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CLASSICAL AND STRONGLY CLASSICAL
n-ABSORBING SECOND SUBMODULES

S. KHOJASTEH ∗

Abstract. Let R be a commutative ring with identity and M be
an R-module. The main purpose of this paper is to introduce and
investigate the notion of classical and strongly classical n-absorbing
second submodules as a dual notion of classical n-absorbing sub-
modules. We obtain some basic properties of these classes of mod-
ules.

1. Introduction
Throughout this paper, R is a commutative ring with identity. Let

M be an R-module. A proper submodule P of M is said to be prime
if for any r ∈ R and m ∈ M with rm ∈ P , we have m ∈ P or
r ∈ (P :R M) [13]. A non-zero submodule S of M is said to be second
if for each a ∈ R, the endomorphism of M given by multiplication by
a is is either surjective or zero [19]. A proper submodule N of M is
said to be completely irreducible if N =

⋂
i∈I Ni, where {Ni}i∈I is a

family of submodules of M , implies that N = Ni for some i ∈ I. It is
easy to see that every submodule of M is an intersection of completely
irreducible submodules of M [14].

Let n ≥ 2 be a positive integer. The concept of 2-absorbing ideals
was introduced in [9] and then extended to n-absorbing ideals in [1].
Also, one can see a kind of generalization of 2-absorbing ideals in
[15]. A proper ideal I is called an n-absorbing ideal of R if whenever
x1 . . . xn+1 ∈ I for x1, . . . , xn+1 ∈ R, then there are n of xi’s whose their
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product is in I. A proper submodule N of M is called n-absorbing sub-
module of M if whenever a1 . . . anm ∈ N for a1, . . . , an ∈ R and m ∈M ,
then either a1 . . . an ∈ (N :R M) or there are n− 1 of ai’s whose their
product with m is in N [12]. In [17], the authors introduced the notion
of classical n-absorbing submodules as a generalization of n-absorbing
submodules and studied some properties of this class of modules. A
proper submodule N of M is called classical n-absorbing submodule if
whenever a1, . . . , an+1 ∈ R and m ∈ M with a1 . . . an+1m ∈ N , then
there are n of ai’s whose their product with m is in N . The authors
in [7], introduced and studied the concept of n-absorbing second and
strongly n-absorbing second submodules as dual notion of n-absorbing
submodules. A non-zero submoduleN ofM is said to be an n-absorbing
second submodule of M if whenever a1, . . . , an ∈ R, L is a completely
irreducible submodule of M , and a1 . . . anN ⊆ L, then there are n−1 of
ai’s whose their product withN is a subset of L or a1 . . . an ∈ AnnR(N).
Also, a non-zero submodule N of M is said to be a strongly n-absorbing
second submodule of M if whenever a1, . . . , an ∈ R, K is a submodule of
M , and a1 . . . anN ⊆ K, then there are n−1 of ai’s whose their product
with N is a subset of K or a1 . . . an ∈ AnnR(N). Also, in [2] classical
and strongly classical 2-absorbing second submodules was studied. A
non-zero submodule N is a classical 2-absorbing second submodule of
M if whenever a, b, c ∈ R, L is a completely irreducible submodule of
M , and abcN ⊆ L, then abN ⊆ L or acN ⊆ L or bcN ⊆ L. The
module M is a classical 2-absorbing second module if M is a classical
2-absorbing second submodule of itself. A non-zero submodule N of M
is a strongly classical 2-absorbing second submodule of M if whenever
a, b, c ∈ R, L1, L2, L3 are completely irreducible submodules of M , and
abcN ⊆ L1∩L2∩L3, then abN ⊆ L1∩L2∩L3 or acN ⊆ L1∩L2∩L3 or
bcN ⊆ L1∩L2∩L3. Also, M is a strongly classical 2-absorbing second
module if M is a strongly classical 2-absorbing second submodule of
itself.

The purpose of this paper is to introduce the concepts of classical and
strongly classical n-absorbing second submodules of an R-module M
as dual notion of classical n-absorbing submodules and provide some
information concerning these new classes of modules. Also, classical
n-absorbing (resp. strongly classical n-absorbing) second submodules
is a generalization of classical 2-absorbing (resp. strongly classical 2-
absorbing) second submodules. In this paper, we generalize some re-
sults given in [2].

2. Classical n-absorbing second submodules
We begin with the following remark.
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Remark 2.1. Let N and K be two submodules of an R-module M . To
prove N ⊆ K, it is enough to show that if L is a completely irreducible
submodule of M such that K ⊆ L, then N ⊆ L [6, Theorem 2.1].

The following definition is a generalization of [2, Definition 2.2].

Definition 2.2. Let N be a non-zero submodule of an R-module M .
We say that N is a classical n-absorbing second submodule of M if
whenever a1, . . . , an+1 ∈ R, L is a completely irreducible submodule of
M and a1a2 . . . an+1N ⊆ L, then there are n of ai’s whose product with
N is a subset of L. We say M is a classical n-absorbing second module
if M is a classical n-absorbing second submodule of itself.

Let t be a positive integer number, i ∈ {1, . . . , t}, a1, . . . , at ∈ R
and let I1, . . . , It be ideals of R. In the rest of this paper, we denote

by âi,t and Îi,t the product of all elements of {a1, . . . , at, 1} \ {ai} and
the product of all elements of {I1, . . . , It, R} \ {Ii}, respectively. For

abbreviation, we denote âi,n and Îi,n by âi and Îi, respectively.
There are interesting results in [2] on classical 2-absorbing second

submodules. We extend them for classical n-absorbing second sub-
modules in the next results.

Proposition 2.3. Let M be an R-module and N be a non-zero sub-
module of M . Then we have the following:

(a) If N is a classical n-absorbing second submodule of M , then N
is a classical m-absorbing second submodule of M , for every m ≥ n.

(b) If N is an n-absorbing second submodule of M , then N is a
classical n-absorbing second submodule of M .

(c) If N is a classical n-absorbing second submodule of M , then rN
is a classical n-absorbing second submodule of M , for every r ∈ R \
AnnR(N).

Proof. (a) It is clear.
(b) Let a1, . . . , an+1 ∈ R, L be a completely irreducible submodule

of M and let a1 . . . anan+1N ⊆ L. Then a1 . . . anN ⊆ (L :M an+1). We
note that by [8, Lemma 2.1], (L :M an+1) is a completely irreducible
submodule of M . Since N is an n-absorbing second submodule, either
a1 . . . anN = 0 or âiN ⊆ (L :M an+1), for some i, 1 ≤ i ≤ n. Hence
âi,n+1N ⊆ L, for some i, 1 ≤ i ≤ n+ 1 and the proof is complete.

