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ε-ORTHOGONALITY PRESERVING PAIRS OF
MAPPINGS ON HILBERT C∗-MODULES

A. SAHLEH ∗ AND F. OLYANI NEZHAD

Abstract. Let A be a standard C∗-algebra. In this paper, we
will study the continuity of ε-orthogonality preserving mappings
between Hilbert A-modules. Moreover, we will show that a local
mapping between Hilbert A-modules is A-linear. Furthermore,
we will prove that for a pair of nonzero A-linear mappings T, S :
E −→ F , between Hilbert A-modules, satisfying ε-orthogonality
preserving property, there exists γ ∈ C,

‖〈T (x), S(y)〉 − γ〈x, y〉‖ ≤ ε‖T‖‖S‖‖x‖‖y‖, x, y ∈ E.
Our results generalize the known ones in the context of Hilbert
spaces.

1. Introduction

Let
(
H, (., .)

)
be an inner product space, two elements x, y ∈ H are

said to be orthogonal, and is denoted by x ⊥ y, if (x, y) = 0. For
two inner product spaces H and K, a mapping T : H −→ K is called
orthogonality preserving, OP in short, if it preserves orthogonality, that
is if

∀x, y ∈ H : x ⊥ y =⇒ T (x) ⊥ T (y)

By [4], for a pair of linear mappings T, S : H −→ K between inner
product spaces H and K. The following conditions are equivalent, for
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some γ ∈ K ∈ {R,C}:

1. ∀x, y ∈ H : x ⊥ y ⇒ T (x) ⊥ S(y),

2. ∀x, y ∈ H :
(
T (x), S(y)

)
= γ(x, y).

A generalization of the orthogonality notion, namely, approximately
orthogonality preserving mappings between inner product spaces was
considered in [2] and also studied in [11, 14]. Recall that for ε ∈ [0, 1)
two vectors x, y ∈ H are approximately orthogonal or ε-orthogonal,
denoted by x ⊥ε y, if |(x, y)| ≤ ε‖x‖‖y‖.

For (δ, ε) ∈ [0, 1), a map T : H −→ K between inner product spaces
H and K is called approximately orthogonality preserving, AOP in
short, or (δ, ε)-orthogonality preserving, if

∀x, y ∈ H : x ⊥δ y =⇒ T (x) ⊥ε T (y).

In particular, for δ = 0, the mapping T : H −→ K is said to be
ε-orthogonality preserving, ε-OP in short, if

∀x, y ∈ H : x ⊥ y =⇒ T (x) ⊥ε T (y).

For a pair of linear mappings T, S : H −→ K, an analoguse property

∀x, y ∈ H : x ⊥ y =⇒ T (x) ⊥ε S(y),

was characterized by Chmieliński et al in [3].
The notion of an inner product (respectively Hilbert) C∗-module

is a generalization of a complex inner product (respectively Hilbert)
space in which the inner product takes its values in a C∗-algebra rather
than in field of complex numbers. Let A be a C∗-algebra. Let E be
a complex linear space which is also algebric left Hilbert A-module
with compatible scalar multiplication (i.e., a(λx)=(λa)x=λ(ax) for all
x ∈ E, a ∈ A, λ ∈ C) equipped with an ”A-valued inner product”

A〈., .〉 such that the following conditions hold for all x, y, z ∈ E, a ∈ A
and α, β ∈ C:

(i) A〈αx+ βy, z〉 = α A〈x, z〉+ β A〈y, z〉,
(ii) A〈ax, y〉 = a A〈x, y〉,

(iii) A〈x, y〉∗ = A〈y, x〉,
(iv) A〈x, x〉 ≥ 0, and A〈x, x〉 = 0 if and only if x = 0.

If E is complete with respect to the induced norm by the A-valued
inner product, ‖x‖ = ‖A〈x, x〉‖

1
2 , x ∈ E, then E is called a left Hilbert

C∗-module over A or, simply a left Hilbert A-module (in the sequel,
we will omit the subscripts). Similarly, a right Hilbert C∗-module over
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the C∗-algebra A has been defined. Any C∗-algebra A is a Hilbert C∗-
module over itself via 〈a, b〉 = ab∗ (a, b ∈ A). Hence |x|2 = 〈x, x〉 = xx∗

for every x ∈ E, for more about Hilbert C∗-modules, see [7].
Two elements x, y in an inner product A-module (E, 〈., .〉) are said

to be orthogonal if 〈x, y〉 = 0 and, for a given ε ∈ [0, 1), they are
approximately orthogonal or ε-orthogonal if ‖〈x, y〉‖ ≤ ε‖x‖‖y‖. A
mapping T : E −→ F , where E and F are inner product A-modules, is
called ε-orthogonality preserving if 〈x, y〉 = 0 (where x, y ∈ E) implies
‖〈Tx, Ty〉‖ ≤ ε‖Tx‖‖Ty‖.

