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n-SUPER FINITELY COPRESENTED AND n-WEAK
PROJECTIVE MODULES

M. AMINI ∗

Abstract. Let R be a ring and n an non-negative integer. In this
paper, we first introduce the concept of n-super finitely copresented
R-modules and via these modules, we give a concept of n-weak
projective modules and investigate some characterizations of these
modules over any arbitrary ring. For example, we obtain that
(WPn(R),WPn(R)⊥) is a perfect hereditary cotorsion theory and
for any N ∈ WPn(R)⊥, there exists an n-weak projective cover
with the unique mapping property if and only if every R-module
is n-weak projective.

1. Introduction and Preliminaries

In 1994, Costa in [5] via n-presented modules introduced the notion
of n-coherent rings for a nonnegative integer n. A left R-module M
is said to be n-presented if it has a finite n-presentation, that is, there
exists an exact sequence Fn → Fn−1 → · · · → F1 → F0 → M → 0
with each Fi finitely generated free R-module, and a ring R is called
left n-coherent if every n-presented left R-module is (n+ 1)-presented,
for more details see [4, 6]. In 2014, Gao and Wang in [8], introduced
the notion of super finitely presented modules. A left R-module U is
called super finitely presented if there exists an exact sequence · · · →
F2 → F1 → F0 → U → 0, where each Fi is finitely generated and
projective for any i ≥ 0. Then in 2021, Amini, Amzil and Bennis
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in [1], introduced the notion of n-super finitely presented modules as a
generalization of the notion of super finitely presented modules by using
finitely generated and projective modules. Let n be a non-negative
integer. Then, a left R-module U is called n-super finitely presented if
there exists an exact sequence

· · · → Fn → Fn−1 → · · · → F2 → F1 → F0 → U → 0

of projective R-modules Fi for any i ≥ 0, where each Fi finitely gen-
erated for any i ≥ n. They also in [1], introduce n-weak injective and
n-weak flat modules as a generalization of the notion weak injective
and weak flat modules, where first weak injective and weak flat mod-
ules was introduced by Gao and Wang in [9]. A left R-module M is
called n-weak injective if Extn+1

R (U,M) = 0 for every n-super finitely
presented left R-module U . A right R-module N is called n-weak flat
if TorRn+1(N,U) = 0 for every n-super finitely presented left R-module
U .

As we know, cogenerated modules and cocoherent rings as a dual
notions of generated modules and coherent rings have been charac-
terized in various ways, and many nice properties were obtained for
such rings in [12, 15, 17, 20]. A right R-module M is said to be
finitely cogenerated if for every family {Mi}i∈I of submodules of M
with ∩i∈IMi = 0, there is a finite subset J ⊂ I such that ∩i∈JMi = 0.
Also, in 1999, Weimin Xue in [16] via finitely cogenerated modules in-
troduced n-copresented modules and n-cocoherent rings as a dual no-
tion of n-presented modules and n-coherent rings, respectively. A right
R-module M is said to be n-copresented if there is an exact sequence
0 → M → E0 → E1 → · · · → En of right R-modules, where each Ei

is finitely cogenerated injective. A ring R is called right n-cocoherent
if every n-copresented R-module is (n + 1)-copresented. n-cocoherent
rings have been studied by several authors (see, for example [2, 3, 20]).

In this paper, first via finitely cogenerate modules, we introduce the
concept of n-super finitely copresented right modules as a dual notion
of n-super finitely presented left modules. Then, we introduce the
concept of n-weak projective right modules by using n-super finitely
copresented right modules. Every n-super finitely copresented module
and every n-weak projective module are m-super finitely copresented
and m-weak projective, respectively for m ≥ n. But, m-super finitely
copresented and m-weak projective modules are not n-super finitely
copresented and n-weak projective for any m > n, see Examples 2.4
and 2.15.

Moreover, we study the relative homological theory of these modules
and also, the properties of special super finitely copresented modules,
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defined via finitely cogenerated injective resolutions of n-super finitely
copresented modules, play a crucial role. For example, over any ar-
bitrary ring, we obtain some equivalent characterizations in terms of
n-weak projective right modules on the spesial super short exact se-
quences, see Proposition 2.7.