(c) The proof is similar to the proof of previous part. �

Theorem 2.4. Let M be an R-module. Then N is a classical n-
absorbing second submodule of M if and only if (L :R N) is an n-
absorbing ideal of R, for every completely irreducible submodule L of
M with N * L.
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Proof. First, suppose that N is a classical n-absorbing second submod-
ule of M . Let a1 . . . an+1 ∈ (L :R N), for some a1, . . . , an+1 ∈ R. Then
a1 . . . an+1N ⊆ L. Since N is a classical n-absorbing second submodule
and L is a completely irreducible submodule of M , âi,n+1N ⊆ L, for
some i, 1 ≤ i ≤ n + 1. Hence âi,n+1 ∈ (L :R N) and so (L :R N) is an
n-absorbing ideal of R. The proof of converse is clear. �

We recall that an R-module M is said to be a cocyclic module if the
sum of all minimal submodules of M is a large and simple submodule
of M [20]. A submodule L of M is a completely irreducible submodule
of M if and only if M/L is a cocyclic R-module [14].

Corollary 2.5. Let N be a classical n-absorbing second submodule of
a cocyclic R-module M . Then AnnR(N) is an n-absorbing ideal of R.

Proof. This follows from Theorem 2.4, because (0) is a completely ir-
reducible submodule of M . �

Example 2.6. For every prime integer p, let M = Zp∞ as a Z-module
and Gt = 〈1/pt + Z〉, for t ∈ N. We know that AnnZGt = ptZ.
Consider t ≥ n + 1. Let a1 = · · · = an = p and an+1 = pt−n. Then
a1 . . . an+1 ∈ ptZ. On the other hand, we have ̂an+1,n+1 = pn /∈ ptZ and
âi,n+1 = pt−1 /∈ ptZ, for every i, 1 ≤ i ≤ n. This implies that ptZ is
not n-absorbing ideal of Z, for every t ≥ n + 1. Hence by Corollary
2.5, Gt is not classical n-absorbing second submodule of M , for every
t ≥ n+ 1. In the next section, we study the case that t ≤ n.

Proposition 2.7. Let M be an R-module and let Ni be a classical ni-
absorbing second submodule of M , for i = 1, . . . ,m. Then

∑m
i=1Ni is

a classical n-absorbing second submodule of M , where n ≥
∑m

i=1 ni.

Proof. Let a1, . . . , an+1 ∈ R and let L be a completely irreducible
submodule of M such that a1 . . . an+1

∑m
i=1Ni ⊆ L. Since Ni is a

classical ni-absorbing second submodule of M , there exists a subset
{ti1 , . . . , tini

} of {1, . . . , n+1} such that ati1 . . . atini
Ni ⊆ L, for every i,

1 ≤ i ≤ m. Since n ≥
∑m

i=1 ni, {1, . . . , n+ 1} \
⋃m

i=1{ti1 , . . . , tini
} 6= ∅.

Let s ∈ {1, . . . , n + 1} \
⋃m

i=1{ti1 , . . . , tini
}. It is not hard to see that

âs,n+1Ni ⊆ L, for every i, 1 ≤ i ≤ m. Hence âs,n+1

∑m
i=1Ni ⊆

L. Therefore
∑m

i=1Ni is a classical n-absorbing second submodule of
M . �

A commutative ring R is said to be a u-ring provided R has the
property that an ideal contained in a finite union of ideals must be
contained in one of those ideals. A um-ring is a ringR with the property
that an R-module which is equal to a finite union of submodules must
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be equal to one of them [18]. Now, we would like to study the classical
n-absorbing second submodules, where R is a u-ring. First, we need
the following lemma.

Lemma 2.8. Let R be a u-ring, M be an R-module, N be a non-zero
submodule of M , n ≥ 3 and let j be a positive integer number with
j ∈ {1, . . . , n − 2}. Then (a) ⇒ (b) and (a) ⇒ (c), where (a), (b) and
(c) are the following conditions:

(a) For every a1, . . . , an−j ∈ R, every ideals I1, . . . , Ij of R, and sub-
module K of M with a1a2 . . . an−jI1 . . . IjN * K, (K :R a1 . . . an−jI1 . . .

IjN) = (
⋃n−j

i=1 (K :R âi,n−jI1 . . . IjN)) ∪ (
⋃j

i=1(K :R a1 . . . an−j Îi,jN)).
(b) For every a1, . . . , an−j−1 ∈ R, every ideals I1, . . . , Ij+1 of R,

and submodule K of M with a1a2 . . . an−j−1I1 . . . Ij+1N * K, (K :R
a1 . . . an−j−1I1 . . . Ij+1N) = (

⋃n−j−1
i=1 (K :R âi,n−j−1I1 . . . Ij+1N))∪(

⋃j+1
i=1

(K :R a1 . . . an−j−1Îi,j+1N)).
(c) For every a1 ∈ R, every ideals I1, . . . , In−1 of R, and submodule

K of M with a1I1 . . . In−1N * K, (K :R a1I1 . . . In−1N) = (K :R

I1 . . . In−1N) ∪ (
⋃n−1

i=1 (K :R a1Îi,n−1N)).

Proof. (a)⇒ (b) For every a1, . . . , an−j ∈ R, every ideals I1, . . . , Ij+1 of
R, and submodule K of M with a1a2 . . . an−j−1I1 . . . Ij+1N * K, sup-
pose that an−j ∈ (K :R a1 . . . an−j−1I1 . . . Ij+1N). Then a1 . . . an−jI1 . . .
Ij+1N ⊆ K and so Ij+1 ⊆ (K :R a1 . . . an−jI1 . . . IjN). By part (a),

we find that if a1a2 . . . an−jI1 . . . IjN * K, then Ij+1 ⊆ (
⋃n−j

i=1 (K :R
âi,n−jI1 . . . IjN))∪ (

⋃j
i=1(K :R a1 . . . an−j Îi,jN)). Therefore either a1a2

. . . an−jI1 . . . IjN ⊆ K or Ij+1 ⊆ (
⋃n−j

i=1 (K :R âi,n−jI1 . . . IjN)) ∪
(
⋃j

i=1(K :R a1 . . . an−j Îi,jN)). As R is a u-ring, Ij+1 ⊆ (
⋃n−j

i=1 (K :R
âi,n−jI1 . . . IjN))∪(

⋃j
i=1(K :R a1 . . . an−j Îi,jN)) and an−j ∈ (

⋃n−j−1
i=1 (K :R

âi,n−j−1I1 . . . Ij+1N)) ∪ (
⋃j

i=1(K :R a1 . . . an−j−1Îi,j+1N)) are equiva-
lent, because a1a2 . . . an−j−1I1 . . . Ij+1N * K. Now, we have either