Throughout, F(H), K(H) and B(H) denote the space of finite rank
operators, the C∗-algebras of all compact operators and all bounded
operators on a Hilbert spaces H, respectively. We know that F(H) =
K(H), is an essential ideal of B(H), that is, for each b ∈ B(H), the
equality K(H) · b = 0 implies b = 0, see [12].

Recall that A is a standard C∗-algebra on a Hilbert space H if
K(H) ⊆ A ⊆ B(H).

It is natural to explore the approximately orthogonality preserving
mappings between inner product C∗-modules. For δ, ε ∈ [0, 1), ε-
orthogonality preserving and (δ, ε)-orthogonality preserving property
between Hilbert A-modules has been studied for a nonzero A-linear
mapping by D. Ilisevic and A. Turnsek [6] and Moslehian and Zamani
[10], respectively.

In [5], Frank et al proved that if a pair of nonzero local mappings
T, S : E −→ F between Hilbert A-modules are orthogonal preserving,
then there exists γ ∈ C such that

〈T (x), S(y)〉 = γ〈x, y〉, x, y ∈ E.

It is interesting to ask whether it is possible to consider ε-orthogonality
preserving property for two these mappings. In this paper, we study
ε-orthogonality preserving property for a pair of nonzero mappings in
the setting of Hilbert C∗-modules over standard C∗-algebra A. Then
we give the estimate of ‖〈T (x), S(y)〉 − γ〈x, y〉‖ for a pair of local ε-
orthogonality preserving mappings T, S : E −→ F when E and F are
Hilbert A-modules, where γ ∈ C.

We recall that, for a C∗-algebra A, a complex linear mapping T :
E −→ F between inner product A-modules E and F , is called local if

aT (x) = 0 whenever ax = 0, a ∈ A;x ∈ E.

2. Preliminaries

Let A be a C∗-algebra. A complex linear mapping T : E −→ F ,
where E and F are inner product A-modules, is called A-linear if
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T (ax) = aT (x) for all a ∈ A and x ∈ E. As example, linear differential
mappings are local mapping, see [13]. Note that every A-linear map-
ping is local. Conversely, every bounded local mapping is A-linear, see
[9, Proposition A.1].

Suppose that E and F are Hilbert A-modules. Let L(E,F ) to be
the set of all mappings T : E −→ F for which there is a mapping
T ∗ : F −→ E such that for all x ∈ E and y ∈ F ,

〈Tx, y〉 = 〈x, T ∗y〉.

By [7], L(E,F ) is called the set of all adjointable mappings from E to
F . Every element of L(E,F ) is a bounded A-linear, and in general, a
bounded A-linear mapping may fail to possess an adjoint, see [7]. But
each bounded K(H)-linear mapping on K(H)-modules is essentially
adjointable, see [1].

In the following we give some preliminaries about minimal projec-
tions in C∗-algebras and their role in our work.

Let ξ, η ∈ H be elements of a Hilbert space
(
H, (., .)

)
, the rank one

operator defined by [ξ ⊗ η]ζ = (ζ, η)ξ, where ζ ∈ H.
The operator ξ ⊗ ξ is rank one projection if and only if (ξ, ξ) = 1.

That is, for unit vector ξ, the operator ξ⊗ξ is the orthogonal projection
to the one dimensional subspace spanned by ξ.

Let T be an arbitrary bounded operator on
(
H, (., .)

)
, then

[ξ ⊗ ξ]T [ξ ⊗ ξ] = (Tξ, ξ)ξ ⊗ ξ.

Recall that a projection (i.e., a self-adjoint idempotent.) e in A is
called minimal if eAe = Ce. Hence, ξ ⊗ ξ is a minimal projection.

Let (E, 〈., .〉) be an inner product(respectively Hilbert) A-module,
and for a unit vector ξ ∈ H, let e = ξ ⊗ ξ be any minimal projection.
Then

Ee = {ex : x ∈ E} ,
is a complex inner product (respectively Hilbert) space contained in E
with respect to the inner product (x, y) = tr(〈x, y〉), x, y ∈ Ee.