Also, on every arbitrary ring, we prove that, (1) there exist some
equivalent characterizations of right modules of n-weak projective di-
mension at most k, (2) If WPn(R) denotes the class of n-weak projec-
tive right modules, then (WPn(R), WPn(R)⊥) is hereditary cotorsion
theory, (3) if WIn(R) is a class of n-weak injective left modules, then
(WPn(R))∗ ⊆ WIn(R), (4) every right R-module is n-weak projective
if and only if (WPn(R),WPn(R)⊥) is a perfect hereditary cotorsion
theory and N has an n-weak projective cover with the unique map-
ping property for any N ∈ WPn(R)⊥ if and only if id(U) ≤ n− 1 for
any n-super finitely copresented right R-module U if and only if N is
injective for any N ∈ WPn(R)⊥.

2. n-Super finitely copresented and n-weak projective
modules

In this section, we first introduce the special super finitely cop-
resented and special super finitely cogenerated modules via n-super
finitely copresented right modules. Then by using of these modules,
some properties of n-weak projective modules are discussed. We start
with the following definition.

Definition 2.1. Let n be a non-negative integer. A right R-module
U is said to be n-super finitely copresented if there exists an exact
sequence

0→ U → E0 → E1 → · · · → En → En+1 → · · ·
of injective R-modules Ei, where each Ei is finitely cogenerated and
injective for any i ≥ n.

If Kn−1 = Coker(En−2 → En−1) and Kn = Coker(En−1 → En),
then we call the module Kn−1 special super finitely copresented right
R-module and Kn special super finitely cogenerated right R-module.
Also, we shall say the sequence 0 −→ Kn−1 −→ En −→ Kn −→ 0 of
right R-modules is a special super short exact sequence. Moreover, if
HomR(−, Kn−1) is exact with respect to a short exact sequence 0 →
X → Y → Z → 0 of right R-modules, then we say that this sequence
is special super copure and X is said to be super copure in Y . See the
concepts of pure submodules in [7].

Remark 2.2. Let n,m, k be non-negative integers. Then:
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(1) Every 0-super finitely copresented (or, super finitely copresented
) right R-module is n-super finitely copresented.

(2) Every n-super finitely copresented right R-module is m-super
finitely copresented for any m ≥ n, but not conversely (see
Example 2.4). If we denote by Copresn∞ the class of all n-super
finitely copresented right R-modules, then:

Copresn∞ ⊆ Copresn+1
∞ ⊆ Copresn+2

∞ ⊆ · · ·

If n = 0, then Copres0∞ is simply the class of all super finitely
copresented right R-modules. We denote this class simply by
Copres∞.

The finitely presented dimension of an R-module A is defined as
f.p.dimR(A) = inf{n | there exists an exact sequence Fn+1 → Fn →
· · · → F1 → F0 → A → 0 of R-modules, where each Fi is projective,
and Fn and Fn+1 are finitely generated}. We also define the finitely pre-
sented dimension of R (denoted by f.p.dim(R)) as sup{f.p.dimR(A) |
A is a finitely generated R-module}.

Also, R is called an (a, b, c)-ring if w.gl.dim(R) = a, gl.dim(R) = b
and f.p.dim(R) = c (see [13]).

Example 2.3. Let S = k[x1, · · · , x3]⊕S
′
, where k[x1, · · · , x3] is a ring

of polynomials in 3 indeterminates over a field k, and S
′

is a valuation
ring with global dimension 3. Then by [13, Proposition 3.10]) S

′
is a

(3, 3, 4)-ring.

Example 2.4. Let R = k[x1, · · · , x5] ⊕ S2, where k[x1, · · · , x5] is a
ring of polynomials in 5 indeterminates over a field k, and S2 is a
(3, 3, 4)-ring (see, Example 2.3 and [13, Proposition 3.10]). Then by [13,
Proposition 3.8], R is a coherent (4, 4, 4)-ring. Hence, f.p.dim(R) = 4
and so there exists a finitely generated R-module U with f.p.dimR(U) =
4. Hence, there exists an exact sequence F5 → F4 → F3 → F2 → F1 →
F0 → U → 0, where F4 and F5 are finitely generated and projective R-
modules. Also, K3 := Im(F4 → F3) is a special super finitely presented
module, since R is coherent. So, we have

0→ U∗ → F ∗0 → · · · → F ∗4 → F ∗5 → · · · ,

where by Lemma 2.17, U∗ is 4-super finitely copresented. If every 4-
super finitely copresented module is 3-super finitely copresented, then,
U∗ is 3-super finitely copresented. Also, F ∗i is finitely cogenerated and
injective if and only if Fi is finitely generated and projective for any
i ≥ 3, since R is coherent. So U is 3-super finitely presented otherwise
f.p.dim(R) = 3, a contradiction.
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Definition 2.5. Let n be a non-negative integer. A right R-module
M is called n-weak projective if Extn+1

R (M,U) = 0 for every n-super
finitely copresented right R-module U .