a1a2 . . . an−jI1 . . . IjN ⊆ K or an−j ∈ (
⋃n−j−1

i=1 (K :R âi,n−j−1I1 . . . Ij+1N))∪
(
⋃j

i=1(K :R a1 . . . an−j−1Îi,j+1N)) which implies that an−j ∈ (
⋃n−j−1

i=1 (K :R

âi,n−j−1I1 . . . Ij+1N)) ∪ (
⋃j+1

i=1 (K :R a1 . . . an−j−1Îi,j+1N)). Therefore

(K :R a1 . . . an−j−1I1 . . . Ij+1N) ⊆ (
⋃n−j−1

i=1 (K :R âi,n−j−1I1 . . . Ij+1N))∪
(
⋃j+1

i=1 (K :R a1 . . . an−j−1Îi,j+1N)). Hence part (b) holds because the re-
verse inclusion is clear.

(a)⇒ (c) This is clear by repeating (a)⇒ (b), n− j − 1 times. �

A proper ideal I is a strongly n-absorbing ideal of R if whenever
I1 . . . In+1 ⊆ I for ideals I1, . . . , In+1 of R then there are n of the Ii’s
whose their product is in I [1]. Clearly a strongly n-absorbing ideal of
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R is also an n-absorbing ideal of R. Anderson and Badawi conjectured
that these two concepts are equivalent, e.g., they proved that an ideal
I of a Prüfer domain R is strongly n-absorbing if and only if I is an
n-absorbing ideal of R [1, Corollary 6.9]. Now, we are in a position to
prove one of the main results.

Theorem 2.9. Let R be a u-ring, M be an R-module and let N be a
non-zero submodule of M . Then the following statements are equiva-
lent:

(a) N is a classical n-absorbing second submodule of M ;
(b) For every a1, . . . , an ∈ R and completely irreducible submodule L

of M with a1a2 . . . anN * L, (L :R a1a2 . . . anN) =
⋃n

i=1(L :R âiN);
(c) For every a1, . . . , an ∈ R and completely irreducible submodule

L of M with a1a2 . . . anN * L, (L :R a1a2 . . . anN) = (L :R âiN), for
some i, 1 ≤ i ≤ n;

(d) For every a1, . . . , an ∈ R, every ideal I of R, and completely irre-
ducible submodule L of M with a1a2 . . . anIN ⊆ L, either a1a2 . . . anN ⊆
L or âiIN ⊆ L, for some i, 1 ≤ i ≤ n;

(e) For every a1, . . . , an−1 ∈ R and for ideal I of R and completely
irreducible submodule L of M with a1 . . . an−1IN * L, either (L :R
a1 . . . an−1IN) = (L :R a1 . . . an−1N) or (L :R a1 . . . an−1IN) = (L :R
âi,n−1IN), for some i, 1 ≤ i ≤ n− 1;

(f) For every a1, . . . , an−1 ∈ R and for ideals I1, I2 of R and com-
pletely irreducible submodule L of M with a1 . . . an−1I1I2N ⊆ L, either
a1 . . . an−1I1N ⊆ L or a1 . . . an−1I2N ⊆ L or âi,n−1I1I2N ⊆ L, for some
i, 1 ≤ i ≤ n− 1;

(g) For ideals I1, . . . , In of R and completely irreducible submodule L

of M with I1I2 . . . InN * L, (L :R I1I2 . . . InN) = (L :R ÎiN), for some
i, 1 ≤ i ≤ n;

(h) For ideals I1, . . . , In+1 of R and completely irreducible submodule

L of M with I1I2 . . . In+1N ⊆ L, Îi,n+1N ⊆ L, for some i, 1 ≤ i ≤ n+1.
(i) For each completely irreducible submodule L of M with N * L,

(L :R N) is a strongly n-absorbing ideal of R.

Proof. (a) ⇒ (b) Let a ∈ (L :R a1a2 . . . anN). Then aa1a2 . . . anN ⊆
L. Since a1a2 . . . anN * L, and N is a classical n-absorbing second
submodule of M , we conclude that a ∈ (L :R âiN), for some i, 1 ≤ i ≤
n. Therefore (L :R a1a2 . . . anN) ⊆ (L :R â1N)∪(L :R â2N)∪. . .∪(L :R
ânN). This completes the proof because the reverse inclusion is clear.

(b)⇒ (c) This follows from the fact that R is a u-ring.
(c) ⇒ (d) Suppose that for some a1, . . . , an ∈ R, an ideal I of R,

and completely irreducible submodule L of M , a1a2 . . . anIN ⊆ L and
a1a2 . . . anN * L. This yields that I ⊆ (L :R a1 . . . anN). Now, by
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part (c), (L :R a1a2 . . . anN) = (L :R âiN), for some i, 1 ≤ i ≤ n. So,
I ⊆ (L :R âiN), for some i, 1 ≤ i ≤ n, as desired.

(d) ⇒ (e) ⇒ (f) The proofs are similar to that of the previous
implications.

(f) ⇒ (g) If n = 2, then we are done. So we may assume that
n ≥ 3. Let I1, . . . , In be ideals of R, L be a completely irreducible
submodule M with I1I2 . . . InN * L and let a1 ∈ (L :R I1I2 . . . InN).
By part (f) we find that part (a) of Lemma 2.8 is true for j = 1.
Therefore part (c) of Lemma 2.8 holds. So, for every a1 ∈ R every ideals
I1, . . . , In−1 we have that (L :R a1I1 . . . In−1N) = (L :R I1 . . . In−1N) ∪
(
⋃n−1

i=1 ((L :R a1Îi,n−1N))). In particular, suppose that a1I1 . . . InN ⊆ L
and I1 . . . InN * L. This shows that In ⊆ (L :R a1I1 . . . In−1N). Hence

In ⊆ (L :R I1 . . . In−1N) ∪ (
⋃n−1

i=1 ((L :R a1Îi,n−1N))). Since R is a u-

ring, either In ⊆ (L :R I1 . . . In−1N) or In ⊆ (L :R a1Îi,n−1N), for some

i, 1 ≤ i ≤ n − 1. Therefore either I1 . . . InN ⊆ L or a1Îi,n−1InN ⊆ L,
for some i, 1 ≤ i ≤ n − 1. As I1 . . . InN * L, (L :R I1I2 . . . InN) =

(L :R ÎiN), for some i, 1 ≤ i ≤ n. Hence part (g) holds.
(g)⇒ (h)⇒ (i) The proofs are clear.
(i)⇒ (a) It is clear by Theorem 2.4 and the fact that every strongly

n-absorbing ideal is an n-absorbing ideal. �

Proposition 2.10. Let N be a classical n-absorbing second submodule
of an R- module M . Then we have the following statements:

(a) If a ∈ R, then aiN = ai+1N , for all i ≥ n.
(b) If L is a completely irreducible submodule of M such that N * L,

then
√

(L :R N) is an n-absorbing ideal of R.

