cases leads to misleading results. To overcome this drawback, in this paper, first
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we investigated the quality of Pareto frontiers generated by several solution approaches by considering
various evaluation measures. In the next phase, a new evaluation measure, namely, the quasi-Gaussian
integration measure was proposed to evaluate the structure of Pareto frontiers from different perspectives.
Based on the theoretical and experimental results, we observed that the rankings of different frontiers by
calling the proposed measure aligned with the obtained results. The idea of integrating all the approx-
imations of the PF generated by several multi-objective optimization methods is an issue that underlies
the future studies of the researchers.
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