Remark 2.6. Let n,m, k be non-negative integers. Then:

(1) Extn+1
R (−, U) ∼= Ext1R(−, Kn−1), where U is an n-super finitely

copresented right R-module with a special super finitely cop-
resented module Kn−1. If n = 0, then n-weak projective right
R-modules, n-super finitely pcoresented right R-modules are
simply weak projective right R-modules and super finitely cop-
resented right R-module, respectively.

(2) Every n-weak projective right R-module is m-weak projective
for any n ≤ m, but not conversely (see Example 2.15). If U is
an (n+1)-super finitely copresented right R-module, then there
exists an exact sequence

0→ U → E0 → E1 → · · ·

where Kn is a special super finitely copresented right module.
Also, we have the short exact sequence 0 → U → E0 →
K0 → 0, where K0 is an n-super finitely copresented right
module. So, if M is an n-weak projective right R-module,
then Extn+1

R (M,K0) = 0. On the other hand, Extn+2
R (M,U) ∼=

Extn+1
R (M,K0) = 0, and hence M is (n+ 1)-weak projective.

(5) If P , WP(R), WPn(R) are the classes of projective, weak
projective and n-weak projective right R-modules, respectively,
then
P ⊆ WP(R) ⊆ WPn(R) ⊆ WPn+1(R) ⊆ WPn+2(R) ⊆ · · · .

Proposition 2.7. Let M be a right R-module. Then, the following
assertions are equivalent:

(1) M is n-weak projective.
(2) Every short exact sequence 0 → A → B → M → 0 of right

R-modules is special super copure.
(3) M is n-weak projective with respect to all special super short

exact sequences in Mod-R.
(4) There exists a special super copure short exact sequence 0 →

K → P →M → 0 of right R-modules, where P is projective.
(5) There exists a special super copure short exact sequence 0 →

K → P → M → 0 of right R-modules, where P is n-weak
projective.
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Proof. (1) =⇒ (3) Let 0 → Kn−1 → En → Kn → 0 be a special
super short exact sequence with respect to any n-super finitely co-
presented right R-module U . Then by hipothesis and Remark 2.6,
Ext1R(M,Kn−1) ∼= Extn+1

R (M,U) = 0.
(3) =⇒ (2) and (2) =⇒ (1) are clear.
(1)⇔ (4) Let M be a right R-module. Then, there is exact sequence

0 → K → P → M → 0 of right R-modules with P is projective.
Hence Remark 2.6, Ext1R(M,Kn−1) ∼= Extn+1

R (M,U) for any special
super finitely copresented Kn−1 and any n-super finitely copresented
right module U .

(4) =⇒ (5), (5) =⇒ (1) are clear. �

Definition 2.8. (1) The n-weak projective dimension of a right module
M is defined by
n-wpdR(M) = inf{k : Extk+1

R (M,Kn−1) = 0} for every special super
finitely copresented Kn−1.

(2) The right n-super finitely copresented dimension l.n.scop.gldim(R)
of R is defined as: l.n.scop.gldim(R) := sup{idR(Kn−1)} for any special
super finitely copresented right R-module Kn−1.

Lemma 2.9. Let M be a right R-module. Then the following state-
ments are equivalent:

(1) n-wpdR(M) ≤ k.
(2) Extk+1

R (M,Kn−1) = 0 for any special super finitely copresented
module Kn−1.