Proof. (a) It is enough to show that anN = an+1N . Clearly, an+1N ⊆
anN . Let L be a completely irreducible submodule of M such that
an+1N ⊆ L. Since N is a classical n-absorbing second submodule,
anN ⊆ L. Hence by Remark 2.1, anN ⊆ an+1N .

(b) Assume that a1 . . . an+1 ∈
√

(L :R N). Then there is a positive
integer t such that at1 . . . a

t
n+1N ⊆ L. Since N is a classical n-absorbing

second submodule of M , âi,n+1
t
N ⊆ L, for some i, 1 ≤ i ≤ n+ 1. This

implies that âi,n+1 ∈
√

(L :R N), for some i, 1 ≤ i ≤ n + 1 and the
proof is complete. �

Theorem 2.11. Let N be a submodule of an R-module M . Then we
have the following statements:

(a) If R is a u-ring and N is a classical n-absorbing second submodule
of M , then IN is a classical n-absorbing second submodule of M for
all ideals I of R with I * AnnR(N).
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(b) If R is a um-ring and N is a classical n-absorbing submodule of
M , then (N :M I) is a classical n-absorbing submodule of M for all
ideals I of R with I * (N :R M).

(c) Let f : M → M ′ be a monomorphism of R-modules. If N ′ is
a classical n-absorbing second submodule of f(M), then f−1(N ′) is a
classical n-absorbing second submodule of M .

Proof. (a) Let I be an ideal of R with I * AnnR(N). Since I *
AnnR(N), IN is a non-zero submodule of M . Let a1, . . . , an+1 ∈ R, L
be a completely irreducible submodule of M , and a1 . . . an+1IN ⊆ L.
Then by Theorem 2.9 (a) ⇒ (d), we find that a1a2 . . . anN ⊆ L or
âi,n+1IN ⊆ L, for some i, 1 ≤ i ≤ n. If âi,n+1IN ⊆ L, for some
i, then we are done. Also, if a1a2 . . . anN ⊆ L, then ̂an+1,n+1IN ⊆
a1a2 . . . anN ⊆ L. This completes the proof.

(b) The proof is clear with [17, Theorem 2.6].
(c) The proof is similar to that of [2, Theorem 2.9]. �

An R-module M is said to be a multiplication module if for every
submodule N of M there exists an ideal I of R such that N = IM
[10]. An R-module M is said to be a comultiplication module if for
every submodule N of M there exists an ideal I of R such that N =
(0 :M I), equivalently, for each submodule N of M , we have N = (0 :M
AnnR(N)) [5].

Corollary 2.12. Let M be an R-module. Then we have the following
statements:

(a) If R is a u-ring and M is a multiplication classical n-absorbing
second R-module, then every non-zero submodule of M is a classical
n-absorbing second submodule of M .

(b) If R is a um-ring, M is a comultiplication module and the zero
submodule of M is a classical n-absorbing submodule, then every proper
submodule of M is a classical n-absorbing submodule of M .

Proof. This follows from Theorem 2.11 parts (a) and (b). �

Proposition 2.13. Let M be an R-module and {Ki}i∈I be a chain
of classical n-absorbing second submodules of M . Then

∑
i∈I Ki is a

classical n-absorbing second submodule of M .

Proof. We use the technique of the proof of [2, Proposition 2.11]. Let
a1, . . . , an+1 ∈ R, L be a completely irreducible submodule of M , and
let a1 . . . an+1

∑
i∈I Ki ⊆ L. Assume that âi,n+1

∑
i∈I Ki * L, for

every i = 1, . . . , n. We prove that ̂an+1,n+1

∑
i∈I Ki ⊆ L. There are

t1, . . . , tn ∈ I, such that âi,n+1Kti * L, for every i = 1, . . . , n. Let
Kti ⊆ Kh, for every i = 1, . . . , n. Clearly, âi,n+1Kh * L, for every
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i = 1, . . . , n. Since Kh is a classical n-absorbing second submodules of
M , ̂an+1,n+1Kh ⊆ L. As {Ki}i∈I is a chain,

∑
i∈I Ki =

∑
Ki⊆Kh

Ki +∑
Kh⊂Ki

Ki = Kh +
∑

Kh⊂Ki
Ki. Let Kh′ ∈ {Ki}i∈I and Kh ⊂ Kh′ .

As we saw before, ̂an+1,n+1Kh′ ⊆ L and so ̂an+1,n+1

∑
i∈I Ki ⊆ L, as

needed. �

Definition 2.14. We say that a classical n-absorbing second submod-
ule N of an R-module M is a maximal classical n-absorbing second
submodule of a submodule K of M , if N ⊆ K and there does not exist a
classical n-absorbing second submodule T of M such that N ⊂ T ⊂ K.

Lemma 2.15. Let M be an R-module. Then every classical n-absorbing
second submodule of M is contained in a maximal classical n-absorbing
second submodule of M .

Proof. This is proved easily by Zorn’s Lemma and Proposition 2.13. �

Theorem 2.16. Let M be an Artinian R-module. Then every non-
zero submodule of M has only a finite number of maximal classical
n-absorbing second submodules.

Proof. We use the technique of the proof of [2, Theorem 2.14]. Suppose
that there exists a non-zero submodule N of M such that it has an
infinite number of maximal classical n-absorbing second submodules.
Let S be a submodule of M chosen minimal such that S has an infinite
number of maximal classical n-absorbing second submodules because
M is an Artinian R-module. Then S is not a classical n-absorbing
second submodule. Thus there exist a1, . . . , an+1 ∈ R and a completely
irreducible submodule L of M such that a1 . . . an+1S ⊆ L and âi,n+1S *
L, for every i, 1 ≤ i ≤ n+ 1. Let V be a maximal classical n-absorbing
second submodule of M contained in S. Then âi,n+1V ⊆ L, for some i,
1 ≤ i ≤ n+ 1. Therefore V ⊆ (L :M âi,n+1), for some i, 1 ≤ i ≤ n+ 1.
Hence V ⊆ (L :S âi,n+1), for some i, 1 ≤ i ≤ n + 1. By choice of S,
the module (L :S âi,n+1) has only finitely many maximal classical n-
absorbing second submodules, for every i = 1, . . . , n + 1. This implies
that there is only a finite number of possibilities for the module S, a
contradiction. �

3. Strongly classical n-absorbing second submodules
In this section, the notion of strongly classical n-absorbing submod-

ules is introduced and some of their basic properties are given. Most
of the results below are the same as ones in [2] when n = 2.
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Definition 3.1. Let N be a non-zero submodule of an R-module
M . We say that N is a strongly classical n-absorbing second sub-
module of M if whenever a1, . . . , an+1 ∈ R, L1, . . . , Ln+1 are com-
pletely irreducible submodules of M , and a1 . . . an+1N ⊆

⋂n+1
i=1 Li,

then âi,n+1N ⊆
⋂n+1

i=1 Li, for some i, 1 ≤ i ≤ n + 1. We say M is
a strongly classical n-absorbing second module if M is a strongly clas-
sical n-absorbing second submodule of itself.

