تعداد نشریات | 31 |
تعداد شمارهها | 743 |
تعداد مقالات | 7,049 |
تعداد مشاهده مقاله | 10,173,861 |
تعداد دریافت فایل اصل مقاله | 6,847,317 |
تاثیر اگزیندول و حشرهکش بیولوژیک بایولپ® بر سمیت، شاخصهای تغذیهای، آنزیمهای گوارشی و ذخایر انرژی کرم قوزه پنبهHelicoverpa armigera Hubner (Lep.: Noctuidae) | ||
تحقیقات آفات گیاهی | ||
مقاله 3، دوره 12، شماره 3، آذر 1401، صفحه 13-32 اصل مقاله (911.13 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/iprj.2022.6013 | ||
نویسندگان | ||
عادل باغبان1؛ غلامحسین مروج* 1؛ جلال جلالی سندی2 | ||
1گروه گیاهپزشکی دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
2گروه گیاهپزشکی دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
اگزیندول (Oxindole) یک مهار کننده سیگنال ایکوزانویید است و سامانه ایمنی در حشرات را مهار میکند. یکی از مهمترین مشکلات عوامل بیولوژیک نظیر باکتریBacillus thuringiensis Kurstaki (BtK) کارایی پایین و کندی اثرگذاری آنها است. در این تحقیق اثر اگزیندول و فرآورده بیولوژیک بایولپ® بر پایه BtK، روی سمیت، شاخصهای تغذیهای، ذخایر انرژی و فعالیت آنزیمهای گوارشی کرم قوزه پنبه Helicoverpa armigera Hubner (Lep.: Noctuidae) مورد بررسی قرار گرفت. نتایج نشان داد اگزیندول باعث افزایش تلفات لاروها و کاهش LC50 و LT50 بایولپ® شد. شاخصهای تغذیهای کرم قوزه پنبه تحت تاثیر غلظتهای زیرکشنده باکتری و اگزیندول تغییر یافت. در غلظت 5/0 گرم اگزیندول یر کیلوگرم غذا نسبت به شاهد، نرخ رشد نسبی کاهش و شاخص قابلیت هضم شوندگی افزایش نشان داد. کاربرد اگزیندول همراه با باکتری باعث کاهش فعالیت آنزیم گوارشی لیپاز نیز شد. گلیکوژن به عنوان یک منبع ذخیره انرژی در غلظتهای 1/0 و 5/0گرم اگزیندول بر کیلوگرم غذا همراه با غلظت زیرکشنده بایولپ® نسبت به غلظت زیرکشنده بایولپ® به تنهایی، کاهش نشان داد. نتایج این تحقیق نشان داد با افزودن اگزیندول به عنوان یک بازدارنده سیگنال ایکوزانویید و سامانه ایمنی به رژیم غذایی کرم قوزه پنبه، اثرگذاری حشرهکش بایولپ® افزایش یافته و فیزیولوژی تغذیه آفت تحت تاثیر قرار گرفت. | ||
کلیدواژهها | ||
اگزیندول؛ ذخایر انرژی؛ زیست سنجی؛ شاخص تغذیه؛ کرم قوزه پنبه | ||
مراجع | ||
Alimohamadian, M., Aramideh, S., Mirfakhraie, S. and Frozan, M. 2022. Effect of Bacillus thuringiensis var. kurstaki in combination with neemarin and silica nanoparticles in the control of second instar larvae of sugar beet, Spodoptera exigua Hb.(Lep.: Noctuidae) in laboratory condition. Applied Biology 34: 148-163 (In Farsi)
Bernfeld, P. 1955. Amylases, α and β. Methods in Enzymology 1:149-158.
Bietlot, H., Carey, P., Choma, C., Kaplan, H., Lessard, T. and Pozsgay, M. 1989. Facile preparation and characterization of the toxin from Bacillus thuringiensis var. kurstaki. Biochemical Journal 260: 87-91.
Brandt, S. L., Coudron, T. A., Habibi, J., Brown, G. R., Ilagan, O. M., Wagner, R. M. Wright, M. K., Backus, E. A. and Huesing, J. E. 2004. Interaction of two Bacillus thuringiensis δ-endotoxins with the digestive system of Lygus hesperus. Current Microbiology 48: 1-9.
Bravo, A., Likitvivatanavong, S., Gill, S. S. and Soberón, M. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology 41: 423-431.
Broderick, N. A., Raffa, K. F. and Handelsman, J. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences 103: 15196-15199.
Carrière, Y., Crickmore, N. and Tabashnik, B. E. 2015. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nature Biotechnology 33: 161-168.
Chun, Y. and Yin Z. D. 1998. Glycogen assay for diagnosis of female genital Chlamydia trachomatis infection. Journal of Clinical Microbiology 36: 1081-1082.