Proof. (2) =⇒ (1) is trivial by Definition 2.8.
(1) =⇒ (2) Use induction on k. Clear if n-wpdR(M) = k. Let

n-wpdR(M) ≤ k − 1. If 0 → Kn−1 → En → Kn → 0 is a special
super short exact sequence of right R-module with respect to any n-
super finitely copresented right R-module U , then we deduce that Kn is
special super finitely copresented, too. Also, we have ExtkR(M,Kn) ∼=
Extk+1

R (M,Kn−1). So by induction hypothesis, ExtkR(M,Kn) = 0 and
consequently Extk+1

R (M,Kn−1) = 0 which completes the proof. �

Theorem 2.10. Let M be a right R-module and k a non-negative
integer. Then the following statements are equivalent:

(1) n-wpdR(M) ≤ k.
(2) Extk+lR (M,Kn−1) = 0 for any special super finitely copresented

Kn−1 and all positive integers l.
(3) Extk+1

R (M,Kn−1) = 0 for any special super finitely copresented
Kn−1.
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(4) There exists an exact sequence

0 −→ Pk
fk−→ Pk−1

fk−1−→ · · ·P1
f1−→ P0

f0−→M −→ 0

of right R-modules with P0, P1, · · · , Pk are n-weak projective.

Proof. (1) =⇒ (2) If n-wpdR(M) ≤ k, then n-wpdR(M) ≤ k + l − 1.
So by Lemma 2.9, Extk+lR (M,Kn−1) = 0.

(4) =⇒ (1) By Lemma 2.9, ExtjR(Pi, K
n−1) = 0 for any special

super finitely copresented module Kn−1, all positive integers j and any
0 ≤ i ≤ k. So by (4), we have:

Extk+1
R (M,Kn−1) ∼= ExtkR(ker(f0), K

n−1) ∼= · · · ∼= Ext1R(Pk, K
n−1).

Hence by Lemma 2.9, n-wpdR(M) ≤ k.
(2) =⇒ (3) obvious.
(3) =⇒ (4) For every right R-module M , there exists an exact se-

quence

0 −→ Pk −→ Pk−1 −→ · · ·P1 −→ P0 −→M −→ 0

of right R-modules with P0, P1, · · · , Pk−1 are projective. Therefore for
any positive integers l, we have ExtlR(Pi, K

n−1) = 0 for all special
super finitely copresented modules Kn−1 and any 0 ≤ i ≤ k − 1. Let
Ki = ker(Pi → Pi−1). Then,

Extk+1
R (M,Kn−1) ∼= ExtkR(K0, K

n−1) ∼= Extk−1R (K1, K
n−1) ∼= Ext1R(Pk, K

n−1).

By (3), Extk+1
R (M,Kn−1) = 0, and so Ext1R(Pk, K

n−1) = 0, which
means that Pk is n-weak projective. �

Corollary 2.11. Let R be a ring .Then the following statements are
equivalent:

(1) If φ : N → M is an n-weak projective preenvelope, then N has
an epic n-weak projective preenvelope.

(2) The cokernel of any n-weak projective preenvelope of a right
R-module is n-weak projective.

Moreover, if every submodule of an n-weak projective right
R-module has an n-weak projective preenvelope, the above are
equivalent to

(3) r.n.scop.gldim(R) ≤ 1.

Proof. (1) =⇒ (2) Let φ : N → M be an n-weak projective preenve-
lope. Then f : Im(φ) → M is an n-weak projective preenvelope. By
(1), there is an epic n-weak projective preenvelope g : Im(φ) → C.
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Consider the following commutative diagram, where D is a pushout of
two maps f and g:

0 // Im(φ)
f //

g

��

M //

β

��

Coker(φ) //

id
��

0

C
α // D // Coker(φ) // 0

By [14, Exercise 5.10], α is injective and β is surjective. On the other
hand, D = α(C) + β(M). Since β is surjective, D = α(C) + D and
so, α(C) ⊆ D. Also, by using of preenvelopes f and g, there is a
morphism h : D → C such that hα = 1C . Hence, D ∼= C ⊕ Coker(φ).
Similarly D ∼= M . Therefore from n-weak projectivity M , we deduce
that Coker(φ) is n-weak projective.

(2) =⇒ (1) Let φ : N →M be an n-weak projective preenvelope. It
is enough to show that Im(φ) is n-weak projective. Consider the exact
sequence 0→ Im(φ)→ M → Coker(φ)→ 0. By hypothesis, Coker(φ)
is n-weak projective, and so for every special super finitely copresented
Kn−1, we have:

0 = Ext1R(M,Kn−1) −→ Ext1R(Im(φ), Kn−1) −→ Ext2R(Coker(φ), Kn−1).