Let x = eu, y = ev such that u, v ∈ E,

〈x, y〉 = e〈u, v〉e = [ξ ⊗ ξ]〈u, v〉[ξ ⊗ ξ] =
(
〈u, v〉ξ, ξ

)
[ξ ⊗ ξ],

by tr(〈x, y〉) =
(
〈u, v〉ξ, ξ

)
, thus

〈x, y〉 = (x, y)e.

Authors in [6] showed that:
1) two elements x, y ∈ Ee are orthogonal in

(
Ee, (·, ·)

)
if and only if

they are orthogonal in
(
E, 〈., .〉

)
,
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2) if x ∈ Ee, then ‖x‖Ee = ‖x‖E, where the norm ‖.‖Ee comes from
the inner product (·, ·),

3) if T : E → F between Hilbert A-modules E and F is an A-linear
OP (respectively ε-OP) mapping, then Te = T |Ee : Ee → Fe is a linear
OP (respectively ε-OP) mapping.

Lemma 2.1. Let L ∈ B(H), then

‖L‖ = sup {‖eLf‖ : e, f are rank one projections} .

3. ε-orthogonality-preserving A-linear and local pair of
mappings

In this section, we study ε-orthogonality preserving mappings be-
tween Hilbert A-modules. As mentioned in previous section, A is a
standard C∗-algebra on a Hilbert space H if K(H) ⊆ A ⊆ B(H).

To achieve our main result, Theorem 3.7, we give some results. First
we prove the continuity of ε-orthogonality-preserving nonzero pair of
A-linear mappings between Hilbert A-modules.

Theorem 3.1. [Chmieliński et al[3]]
For a given ε ∈ [0, 1), ε-orthogonality preserving property for two

nonzero linear mappings f and g between inner product spaces X and
Y , with the same inner product (., .), is equivalent to∣∣∣∣(f(x), g(y))− (f(y), g(x))

‖y‖2
(x, y)

∣∣∣∣ ≤ ε

∥∥∥∥f(x)− (x, y)

‖y‖2
f(y)

∥∥∥∥∥∥g(y)
∥∥,

for x, y ∈ X, y 6= 0.

As an immediate generalization, we give the next result in setting of
inner product A-modules. Let ε ∈ [0, 1), and let T, S : E −→ F be
pair of nonzero A-linear ε-orthogonality preserving mappings between
inner product A-modules E and F . Then Te, Se : Ee −→ Fe are pair
of nonzero linear ε-orthogonality preserving mappings between inner
product spaces Ee and Fe. Where e is a minimal projection in A.

Proposition 3.2. Let ε ∈ [0, 1), and let T, S : E −→ F be pair of
nonzero A-linear ε-orthogonality preserving mappings between inner
product A-modules E and F . Then for every minimal projection e ∈ A,
and for all x, y ∈ Ee,

‖〈y, y〉〈T (x), S(y)〉−〈x, y〉〈T (y), S(y)〉‖ ≤ ε‖〈y, y〉T (x)−〈x, y〉T (y)‖‖S(y)‖.

Consequently, Te, Se are a pair of nonzero linear ε-orthogonality pre-
serving mappings.
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Proof. Let e be a minimal projection of A, for all x, y ∈ Ee,

〈y, y〉x− 〈x, y〉y ⊥E y. (3.1)

By 〈x, y〉 = (x, y)e, we have〈
〈y, y〉x− 〈x, y〉y, y

〉
=

〈
(y, y)ex− (x, y)ey, y

〉
= (y, y)〈ex, y〉 − (x, y)〈ey, y〉.

For each x, y ∈ Ee, we have x = eu, y = ev such that u, v ∈ E. Then
ex = e2u and ey = e2v, since e is a projection, then ex = e2u = eu = x
and ey = e2v = ev = y.

Hence

(y, y)〈ex, y〉 − (x, y)〈ey, y〉 = (y, y)〈x, y〉 − (x, y)〈y, y〉
= (y, y)(x, y)e− (x, y)(y, y)e = 0.

The last equality holds, because the values of inner product (., .) are
C-valued, then they commute together. Thus (3.1) holds. Now, since
T, S are ε-orthogonality preserving mappings, then

T (〈y, y〉x− 〈x, y〉y) ⊥εF S(y).

Hence

‖〈y, y〉〈T (x), S(y)〉−〈x, y〉〈T (y), S(y)〉‖ ≤ ε‖〈y, y〉T (x)−〈x, y〉T (y)‖‖S(y)‖.

�

Before considering the continuity of two mappings T, S, we first state
the following lemma.

Lemma 3.3. Let E be a Hilbert A-module and x ∈ E. If ex = 0 for
all minimal projections in A, then x = 0.