Emre, I., Kayis. T., Coskun, M., Dursun O. and Cogun, H. Y. 2013. Changes in antioxidative enzyme activity, glycogen, lipid, protein, and malondialdehyde content in cadmium-treated Galleria mellonella larvae. Annals of the Entomological Society of America 106: 371-377
Eom, S., Park, Y. and Kim, Y. 2014. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopahogenic bacterium Xenorhabdus nematophila. Journal of Microbiology 52: 161-168.
Fathipour, Y., Sedaratian, A., Bagheri, A. and Talaei‐Hassanlouei, R. 2019. Increased food utilization indices and decreased proteolytic activity in Helicoverpa armigera larvae fed sublethal Bacillus thuringiensis‐treated diet. Physiological Entomology 44: 178-186.
Fossati, P. and Prencipe, L. 1982. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical Chemistry 28: 2077-2080.
García‐carreño, F. L. and Haard, N. F. 1993. Characterization of proteinase classes in langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. Journal of Food Biochemistry 17: 97-113.
Igrc Barčić, J., Bažok, R., Bezjak, S., Gotlin Čuljak, T. and Barčić, J. 2006. Combinations of several insecticides used for integrated control of Colorado potato beetle (Leptinotarsa decemlineata, Say., Coleoptera: Chrysomelidae). Journal of Pest Science 79: 223-232.
Jallouli, W., Driss, F., Fillaudeau, L. and Rouis, S. 2020. Review on biopesticide production by Bacillus thuringiensis subsp. kurstaki since 1990: Focus on bioprocess parameters. Process Biochemistry 98: 224-232.
Janmaat, A. F., Bergmann, L. and Ericsson, J. 2014. Effect of low levels of Bacillus thuringiensis exposure on the growth, food consumption and digestion efficiencies of Trichoplusia ni resistant and susceptible to Bt. Journal of Invertebrate Pathology 119: 32-39.
Kaya, H. K. and Gaugler, R. 1993. Entomopathogenic nematodes. Annual Review of Entomology 38: 181-206.
Kim, S. H., and Lee, W. J. 2014. Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions. Frontiers in Cellular and Infection Microbiology 3: 116.
Kim, Y. and Stanley, D. 2021. Eicosanoid signaling in insect immunology: New genes and unresolved issues. Genes 12: 211.
Kogan, M. and Bajwa, W. I. 1999. Integrated pest management: a global reality? Anais da Sociedade Entomológica do Brasil 28: 01-25.
Koul, O., Singh. G., Singh, R., Singh, J., Daniewski, W. and Berlozecki, S. 2004. Bioefficacy and mode-of-action of some limonoids of salannin group from Azadirachta indica A. Juss and their role in a multicomponent system against lepidopteran larvae. Journal of Biosciences 29: 409-416.
Loeb, M. J., Martin, P. A., Hakim, R. S., Goto, S. and Takeda, M. 2001. Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. Journal of Insect Physiology 47: 599-606.
Lowry, O. H. 1951. Protein measurement with the Folin phenol reagent. Journal of Biology and Chemistry 193: 265-275.
Matthews, M. 1999. Heliothine moths of Australia. A guide to pest bollworms and related noctuid groups. CSIRO Publishing.
Navon, A., Klein, M. and Braun, S. 1990. Bacillus thuringiensis potency bioassays against Heliothis armigera, Earias insulana, and Spodoptera littoralis larvae based on standardized diets. Journal of Invertebrate Pathology 55: 387-393.
Nouri-Ganbalani, G., Borzoui, E., Abdolmaleki, A., Abedi, Z. and George Kamita, S. 2016. Individual and combined effects of Bacillus thuringiensis and azadirachtin on Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Journal of Insect Science 16 (95): 1-8.
Rahimi, V., Hajizadeh, J., Zibaee, A. and Sendi, J. J. 2018. Toxicity and physiological effects of an extracted lectin from Polygonum persicaria L. on Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae). Physiological and Molecular Plant Pathology 101: 38-45.
Sadekuzzaman, M. and Kim, Y. 2017. Specific inhibition of Xenorhabdus hominickii, an entomopathogenic bacterium, against different types of host insect phospholipase A2. Journal of Invertebrate Pathology 149: 97-105.
Sadekuzzaman, M., Park, Y., Lee, S., Kim, K., Jung, J. K. and Kim, Y. 2017. An entomopathogenic bacterium, Xenorhabdus hominickii ANU101, produces oxindole and suppresses host insect immune response by inhibiting eicosanoid biosynthesis. Journal of Invertebrate Pathology 145: 13-22.
Sajjadian, S. M. and Kim, Y. 2020. Dual oxidase-derived reactive oxygen species against Bacillus thuringiensis and its suppression by eicosanoid biosynthesis inhibitors. Frontiers in Microbiology 11: 528.
Sedaratian, A., Fathipour, Y., Talaei‐Hassanloui, R. and Jurat‐Fuentes, J. 2013. Fitness costs of sublethal exposure to Bacillus thuringiensis in Helicoverpa armigera: a carryover study on offspring. Journal of Applied Entomology 137: 540-549.