Theorem 3.2. Let N be a submodule of an R-module M . Then N is a
strongly classical n-absorbing submodule of M if and only if (K :R N)
is an n-absorbing ideal of R, for each submodule K of M with N * K.

Proof. First, suppose that N is a strongly classical n-absorbing sub-
module of M . Let a1, . . . , an+1 ∈ R and let K be a submodule of M
with a1 . . . an+1N ⊆ K. By contradiction, suppose that âi,n+1N * K,
for every i, 1 ≤ i ≤ n + 1. There exist completely irreducible sub-
modules L1, . . . , Ln+1 of M such that K is a submodule of them and
âi,n+1N * Li, for every i, 1 ≤ i ≤ n + 1. Clearly, a1 . . . an+1N ⊆⋂n+1

i=1 Li. Since N is a strongly classical n-absorbing submodule of

M , âj,n+1N ⊆
⋂n+1

i=1 Li, for some j, 1 ≤ j ≤ n + 1. This shows that
âj,n+1N ⊆ Lj, for some j, 1 ≤ j ≤ n+1, which is a contradiction. Con-
versely, assume that (K :R N) is an n-absorbing ideal of R, for each
submodule K of M with N * K. Let a1, . . . , an+1 ∈ R, L1, . . . , Ln+1 be

completely irreducible submodule of M and let a1 . . . an+1N ⊆
⋂n+1

i=1 Li.

Then a1 . . . an+1 ∈ (K :R N), where K =
⋂n+1

i=1 Li. Since (K :R N) is
an n-absorbing ideal of R, âi,n+1 ∈ (K :R N), for some i, 1 ≤ i ≤ n+ 1
and the proof is complete. �

Remark 3.3. Let N be a non-zero submodule of an R-module M . By
the above theorem, N is a strongly classical n-absorbing second sub-
module of M if whenever a1, . . . , an+1 ∈ R, K is a submodules of M ,
and a1 . . . an+1N ⊆ K, then âi,n+1N ⊆ K, for some i, 1 ≤ i ≤ n+ 1.

Remark 3.4. Let N be a strongly classical n-absorbing second submod-
ule of an R-module M and let a1, . . . , an+1 ∈ R. Then a1 . . . an+1N ⊆
a1 . . . an+1N implies that âi,n+1N ⊆ a1 . . . an+1N , for some i, 1 ≤
i ≤ n + 1 by Theorem 3.2. Therefore âi,n+1N = a1 . . . an+1N , for
some i, 1 ≤ i ≤ n + 1. Hence we conclude that N is a strongly
classical n-absorbing second submodule of M if and only if for every
a1, . . . , an+1 ∈ R, a1 . . . an+1N = âi,n+1N , for some i, 1 ≤ i ≤ n + 1.
This yields that N is a strongly classical n-absorbing second submodule
of M if and only if N is a strongly classical n-absorbing second module.
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Example 3.5. By the above remark, we find that the Z-module Z has
no strongly classical n-absorbing second submodule.

Corollary 3.6. Let N be a non-zero submodule of an R-module M .
Then we have the following:

(a) If N is a strongly classical n-absorbing second submodule, then
N is a classical n-absorbing second submodule.

(b) If N is a strongly classical n-absorbing second submodule, then N
is a strongly classical m-absorbing second submodule, for every m ≥ n.

(c) If N is a strongly n-absorbing second submodule, then N is a
strongly classical n-absorbing second submodule.

(d) If N is a strongly classical n-absorbing second submodule of M ,
then rN is a strongly classical n-absorbing second submodule of M , for
every r ∈ R \ AnnR(N).

Proof. Parts (a) and (b) are clear.
(c) Let a1, . . . , an+1 ∈ R, K be a submodule ofM and let a1 . . . anan+1N ⊆

K. Then a1 . . . anN ⊆ (K :M an+1). Since N is a strongly n-absorbing
second submodule, either a1 . . . anN = 0 or âtN ⊆ (K :M an+1), for
some t, 1 ≤ t ≤ n. Hence ât,n+1N ⊆ K, for some t, 1 ≤ t ≤ n+ 1 and
the proof is complete.

(d) The proof is similar to the part (c). �

A non-zero submodule N of an R-module M is said to be a weakly
second submodule of M if a1a2N ⊆ K, where a1, a2 ∈ R and K is a
submodule of M , implies either a1N ⊆ K or a2N ⊆ K [6].

Proposition 3.7. Let M be an R-module and let Ni be a strongly
classical ni-absorbing second submodule of M , for i = 1, . . . ,m. Then∑m

i=1Ni is a strongly classical n-absorbing second submodule of M ,
where n ≥

∑m
i=1 ni. In particular, if N1, . . . , Nn are weakly second sub-

modules of M , then
∑n

i=1Ni is a strongly classical n-absorbing second
submodule of M .

Proof. Use Remark 3.3 and apply the proof of Proposition 2.7. �

In the next theorem, we argue about u-ring. Compare parts (a) and
(k) of the following result with Theorem 3.2.