Proof. Let e be an arbitrary minimal projection in A. Let ex = 0 for
all x ∈ E. Since 0 = 〈ex, x〉 = e〈x, x〉. On one side 〈x, x〉 is a positive
element in A, and on the other side, e = ξ ⊗ ξ, where ξ ∈ H is unit
vector, is a minimal projection, so for any h ∈ H and by setting ξ := h,
we get x = 0. �

Proposition 3.4. Let ε ∈ [0, 1), and let A has an approximate unit,
which contains finite combinations of minimal projections in A, and let
E and F be Hilbert A-modules, and e be an arbitrary minimal projec-
tion in A. Suppose that T, S : E −→ F are a pair of nonzero surjective
A-linear ε-orthogonality preserving mappings. Then T and S are con-
tinuous.
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Proof. We just prove T is continuous, for another mapping, it proves
similarly. Let {xn}∞n=1 be a nonzero sequence in E converges to zero,
and {T (xn)}∞n=1 converges to t ∈ F . We must show that t = 0. Let
(ei)i∈I be an approximate unit for A such that (ei)i∈I contains finite
combinations of minimal projections in A. Since eit → t, it is enough
to prove that et = 0 for all minimal projections e ∈ A. Let there exists
a minimal projection e ∈ A such that et 6= 0. Now, by surjectivity of
S, there exists y ∈ E such that S(y) = t. We have ey 6= 0.

Now, since a pair of A-linear mappings T, S are ε-orthogonality pre-
serving mappings, then by the Proposition 3.2, we have∥∥〈ey, ey〉〈T (exn),S(ey)〉 − 〈exn, ey〉〈T (ey), S(ey)〉

∥∥
≤ ε

∥∥〈ey, ey〉T (exn)− 〈exn, ey〉T (y)
∥∥∥∥S(ey)

∥∥.
Consequently, if n→∞, we have xn → 0 and T (xn)→ t, then

‖〈ey, ey〉〈et, eS(y)〉‖ ≤ ε‖〈ey, ey〉et‖‖eS(y)‖.

Since 〈ey, ey〉 = e〈y, y〉e = (〈y, y〉ξ, ξ)e for all minimal projections e =
ξ ⊗ ξ in A. Then∥∥(〈y, y〉ξ, ξ)e〈et, eS(y)〉

∥∥ ≤ ε
∥∥(〈y, y〉ξ, ξ)eet

∥∥∥∥eS(y)
∥∥

= ε
∥∥(〈y, y〉ξ, ξ)et

∥∥∥∥eS(y)
∥∥.

Therefore∣∣(〈y, y〉ξ, ξ)∣∣∥∥e〈et, eS(y)〉
∥∥ ≤ ε

∣∣(〈y, y〉ξ, ξ)∣∣∥∥et∥∥‖eS(y)‖.

Hence ∥∥〈e2t, eS(y)〉
∥∥ =

∥∥e〈et, eS(y)〉
∥∥ ≤ ε

∥∥et∥∥‖eS(y)‖.
Since e is a projection, then∥∥〈et, eS(y)〉

∥∥ ≤ ε
∥∥et∥∥‖eS(y)‖.

Now, by S(y) = t, we have

‖〈et, et〉‖ ≤ ε‖et‖‖et‖,

this implies et = 0, because ε < 1. Now, by Lemma 3.3 we have
t = 0. Therefore, the desired result is obtained. Thus by closed graph
theorem, T is continuous. �

In the following, we give a stability result in this context. Note that,
in Proposition 3.5 and Theorem 3.7, H is a complex Hilbert space.
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Proposition 3.5. Let ε ∈ [0, 1). Let A = K(H), and let E,F be
Hilbert A-modules. Suppose that T, S : E −→ F are a pair of nonzero
surjective A-linear ε-orthogonality preserving mappings. Then there
exists γ ∈ C such that

‖〈T (x), S(y)〉 − γ〈x, y〉‖ ≤ ε‖T‖‖S‖‖x‖‖y‖, x, y ∈ E.