Hence by Theorem 2.10 and (2), Ext2R(Coker(φ), Kn−1) = 0. Hence,

0 = Ext1R(Im(φ), Kn−1) ∼= Extn+1
R (Im(φ), U)

for any n-super finitely copresented right module U , and then it follows
that Im(φ) is n-weak projective.

(2) =⇒ (3) Let M be a right R-module. Then, there exists an exact
sequence 0 → K → P → M → 0 of right R-modules , where P
is projective. If K is n-weak projective, then r.n.scop.gldim(R) ≤ 1.
So, we show that K is n-weak projective. If φ : K → N is an n-
weak projective preenvelope, then φ is injective. So similar to proof of
(2) =⇒ (1), we get that K is n-weak projective.

(3) =⇒ (1) Let φ : N → M be an n-weak projective preenve-
lope. Then by Theorem 2.10, the exact sequence 0 → Im(φ) →
M → Coker(φ) → 0 implies that Im(φ) is n-weak projective, and
so N → Im(φ) is an epic n-weak projective preenvelope of N . �

Corollary 2.12. For every exact sequence 0 → A → B → C →
0 of right R-modules, A is n-weak projective if B and C are n-weak
projective.

Proof. Let U be an n-super finitely copresented right R-module. Then
by Theorem 2.10(2), we have: 0 = Extn+1

R (B,U) → Extn+1
R (A,U) →
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Extn+2
R (C,U) = 0, sinceB and C are n-weak projective. So Extn+1

R (A,U)
= 0, and hence A is n-weak projective. �

Corollary 2.13. Let M be a right R-module. Then, M is n-weak
projective if and only if every super copure epimorphic image and super
copure submodule of M is n-weak projective.

Proof. (=⇒) Let N be a super copure submodule of n-weak projective
right R-module M . Then, the exact sequence 0→ N → M → M

N
→ 0

is special super copure. So by Proposition 2.7, M
N

is n-weak projective
and hence by Corollary 2.12, N is n-weak projective.

(⇐=) is clear. �

The (n, 0)-projective dimension of a right module M is defined by
(n, 0).pdR(M)=inf{k : Extk+1

R (M,U) = 0 for every n-copresented U}.
Also, the (n, 0)-projective global dimension of a ring R is defined by
r.(n, 0).dim(R)=sup{(n, 0).pdR(M) | M is a right R-module}, see
[20, Definition 2.8].

Corollary 2.14. If R is a n-cocoherent ring, then l.n.scop.gldim(R) =
r.(n, 0).dim(R).

Proof. is clear. �

A ring R is called a right V -ring if every simple right R-module
is injective. A ring R is called right hereditary if every submodule
of a projective right R-module is projective. A right R-module N is
called (1, 0)-projective if Ext1R(N,U) = 0 for every finitely copresented
right R-module U . A ring R is called right cosemihereditary if every
submodule of a projective right R-module is (1, 0)-projective, see [20,
Definitions 2.2 and 3.6]. It is clear that hereditary rings are cosemi-
hereditary.

Example 2.15. Let R be a cosemihereditary ring but not V -ring, for
example hereditary ring R = k[X] where k is field. Then by [20, Theo-
rem 3.9], there exists an R-module which is not (1, 0)-projective. But,
R is cocoherent by [20, Theorem 3.7]. So, every finitely cogenerated is
finitely copresented and hence everyR-module is (n, 0)-projective if and
only if n-weak projective. Therefore, there exists an R-module which
is not 1-weak projective. Also by [20, Theorem 3.7], r.(1, 0).dimR ≤ 1.
So, (1, 0).pdR(M) ≤ 1 for any right R-module M . Hence by Corol-
lary 2.14, l.1.scop.gldim(R) ≤ 1. So by Theorem 2.10, there is an
exact sequence 0 → P1 → P0 → M → 0 of right modules, where P0

and P1 are 1-weak projective. If U is a 2-super finitely copresented
right module, then Ext2R(P1, U) = 0, since every 2-super finitely cop-
resented right module is 1-super finitely copresented. Therefore from
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Ext2R(P1, U) ∼= Ext3R(M,U) we get that every right R-module M is
2-weak projective.

Before the next results, we first introduce the following symbols and
definitions given in [10, 19].

For every class X of right R-modules, denote the classes
X⊥ = {Y ∈Mod-R : Ext1R(X, Y ) = 0 for all X ∈ X}

and
⊥X = {Y ∈Mod-R : Ext1R(Y,X) = 0 for all X ∈ X}.