Theorem 3.8. Let R be a u-ring, M be an R-module and let N be a
non-zero submodule of M . Then the following statements are equiva-
lent:

(a) N is strongly classical n-absorbing second submodule of M ;
(b) For every a1, . . . , an+1 ∈ R, K a submodule of M with a1 . . . anN ⊆

K, then âi,n+1N ⊆ K, for some i, 1 ≤ i ≤ n+ 1;
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(c) For every a1, . . . , an+1 ∈ R, a1 . . . an+1N = âi,n+1N , for some i,
1 ≤ i ≤ n+ 1;

(d) For every a1, . . . , an ∈ R, K a submodule of M with a1a2 . . . anN *
K, (K :R a1a2 . . . anN) =

⋃n
i=1(K :R âiN);

(e) For every a1, . . . , an ∈ R, K a submodule of M with a1a2 . . . anN *
K, (K :R a1a2 . . . anN) = (K :R âiN), for some i, 1 ≤ i ≤ n;

(f) For every a1, . . . , an ∈ R, every ideal I of R, and submodule K
of M with a1a2 . . . anIN ⊆ K, either a1a2 . . . anN ⊆ K or âiIN ⊆ K,
for some i, 1 ≤ i ≤ n;

(g) For every a1, . . . , an−1 ∈ R, every ideal I of R, and submodule K
of M with a1a2 . . . an−1IN * K, either (K :R a1 . . . an−1IN) = (K :R
a1 . . . an−1N) or (K :R a1 . . . an−1IN) = (K :R âi,n−1IN), for some i,
1 ≤ i ≤ n− 1;

(h) For every a ∈ R, ideals I1, . . . , In of R, and submodule K of M

with aI1 . . . InN ⊆ K, either I1 . . . InN ⊆ K or aÎiN ⊆ K, for some i,
1 ≤ i ≤ n;

(i) For ideals I1, . . . , In of R, and submodule K of M with I1 . . . InN *
K, (K :R I1 . . . InN) = (K :R ÎiN), for some i, 1 ≤ i ≤ n;

(j) For ideals I1, . . . , In+1 of R, and submodule K of M with I1 . . . In+1N ⊆
K, Îi,n+1N ⊆ K, for some i, 1 ≤ i ≤ n+ 1.

(k) For each submodule K of M with N * K, (K :R N) is a strongly
n-absorbing ideal of R.

Proof. (a)⇒ (b) The proof is clear by Theorem 3.2.
(b)⇒ (c) It is clear by Remark 3.4.
(c) ⇒ (d) Suppose that a ∈ (K :R a1 . . . anN). Then aa1 . . . anN ⊆

K. Since a1 . . . anN * K, aâiN ⊆ K, for some i, 1 ≤ i ≤ n. Hence
a ∈ (K :R âiN), as needed.

(d)⇒ (e) This follows from the fact that R is a u-ring.
(e)⇒ (f) Let for some a1, . . . an ∈ R, an ideal I of R and submodule

K of M , a1 . . . anIN ⊆ K. Then I ⊆ (K :R a1 . . . anN). If a1 . . . anN ⊆
K, then we are done. Otherwise, by part (e), we find that I ⊆ (K :R
âiN), for some i, 1 ≤ i ≤ n, as desired.

(f)⇒ (g) Trivial.
(g) ⇒ (h) By part (g) and Lemma 2.8, we have that for every

a ∈ R, every ideals I1, . . . , In−1 of R, and submodule K of M , ei-
ther aI1 . . . In−1N ⊆ K or (K :R aI1 . . . In−1N) = (K :R I1 . . . In−1N)∪
(
⋃n−1

i=1 (K :R aÎiN)). Now, let In be an ideal of R and aI1 . . . InN ⊆
K. Then either aI1 . . . In−1N ⊆ K or In ⊆ (K :R I1 . . . In−1N) ∪
(
⋃n−1

i=1 (K :R aÎi,n−1N)). Thus part (h) holds.
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(h) ⇒ (i) ⇒ (j) The proofs are similar to that of the previous
implications.

(j)⇒ (k) Trivial.
(k)⇒ (a) It is clear by Theorem 3.2 and the fact that every strongly

n-absorbing ideal is an n-absorbing ideal. �

Proposition 3.9. Let N be a strongly classical n-absorbing second
submodules of an R-module M . Then we have the following statements:

(a) If I is an ideal of R, then I iN = I i+1N , for all i ≥ n.

(b) If K is a submodule of M such that N * K, then
√

(K :R N) is
an n-absorbing ideal of R.

Proof. (a) It is enough to show that InN = In+1N . But it is clear by
Remark 3.4.

(b) The proof is similar to the proof of Proposition 2.10 part (b). �

Theorem 3.10. Let N be a submodule of an R-module M and let
f : M →M ′ be a monomorphism. Then we have the following:

(a) If N is a strongly classical n-absorbing second submodule of M ,
then f(N) is a strongly n-absorbing second submodule of M ′.

(b) If N ′ is a strongly classical n-absorbing second submodule of M ′,
then f−1(N ′) is a strongly classical n-absorbing second submodule of
M .

Proof. (a) Since N 6= 0 and f is a monomorphism, f(N) 6= 0. Let
a1 . . . an+1 ∈ R. By Remark 3.4, we have a1 . . . an+1N = âi,n+1N ,
for some i, 1 ≤ i ≤ n + 1. Thus a1 . . . an+1f(N) = f(a1 . . . an+1N) =
f(âi,n+1N) = âi,n+1f(N). This implies that f(N) is a strongly classical
n-absorbing submodule of M ′ by Remark 3.4.

(b) If f−1(N ′) = 0, then f(M) ∩ N ′ = ff−1(N ′) = f(0) = 0. Thus
N ′ = 0, a contradiction. Therefore f−1(N ′) 6= 0. Let a1, . . . , an+1 ∈ R,
K a submodule ofM and a1 . . . an+1f

−1(N ′) ⊆ K. Then a1 . . . an+1N
′ =

a1 . . . an+1(f(M) ∩ N ′) = a1 . . . an+1ff
−1(N ′) ⊆ f(K). Since N ′ is

a strongly classical n-absorbing second submodule of M ′, âi,n+1N
′ ⊆

f(K), for some i, 1 ≤ i ≤ n+1. Therefore âi,n+1f
−1(N ′) ⊆ f−1f(K) =

K. �

The following examples show that the two concepts of classical n-
absorbing submodules and strongly classical n-absorbing second sub-
modules are different in general.

Example 3.11. For every prime integer p, let M = Zp∞ as a Z-module
and Gt = 〈1/pt + Z〉, for t ∈ N. Consider t ≤ n. We prove that Gt is
a strongly classical n-absorbing second submodule of Zp∞ . By Remark
3.4, it is enough to show that for every a1, . . . , an+1 ∈ Z, a1 . . . an+1Gt =
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âi,n+1Gt, for some i, 1 ≤ i ≤ n + 1. We know that if (ai, p) = 1, for
some i, 1 ≤ i ≤ n+ 1, then aiGt = Gt. Hence a1 . . . an+1Gt = âi,n+1Gt.
Therefore we may assume that (ai, p) 6= 1, for every i, 1 ≤ i ≤ n + 1.
Then we have a1Gt ⊆ Gt−1, a1a2Gt ⊆ Gt−2, . . . , a1 . . . atGt = 0 and so
a1 . . . an+1Gt = 0. Since t ≤ n, ̂an+1,n+1Gt = 0 = a1 . . . an+1Gt. This
completes the proof.