Proof. Let e be a minimal projection in A. Since Te, Se are a pair of
ε-orthogonality preserving linear mappings from Ee into Fe. Then by
[3, Theorem 3.8], there exists γ ∈ C such that for each x, y ∈ Ee,

‖(Se)∗Te − γIe‖ ≤ ε‖Te‖‖Se‖. (3.2)

By [6, Proposition 3.3], ‖T‖ = ‖Te‖ and ‖S‖ = ‖Se‖. Then from (3.2),
we have

‖S∗T − γI‖ ≤ ε‖T‖‖S‖.
Now, since each bounded K(H)-linear mapping on K(H)-modules

is essentially adjointable, thus for two nonzero bounded K(H)-linear
mappings T, S : E −→ F and for all x, y ∈ E, we have

‖〈T (x), S(y)〉 − γ〈x, y〉‖ = ‖〈S∗T (x)− γx, y〉‖ ≤ ‖S∗T − γI‖‖x‖‖y‖
≤ ε‖T‖‖S‖‖x‖‖y‖.

�

As mentioned in previous section, in general, for any C
∗
-algebra A,

a local mapping on Hilbert A-modules is not A-linear.
In the following, for standard C∗-algebra A, we will show that a local

mapping between Hilbert A-modules is A-linear.
To achieve this goal, we use from [8, Lemma 3.1]. This lemma states

that if A is a C∗-algebra and A0 is ∗-algebra generated by all the
idempotents in A, and if T : E −→ F on Hilbert A-modules E and F
is a local mapping, then T is an A0-linear mapping.

Since the space generated by projections is subspace of space gener-
ated by idempotens, so we have the following proposition.

Proposition 3.6. Let T : E −→ F be a local mapping between Hilbert
A-modules E and F , then T : E −→ F is an A-linear mapping.

Proof. According to the above description, for each projection p ∈ A
and for all x ∈ E, we have T (px) = pT (x). As F(H) is linear spanned
of its projections, therefore T (sx) = sT (x) for all s ∈ F(H) and x ∈ E.

Now, for every x ∈ E, a ∈ A and s ∈ F(H), we have

s(T (ax)− aT (x)) = T (sax)− saT (x) = T (sax)− T (sax) = 0.
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Hence, if we set y = T (ax)− aT (x), we have F(H) · 〈y, y〉 = 0, and by

F(H) = K(H), then K(H) · 〈y, y〉 = 0. By K(H) is an essential ideal
in B(H), hence 〈y, y〉 = 0, Then we have y = 0, i.e., T (ax) = aT (x).
Therefore, T is an A-linear mapping. �

In Proposition 3.4, the boundedness of a pair of nonzero A-linear
mappings T, S : E −→ F over Hilbert A-modules is proved. Now, we
are in a position to give the main result.

Theorem 3.7. Let ε ∈ [0, 1), and let E and F be Hilbert A-modules.
Let T, S : E −→ F be a pair of nonzero surjective local ε-orthogonality
preserving mappings. Then there exists γ ∈ C such that

‖〈T (x), S(y)〉 − γ〈x, y〉‖ ≤ ε‖T‖‖S‖‖x‖‖y‖, x, y ∈ E.

Proof. Define T̃ , S̃ : K(H) · E −→ K(H) · F (both of K(H) · E and
K(H) · F being Hilbert K(H)-modules), where T̃ = T |K(H)·E and

S̃ = S |K(H)·E by T̃ (x) = eT (x) and S̃(y) = fS(y) for any rank one
projections e, f ∈ K(H), respectively.

Now, by previous proposition, T̃ , S̃ are a pair of bounded ε-orthogonality
preserving K(H)-linear mappings. Then by Proposition 3.5, there ex-
ists γ ∈ C such that for every x, y ∈ K(H) · E,

‖〈T̃ (x), S̃(y)〉 − γ〈x, y〉‖ ≤ ε‖T̃‖‖S̃‖‖x‖‖y‖.

Hence, for any x, y ∈ E and any rank one projections e, f ∈ K(H),

‖e〈T (x), S(y)〉f − γe〈x, y〉f‖ = ‖〈T̃ (ex), S̃(fy)〉 − γ〈ex, fy〉‖
≤ ε‖T̃‖‖S̃‖‖ex‖‖fy‖ ≤ ε‖T‖‖S‖‖e‖‖x‖‖f‖‖y‖.

Then for all x, y ∈ E and, all rank one projections e, f ∈ K(H),∥∥e(〈T (x), S(y)〉 − γ〈x, y〉
)
f
∥∥ ≤ ε‖T‖‖S‖‖x‖‖y‖,

We have (〈T (x), S(y)〉−γ〈x, y〉) ∈ A. On the other hand, by Lemma
2.1, for every L ∈ B(H),

‖L‖ = sup {‖eLf‖ : e, f are rank one projections} .

Thus, for all x, y ∈ E,

‖〈T (x), S(y)〉 − γ〈x, y〉‖ ≤ ε‖T‖‖S‖‖x‖‖y‖.

�
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