Given two classes of right R-modules F and C, then we say that
(F , C) is a cotorsion theory in Mod-R if F⊥ = C and F = ⊥C. A
cotorsion theory (F , C) is called hereditary if whenever 0 → F

′ →
F → F

′′ → 0 is exact in Mod-R with F, F
′′ ∈ F then F

′
is also in F .

A duality pair over a ring R is a pair (F , C), where F is a class of
right (resp. left) R-modules and C is a class of left (resp. right) R-
modules, subject to the following conditions: (1) For any module F ,
one has F ∈ F if and only if F ∗ ∈ C. (2) C is closed under direct
summands and finite direct sums.

A duality pair (F , C) is called (co)product-closed if the class of F
is closed under direct (co)products, and a duality pair (F , C) is called
perfect if it is coproduct-closed, F is closed under extensions and R
belongs to F .

Theorem 2.16. The pair (WPn(R), WPn(R)⊥) is hereditary cotor-
sion theory.

Proof. Note that we have to show that ⊥(WPn(R)⊥) =WPn(R). Let
Kn−1 be a special super finitely copresented with respect to any n-super
finitely copresented right R-module U and M ∈ ⊥(WPn(R)⊥). Then,
Kn−1 ∈ WPn(R)⊥. Therefore, Ext1R(M,Kn−1) = 0 and consequently
by Theorem 2.10, M is n-weak projective, and hence M ∈ WPn(R).
Let 0 → F

′ → F → F
′′ → 0 be a exact sequence of modules right

R-modules, where F and F
′′

are n-weak projective. Then by Corollary
2.12, F

′
is n-weak projective. So, it follows that (WPn(R),WPn(R)⊥)

is a hereditary cotorsion theory. �

We denote (WPn(R))∗ = {M∗ | M ∈ WPn(R)}. The following
lemma shows the connection between n-weak projective and n-weak
injective modules.

Lemma 2.17. Let R be a ring.

(1) If U is an n-super finitely presented left R-module, then U∗ is
an n-super finitely copresented right R-module.

(2) (WPn(R))∗ ⊆ WIn(R).
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Proof. (1) Let U be an n-super finitely presented left R-module. Then,
there exists an exact sequence

· · · −→ Fn −→ Fn−1 −→ · · · −→ F0 −→ U −→ 0

of projective left R-modules with each Fi is finitely generated and pro-
jective for any i ≥ n. So by [14, Lemma 3.53], there is an exact
sequence

0 −→ U∗ −→ F ∗0 −→ · · · −→ F ∗n−1 −→ F ∗n −→ · · ·
of right R-modules. It suffices to show that every F ∗i is injective for
any i ≥ 0 and also, every F ∗i is finitely cogenerated for any i ≥ n. It
is clear that any F ∗i is finitely cogenerated for any i ≥ n. So, we prove
that every F ∗i is injective, too. Consider the short exact sequence
0 → A → B → C → 0 of right R-modules. Then, there exists the
following commutative diagram with the upper row exact:

0 // HomR(C,F ∗i )
//

∼=
��

HomR(B,F ∗i )
//

∼=
��

HomR(A,F ∗i )

∼=
��

0 // HomR(Fi, C
∗) // HomR(Fi, B

∗) // HomR(Fi, A
∗) −→ 0

So, Ext1R(C,F ∗i ) = 0 and hence any F ∗i is injective.
(2) By [1, Definition 2.1], let 0 → Kn−1 → Pn−1 → Kn → 0 be a

special super short exact sequence of left R-modules with respect to
any n-super finitely presented left R-module U . Then by (1), K∗n−1
is special super finitely copresented right R-module. So if M is n-
weak projective right R-module, then similar to the proof (1), 0 =
Ext1R(M,K∗n−1)

∼= Ext1R(Kn−1,M
∗). On the other hand by [1, Remark

2.3], Extn+1
R (U,M∗) ∼= Ext1R(Kn−1,M

∗). Therefore by [1, Definition
2.2], M∗ is an n-weak injective left R-module, and then we conclude
that (WPn(R))∗ ⊆ WIn(R). �

Also, as for the classical projective notion, the class WPn(R) is
closed under direct limits.

Proposition 2.18. Let R be a graded ring. Then, the class WPn(R)
is closed under direct limits.

