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Abstract. In this paper, a general class of fractional-order complex-valued bidirectional associative
memory neural network with time delay is considered. This neural network model contains an arbitrary
number of neurons, i.e. one neuron in the X-layer and other neurons in the Y-layer. Hopf bifurcation
analysis of this system will be discussed. Here, the number of neurons, i.e., n can be chosen arbitrarily.
We study Hopf bifurcation by taking the time delay as the bifurcation parameter. The critical value of
the time delay for the occurrence of Hopf bifurcation is determined. Moreover, we find two kinds of
appropriate Lyapunov functions that under some sufficient conditions, global stability of the system is
obtained. Finally, numerical examples are also presented.

Keywords: neural network, fractional ordinary differential equations, Hopf bifurcation, time delay, Lyapunov func-
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1 Introduction

Kosko, for the first time, introduced the bidirectional associative memory (BAM) neural networks. The
advantages of BAM neural networks are that they are able to store multiple patterns, but most of neural
networks have only one storage pattern or memory pattern. In fact, BAM neural networks can be applied
in storing paired patterns or memories. It should be point out that these kinds of networks are able to
search the desired patterns through both forward and backward directions [12]. It is well-known that
a great number of periodic solutions show multiple memory patterns and also, periodic solutions can
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be obtained from Hopf bifurcation in delayed differential equations. That is why the study of Hopf
bifurcation is very important in BAM neural networks. The dynamical behaviors of simplified forms
of BAM neural networks have been studied (see e.g., [3, 5, 10, 11, 20, 23–25]). In [23] a simplified tri-
neuron BAM neural network with two time delays and in [20,24,25] simplified delayed five-neuron and
six-neuron BAM neural networks have been considered. It should be noted that these models consist of
one neuron in the X-layer and other three, five or six neurons in the Y-layer. However, in [10, 11], the
authors studied a five-neuron model with two neurons in the X-layer.

It should be noted that there are a lot of papers on real-valued neural networks but a few on complex-
valued neural networks (CVNN). These kinds of networks have complex-valued state variables, connec-
tion weights and activation functions. In fact, complex states contain two different kinds of information.
Therefore, CVNNs can solve some problems that cannot be solved by their real-valued ones [8]. For
example, CVNNs have applications in filtering, image processing, speech synthesis and computer vi-
sion [1, 14, 16]. Because of the above mentioned applications, the dynamics of CVNNs have been also
studied. For example, in [7], the authors proposed several sufficient conditions to obtain the existence,
uniqueness and global asymptotic stability of delayed CVNNs with two classes of complex-valued acti-
vation functions.

Fractional calculus was first introduced more than three centuries ago. It has attracted the attention
of a lot of researchers and has been extensively applied in physics and engineering [2, 6, 15]. It is worth
noticing that using fractional-order differential equations for modeling neural networks has two main
advantages. First, it makes possible the description of the memory and hereditary properties of various
processes. The second one is that the fractional-order parameter is a powerful tool for the performance
of a system to have one more degree of freedom. In fact, the models of neural networks with fractional
derivatives have neurons with a fundamental and general computation ability. Then, it leads to efficient
information processing [13].

The dynamics of fractional-order BAM neural networks are also interesting for researchers. Because
of the importance of periodic solutions in fractional-order BAM neural networks, some researchers have
studied Hopf bifurcation in these systems. See for example [19, 21, 22]. In [17], stability and Hopf
bifurcation of a class of fractional-order complex-valued single neuron model with time delay was stud-
ied. The authors in [18], investigated the global asymptotic stability of impulsive fractional-order BAM
neural networks with time delay where the activation functions are real-valued. In fact, [18] is devoted
to presenting a sufficient criterion for asymptotic stability of fractional-order BAM neural networks. We
would like to point out that there have been a lot of works on dynamic analysis of integer-order CVNNs
but there are few works on the dynamical behavior of fractional-order CVNNs.

Here, in this paper, a general class of fractional-order complex-valued bidirectional associative mem-
ory neural network with time delay is studied. This model contains an arbitrary number of neurons, i.e.
one neuron in the X-layer and other neurons in the Y-layer. Here, the number of neurons i.e. n can be cho-
sen arbitrarily. To the best of our knowledge, this model has not been studied up to now. Hopf bifurcation
analysis of this system will be discussed and the associated characteristic equation is studied. To discuss
the model, we assume a set of new conditions. First, some preliminaries and model description are pre-
sented. Then, Hopf bifurcation is investigated and the critical value of the time delay for the occurrence
of Hopf bifurcation is determined. Moreover, we find two kinds of appropriate Lyapunov functions that
under some sufficient conditions, result in global asymptotic stability of the system. Finally, numerical
simulations are also given.
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2 Preliminaries

In this section, we state the definitions, methods and models that are needed for other sections. The
following two definitions have been stated in [15].

Definition 1. The Caputo fractional derivative with order q of a function f (t) is defined as

C
0 Dq

t f (t) =
1

Γ(n−q)

∫ t

0

f (n)(τ)
(t− τ)q−n+1 dτ. (1)

Definition 2. The Laplace transform of the Caputo fractional derivative is

L{C0 Dq
t f (t);s}= sqF(s)−

n−1

∑
k=0

sq−k−1 f k(0), n−1 < q≤ n, (2)

where F(s) is the Laplace transform of f (t), and f k(0), k = 0,1,2, . . . ,n− 1, are the initial conditions.
If f k(0) = 0, k = 0,1,2, . . . ,n−1, then

L{C0 Dq
t f (t);s}= sqF(s).