Senthil Nathan, S., Chung , P. G. and Murugan, K. 2006. Combined effect of biopesticides on the digestive enzymatic profiles of Cnaphalocrocis medinalis (Guenee)(the rice leaffolder)(Insecta: Lepidoptera: Pyralidae). Ecotoxicology and Environmental Safety 64(3): 382-389.
Seo, S., Lee, S., Hong, Y. and Kim, Y. 2012. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Applied and Environmental Microbiology 78: 3816-3823.
Sharma, N. and Singhvi, R. 2017. Effects of chemical fertilizers and pesticides on human health and environment: a review. International Journal of Agriculture, Environment and Biotechnology 10: 675-680.
Shorey, H. and Hale, R. 1965. Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology 58: 522-524.
Silva, C. P. and Terra, W. R. 1995. An α-glucosidase from perimicrovillar membranes of Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) midgut cells. Purification and properties. Insect Biochemistry and Molecular Biology 25: 487-494.
Spies, A. and Spence, K. 1985. Effect of sublethal Bacillus thuringiensis crystal endotoxin treatment on the larval midgut of a moth, Manduca: SEM study. Tissue and Cell 17: 379-394.
Srinivasan, R. and Uthamasamy, S. 2005. Studies to elucidate antibiosis resistance in selected tomato accessions against fruitworm, Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Resistant Pest Management Newsletter 14(2): 24-26.
Stanley-Samuelson, D. W. 1994. Prostaglandins and related eicosanoids in insects. pp. 115-212 Advances in Insect Physiology. Elsevier.
Stanley, D. 2011. Eicosanoids: progress towards manipulating insect immunity. Journal of Applied Entomology 135: 534-545.
Sudo, M., Takahashi, D., Andow, D. A., Suzuki, Y. and Yamanaka, T. 2018. Optimal management strategy of insecticide resistance under various insect life histories: Heterogeneous timing of selection and interpatch dispersal. Evolutionary Applications 11: 271-283.
Tsujita, T., Ninomiya, H. and Okuda, H. 1989. p-nitrophenyl butyrate hydrolyzing activity of hormone-sensitive lipase from bovine adipose tissue. Journal of Lipid Research 30: 997-1004.
Vijayaraghavan, C., Sivakumar, C., Kavitha, Z. and Sivasubramanian, P. 2010. Effect of plant extracts on biochemical components of cabbage leaf webber, Crocidolomia binotalis Zeller. Journal of Biopesticides 3: 275.
Waldbauer, G. 1968. The consumption and utilization of food by insects. pp. 229-288 Advances in Insect Physiology. Elsevier.
Wraight, S. and Ramos, M. 2005. Synergistic interaction between Beauveria bassiana and Bacillus thuringiensis tenebrionis-based biopesticides applied against field populations of Colorado potato beetle larvae. Journal of Invertebrate Pathology 90: 139-150.
Xu, J., Huigens, M. E., Orr, D. and Groot, A. T. 2014. Differential response of Trichogramma wasps to extreme sex pheromone types of the noctuid moth Heliothis virescens. Ecological Entomology 39: 627-636.
Yazdani, E., Sendi, J. J. and Hajizadeh, J. 2014. Effect of Thymus vulgaris L. and Origanum vulgare L. essential oils on toxicity, food consumption, and biochemical properties of lesser mulberry pyralid Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). Journal of Plant Protection Research 54(1): 53–61.
Yunis Aguinaga, J., Claudiano, G. S., Marcusso, P. F., Ikefuti, C., Ortega, G. G., Eto, S. F., da Cruz, C., Moraes, J. R., Moraes, F. R. and Fernandes, J. B. 2014. Acute toxicity and determination of the active constituents of aqueous extract of Uncaria tomentosa bark in Hyphessobrycon eques. Journal of Toxicology 2014: Article ID 412437, https://doi.org/10.1155/2014/412437.
Zhang, F., Peng, D., Cheng, C., Zhou, W., Ju, S., Wan, D., Yu, Z., Shi, J., Deng, Y. Wang, F. and Ye, X. 2016. Bacillus thuringiensis crystal protein Cry6Aa triggers Caenorhabditis elegans necrosis pathway mediated by aspartic protease (ASP-1). PLoS Pathogens 12(1): e1005389.
Zibaee, A., Bandani, A. and Ramzi. S. 2008. Lipase and invertase activities in midgut and salivary glands of Chilo suppressalis (Walker) (Lepidoptera, Pyralidae), rice striped stem borer. Invertebrate Survival Journal 5: 180-189.
Zibaee, I., Bandani, A., Sendi, J., Talaei-Hassanloei, R. and Kouchaki, B. 2010. Effects of Bacillus thuringiensis var. kurstaki and medicinal plants on Hyphantria cunea Drury (Lepidoptera: Arctiidae). Invertebrate Survival Journal 7: 251-261. | ||
آمار تعداد مشاهده مقاله: 230 تعداد دریافت فایل اصل مقاله: 207 |