We note that Gt is not a classical n-absorbing submodule of Zp∞ .
Because pn+1(1/pt+n+1 + Z) = 1/pt + Z ∈ Gt and pn(1/pt+n+1 + Z) =
1/pt+1 + Z /∈ Gt.

Example 3.12. Let p be a prime integer and let t ∈ {1, . . . , n}. The
submodule ptZ of the Z-module Z is classical n-absorbing submodule
which is not strongly classical n-absorbing second module.

Proposition 3.13. Let M be an R-module. Then we have the follow-
ing:

(a) Let R be a u-ring. If M is a comultiplication R-module and N
is a strongly classical n-absorbing second submodule of M , then N is a
strongly n-absorbing second submodule of M .

(b) If N is a strongly classical n-absorbing second submodule of M ,
then IN is a strongly classical n-absorbing second submodule of M for
all ideals I of R with I * AnnR(N).

(c) If M is a multiplication strongly classical n-absorbing second R-
module, then every non-zero submodule of M is a classical n-absorbing
second submodule of M .

(d) If M is a strongly classical n-absorbing second R-module, then
every non-zero homomorphic image of M is a classical n-absorbing
second R-module.

Proof. (a) By Theorem 3.8 part (k), AnnR(N) is a strongly n-absorbing
ideal of R. Now, the result follows from [7, Theorem 2.12].

(b) It is clear with Remark 3.4.
(c) This follows from part (b).
(d) It is clear with Remark 3.4. �

For a submodule N of an R-module M the second radical (or second
socle) of N is defined as the sum of all second submodules of M con-
tained in N and it is denoted by sec(N) (or soc(N)). In case N does
not contain any second submodule, the second radical of N is defined
to be (0) (see [11]).

Theorem 3.14. Let R be a Prüfer domain and let M be a finitely
generated comultiplication R-module. If N is a strongly classical n-
absorbing second submodule of M , then sec(N) is a strongly n-absorbing
second submodule of M .
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Proof. Let N be a strongly classical n-absorbing second submodule of
M . By Theorem 3.2, AnnR(N) is a n-absorbing ideal of R. Thus by [1,

Theorem 2.1],
√
AnnR(N) is an n-absorbing ideal ofR. By [3, Theorem

2.12], AnnR(sec(N)) =
√
AnnR(N). Therefore, AnnR(sec(N)) is an

n-absorbing ideal of R. Since R is a Prüfer domain, AnnR(sec(N)) is a
strongly n-absorbing ideal by [1, Corollary 6.9]. Now, the result follows
from [7, Theorem 2.12]. �

If N is a strongly classical n-absorbing second submodule of M for
some positive integer n, then wM(N) = min{n| N is strongly classical
n-absorbing second submodule of M }; otherwise, set wM(N) = ∞
(we will just write w(N) when the context is clear). Moreover, we
define wM(0) = 0. Therefore, for any submodule N of M , we have
wM(N) ∈ N ∪ {0,∞}, with wM(N) = 1 if and only if N is a weakly
second submodule of M and wM(N) = 0 if and only if N = 0. Then
wM(N) measures, in some sense, how far N is from being a weakly
second submodule of M .

Let Mi be an Ri-module for each i = 1, 2, . . . ,m and m ∈ N. Assume
that M = M1 × · · · ×Mm and R = R1 × · · · ×Rm. Then M is clearly
an R-module with componentwise addition and multiplication. Also,
each submodule of M is of the form N = N1 × · · · ×Nm where Ni is a
submodule of Mi. We are now ready for one of the main result of this
section.

Theorem 3.15. Let R = R1×· · ·×Rm (2 ≤ m <∞) be a decomposable
ring and M = M1× · · · ×Mm be an R-module where for every 1 ≤ i ≤
m, Mi is an Ri-module, respectively. Suppose that N = N1×· · ·×Nm is
a non-zero submodule of M . Then N is a strongly classical n-absorbing
second submodule of M if and only if one of the following conditions
holds:

(a) wMt(Nt) ≤ n, for some t ∈ {1, . . . ,m} and Ni = 0 for every
i ∈ {1, . . . ,m} \ {t};

(b) wMi
(Ni) ≤ n−1, for every i ∈ {1, . . . ,m}. Moreover,

∑m
i=1wMi

(Ni) ≤
n.

Proof. First, assume that N is a strongly classical n-absorbing second
submodule of M . Let A = {i|1 ≤ i ≤ m,Ni 6= 0} and let |A| = t. With
no loss of generality, we may assume that N1, . . . , Nt 6= 0. Consider
two following cases:
Case 1. |A| = 1. Then N = N1 × 0 × · · · × 0. Set M ′ = M1 ×
0 × · · · × 0. One can see that N is a strongly classical n-absorbing
second submodule of M ′. Also, it is clear that M ′ ∼= M1 and N ∼= N1.
Therefore part (a) holds.
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Case 2. |A| ≥ 2. We prove that N1 is a strongly classical n − 1-
absorbing second submodule of M1. Since N2 6= 0, there exists a
completely irreducible submodules L2 of M2 such that N2 * L2. Let
a1 . . . anN1 ⊆ K1, for some a1, . . . , an ∈ R1 and submodule K1 of M1,
αi = (ai, 1, 0, . . . , 0), for i = 1, . . . , n and let αn+1 = (1, 0, . . . , 0). Then
α1 . . . αn+1(N1 × · · · ×Nm) ⊆ K, where

K =

{
K1 × L2, if m = 2;
K1 × L2 ×M3 × · · · ×Mm, otherwise.