Proof. Let U be an n-super finitely copresented right module and let
{Mi}i∈I be a family of n-weak projective right modules . Then,

Extn+1
R (lim

−→
Mi, U) ∼= Ext1R(lim

−→
Mi, K

n−1) ∼= lim
←−

Ext1R(Mi, K
n−1) ∼=

lim
←−

Extn+1
R (Mi, U),

where Kn−1 is special super finitely copresented. �
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In the following theorem, by using the previous results, we present
some equivalent characterizations to that each right R-module is n-
weak projective.

Theorem 2.19. Let R be a ring . Then, the following statements are
equivalent:

(1) Every right R-module is n-weak projective.
(2) id(U) ≤ n − 1 for any n-super finitely copresented right R-

module U .
(3) Every special super finitely copresented right R-module is injec-

tive.
(4) (WPn(R),WPn(R)⊥) is perfect hereditary cotorsion and N has

an n-weak projective cover with the unique mapping property for
any N ∈ WPn(R)⊥.

(5) N is injective for any N ∈ WPn(R)⊥.
(6) Every right R-module has an n-weak projective cover with the

unique mapping property.
(7) R-module N is n-weak projective for any N ∈ WPn(R)⊥.

Proof. (1) =⇒ (2), (2) =⇒ (3) and (3) =⇒ (1) are clear by Proposition
2.7.

(1) =⇒ (5) and (5) =⇒ (3) are obvious.
(1) =⇒ (6) Frist, we show that the class WPn(R) is covering. If

M ∈ WPn(R), then by Lemma 2.17, M∗ ∈ WIn(R). Contrary, if
M∗ ∈ WIn(R), then [1, Proposition 2.6] implies that M is an n-weak
flat right R-module, and hence by (1), M ∈ WPn(R). On the other
hands, the class WIn(R) is closed under direct summands and direct
sums by [1, Proposition 2.10 ]. So, we obtain that (WPn(R),WIn(R))
is a duality pair. Also By (1), it follows that the class WPn(R) is
closed under copure submodules, copure quotients and copure exten-
sions. Therefore by Proposition 2.18 and [11, Theorem 3.1], the class
WPn(R) is covering and hence by hypothesis, (6) follows.

(6) =⇒ (1) Let N be a right R-module. Then there is a commutative
diagram with exact rows:

M
′

αφ
��

φ

~~

0

  
0 // K

α //

��

M
ψ // N // 0

0
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where,ψ and φ are n-weak projective cover with the unique mapping
property. Since ψαφ = 0 = ψ, we have αφ = 0 by (7). Therefore,
K = im(φ) ⊆ ker(α) = 0 and so K = 0. Thus N ∼= M and hence every
right module N is n-weak projective.

(1) =⇒ (7) By hypothesis, N is n-weak projective for any N ∈
WPn(R)⊥.

(7) =⇒ (3) Cosider the special super short exact sequence 0 →
Kn−1 → En−1 → Kn → 0 of right R-modules with respect to any n-
super finitely copresented right module U , where Kn−1 is super finitely
copresented and Kn is super finitely cogenerated. But Kn is super
finitely copresented, too. Thus Kn ∈ WPn(R)⊥ and consequently
0 = Extn+1

R (Kn, U) ∼= Ext1R(Kn, Kn−1), since Kn is n-weak projective
by (7). Therefore, the special super short exact sequence 0→ Kn−1 →
En−1 → Kn → 0 is split and we deduce that Kn−1 is injective.

(4) =⇒ (7) Let N ∈ WPn(R)⊥. If φ : M → N is an n-weak projec-
tive cover with the unique mapping property, then kerφ ∈ WPn(R)⊥.
Thus, similar to the proof of (6) =⇒ (1), we get that N is n-weak
projective.

(7) =⇒ (4) By Theorem 2.16, (WPn(R),WPn(R)⊥) is hereditary
cotorsion theory. Also R ∈ WPn(R) and by Corollary 2.18 and (7) =⇒
(3) =⇒ (1),WPn(R) is closed under direct sum and extensions. There-
fore, we deduce that (WPn(R),WPn(R)⊥) is a perfect hereditary co-
torsion theory. If N is n-weak projective for any N ∈ WPn(R)⊥,
then it is clear that N has an n-weak projective cover with the unique
mapping property. �
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