Therefore α̂s,n+1N ⊆ K, for some s, 1 ≤ s ≤ n+ 1. If s = n+ 1, then
we conclude that N2 ⊆ L2, a contradiction. Hence α̂s,n+1N ⊆ K, for
some s, 1 ≤ s ≤ n which shows that âsN1 ⊆ K1. Thus N1 is a strongly
classical n − 1-absorbing second submodule of M1. Similarly, we can
show that Ni is a strongly classical n− 1-absorbing second submodule
of Mi, for every i, 2 ≤ i ≤ t. Therefore wMi

(Ni) ≤ n − 1, for every
i ∈ {1, . . . ,m}.
Now, we prove that

∑m
i=1wMi

(Ni) ≤ n. Let wMi
(Ni) = ni, for i =

1, . . . ,m. Since wMi
(Ni) = ni > 0 for i = 1, . . . , t, there exist submod-

ules Ki of Mi, distinct elements a1, . . . , an1 ∈ R1, an1+1, . . . , an1+n2 ∈
R2, . . ., a(∑t−1

i=1 ni)+1, . . . , a
∑t

i=1 ni
∈ Rt such that the following t condi-

tions hold:

(1) a1 . . . an1N1 ⊆ K1 and a
(1)
s N1 * K1, for every s, 1 ≤ s ≤ n1 (

Here a
(1)
s is the product of all elements of {a1, . . . , an1 , 1} \ {as});

(2) an1+1 . . . an1+n2N2 ⊆ K2 and a
(2)
s N2 * K2, for every s, n1 + 1 ≤

s ≤ n1+n2 ( Here a
(2)
s is the product of all elements of {an1+1, . . . , an1+n2 , 1}\

{as});
...

(t) a(∑t−1
i=1 ni)+1 . . . a

∑t
i=1 ni

Nt ⊆ Kt and a
(t)
s Nt * Kt, for every s,( Here

a
(t)
s is the product of all elements of {a∑t−1

i=1 ni+1, . . . , a
∑t

i=1 ni
, 1}\{as}).

Let ej be a 1 ×m vector whose the j’th component is 1Rj
and other

components are 0 and let

βi =


aie1 +

∑
j 6=1 ej, if 1 ≤ i ≤ n1;

aie2 +
∑

j 6=2 ej, if n1 + 1 ≤ i ≤ n1 + n2;
...

...

aiet +
∑

j 6=t ej, if (
∑t−1

i=1 ni) + 1 ≤ i ≤
∑t

i=1 ni.
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It is not hard to see that β1 . . . β∑t
i=1 ni

(N1 × · · · ×Nm) ⊆ K, where

K =

{
K1 ×K2 × · · · ×Kt, if t = m;
K1 ×K2 × · · · ×Kt ×Mt+1 × · · · ×Mm, if t < m.

On the other hand, ̂βs,∑t
i=1 ni

(N1 × · · · × Nm) * K for all 1 ≤ s ≤∑t
i=1 ni. This yields that n ≥

∑t
i=1 ni. Therefore part (b) holds.

Conversely, assume that one of the conditions (a) and (b) holds. Let
N ′1 = N1×0×· · ·×0, M ′

1 = M1×0×· · ·×0, N ′2 = 0×N2×0×· · ·×0,
M ′

2 = 0 × M2 × 0 × · · · × 0,. . ., N ′m = 0 × · · · × 0 × Nm and let
M ′

m = 0 × · · · × 0 ×Mm. Clearly, N ′i
∼= Ni, M

′
i
∼= Mi, M ∼=

∑m
i=1M

′
i

and N ∼=
∑m

i=1N
′
i . Now, the result follows from Proposition 3.7 and

Theorem 3.10. �

Proposition 3.16. Let M be a non-zero R-module. Then we have the
following:

(a) If M is a finitely generated strongly classical n-absorbing second
R-module, then the zero submodule of M is a classical n-absorbing
submodule.

(b) If M is a multiplication strongly classical n-absorbing second R-
module, then the zero submodule of M is a classical n-absorbing sub-
module.

(c) Let R be a um-ring. If M is a Artinian R-module and the zero
submodule of M is a classical n-absorbing submodule, then M is a
strongly classical n-absorbing second R-module.

(d) Let R be a um-ring. If M is a comultiplication R-module and
the zero submodule of M is a classical n-absorbing submodule, then M
is a strongly classical n-absorbing second R-module.

Proof. (a) Let a1, . . . , an+1 ∈ R, m ∈ M , and a1 . . . an+1m = 0. By
Remark 3.4, we can assume that a1 . . . an+1M = a1 . . . anM . Since M
is finitely generated, by using [16, Theorem 76], AnnR(a1 . . . anM) +
Ran+1 = R. It follows that (0 :M a1 . . . an+1) = (0 :M a1 . . . an). This
implies that a1 . . . anm = 0, as needed.

(b) Use Remark 3.4 and the technique of [2, Theorem 3.11, part (b)].
(c) Let a1, . . . , an+1 ∈ R. Then by [17, Theorem 2.6], we can assume

that (0 :M a1 . . . an+1) = (0 :M a1 . . . an). Now, apply the proof of [2,
Theorem 3.11, part (c)] and Remark 3.4.

(d) Let a1, . . . , an+1 ∈ R. Then by [17, Theorem 2.6], we can assume
that (0 :M a1 . . . an+1) = (0 :M a1 . . . an). Now, the proof is similar to
[2, Theorem 3.11, part (d)]. �
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Proposition 3.17. Let M be an R-module and {Ki}i∈I be a chain of
strongly classical n-absorbing second submodules of M . Then

∑
i∈I Ki

is a strongly classical n-absorbing second submodule of M .

Proof. The proof is similar to the proof of Proposition 2.13. �

Definition 3.18. We say that a strongly classical n-absorbing second
submodule N of an R-module M is a maximal strongly classical n-
absorbing second submodule of a submodule K of M , if N ⊆ K and
there does not exist a strongly classical n-absorbing second submodule
T of M such that N ⊂ T ⊂ K.

Lemma 3.19. Let M be an R-module. Then every strongly classical
n-absorbing second submodule of M is contained in a maximal strongly
classical n-absorbing second submodule of M .

Proof. This is proved easily by Zorn’s Lemma and Proposition 3.17. �

Theorem 3.20. Let M be an Artinian R-module. Then every non-zero
submodule of M has only a finite number of maximal strongly classical
n-absorbing second submodules.

Proof. Use the technique of Theorem 2.16 and apply the above lemma.
�

Theorem 3.21. Let R be a um-ring and M be an R-module. If E is
an injective R-module and N is a classical n-absorbing submodule of
M such that HomR(M/N,E) 6= 0, then HomR(M/N,E) is a strongly
classical n-absorbing second R-module.

Proof. Use [17, Theorem 2.6] and apply the proof of [2, Theorem 3.21].
�

Theorem 3.22. Let M be a strongly classical n-absorbing second R-
module and F be a right exact linear covariant functor over the category
of R-modules. Then F (M) is a strongly classical n-absorbing second
R-module if F (M) 6= 0.

Proof. It is clear by [6, Lemma 3.14] and Remark 3.4. �

By previous theorem, we deduce the following result.

Corollary 3.23. Let M be an R-module, S be a multiplicative subset
of R and N be a strongly classical n-absorbing second submodule of
M . Then S−1N is a strongly classical n-absorbing second submodule
of S−1M if S−1N 6= 0.
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