Consider the following linear fractional-order system with time delay:

C
0 Dq

t x(t) =−Ax(t)+Kx(t− τ), (3)

where A = (ai j)n×n, x(t) = (x1(t),x2(t), . . . ,xn(t))T , K = (ki j)n×n and

x(t− τ) = (x1(t− τ1),x2(t− τ2), . . . ,xn(t− τn))
T .

Taking Laplace transform on both sides of (3), we have

∆(s) =


sq− k11e−sτ1 +a11 −k12e−sτ2 +a12 . . . −k1ne−sτn +a1n

−k21e−sτ1 +a21 sq− k22e−sτ2 +a22 . . . −k2ne−sτn +a2n
...

...
. . .

...
−kn1e−sτ1 +an1 −kn2e−sτ2 +an2 . . . sq− knne−sτn +ann

 . (4)

By the distribution of the eigenvalues from det(∆(s)) = 0, the stability of the system can be determined.
Now, we state the delayed BAM neural network that is used for our model description. The delayed

BAM neural network is described by the following system:
ẋi(t)=−µixi(t)+

m

∑
j=1

c ji fi(y j(t− τ ji))+Ii, i =1,2, . . . ,n,

ẏ j(t)=−υ jy j(t)+
n

∑
i=1

di jg j(xi(t−σi j))+J j, j =1,2, . . . ,m,

(5)

where c ji and di j are the connection weights through the neurons in two layers: the X-layer and the
Y-layer. The stability of internal neuron processes on the X-layer and Y-layer are described by µi and
υ j, respectively. On the X-layer, the neurons whose states are denoted by xi(t) receive the input Ii and
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the inputs outputted by those neurons in the Y-layer via activation function fi, while the similar process
happens on the Y-layer. Also, τ ji and σi j correspond to the finite time delays of neural processing and
delivery of signals. For further details, see [12].

In [9], the following delayed BAM neural network model in general is considered: ẋ1(t) =−µ1x1(t)+
n−1

∑
j=1

c j1 f1(y j(t− τ2))+ I1

ẏ j(t) =−υ jy j(t)+d1 jg j(x1(t− τ1))+ J j, j = 1,2, . . . ,n−1,
(6)

where µ1 > 0, υ j > 0, for j = 1,2, . . . ,n− 1 and c j1,d1 j, for j = 1,2, . . . ,n− 1 are real constants. The
time delay from the X-layer to another Y-layer is τ1, while the time delay from the Y-layer back to the
X-layer is τ2, and there are one neuron in the X-layer and other n-1 neurons in the Y-layer. It should be
noted that system (6) has been studied without any special conditions on the number of neurons. In fact,
the number of neurons is arbitrary.

Motivated by the model (6), in the next section, we propose a fractional complex-valued BAM neural
network model with one time delay.

3 Model Description

Consider the following fractional complex-valued BAM neural network with time delay:
C
0 Dq

t z1(t) =−µ1z1(t)+
n

∑
j=2

c j1 f1(z j(t− τ))+ I1,

C
0 Dq

t z j(t) =−υ jz j(t)+d1 jg j(z1(t))+ J j, j = 2, . . . ,n,
(7)

where the fractional order q∈ (0,1) and z j(t), j = 1,2, . . . ,n are the complex-valued states of the neurons.
Also, µ1 > 0, υ j > 0, for j = 2, . . . ,n and c j1,d1 j, j = 2, . . . ,n are real constants. The time delay from the
Y-layer to the X-layer is τ , and in this model, there are one neuron in the X-layer and other n-1 neurons
in the Y-layer. f1(.) and g j(.), j = 2, . . . ,n are the complex-valued activation functions.

To simplify the model (7), we rewrite f j = g j,µ j = υ j, j = 2, . . . ,n and b j = c j1,a j = d1 j, j = 2, . . . ,n.
Now, let I1 = 0 and J j = 0, j = 2, . . . ,n. Thus, we have the following system:

C
0 Dq

t z1(t) =−µ1z1(t)+b2 f1(z2(t− τ))+b3 f1(z3(t− τ))+ · · ·+bn f1(zn(t− τ)),
C
0 Dq

t z2(t) =−µ2z2(t)+a2 f2(z1(t)),
C
0 Dq

t z3(t) =−µ3z3(t)+a3 f3(z1(t)),
...
C
0 Dq

t zn(t) =−µnzn(t)+an fn(z1(t)).

(8)

In order to facilitate the analysis of system (8), the following hypotheses are imposed:
(H1) z j = x j + iy j j = 1, . . . ,n, where x j and y j are the real and imaginary parts of z j, respectively, and
i =
√
−1. The activation function f j, j = 1, . . . ,n can be separated into real and imaginary parts as

f j(zk) = f R
j (xk,yk)+ i f I

j (xk,yk), j,k = 1, . . . ,n.

(H2) f R
j (0,0) = 0 and f I

j (0,0) = 0 for j = 1, . . . ,n.
(H3) f j is differentiable at the equilibrium point z∗j = (x∗j ,y

∗
j) = (0,0), j = 1, . . . ,n.
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4 Hopf Bifurcation Analysis

According to the hypotheses (H1) – (H3), separating the real and imaginary parts, system (8) can be
written as 

C
0 Dq

t x1(t) =−µ1x1(t)+
n

∑
j=2

b j f R
1 (x j(t− τ),y j(t− τ)),

C
0 Dq

t y1(t) =−µ1y1(t)+
n

∑
j=2

b j f I
1(x j(t− τ),y j(t− τ)),

C
0 Dq

t x2(t) =−µ2x2(t)+a2 f R
2 (x1(t),y1(t)),

C
0 Dq

t y2(t) =−µ2y2(t)+a2 f I
2(x1(t),y1(t)),

...
C
0 Dq

t xn(t) =−µnxn(t)+an f R
n (x1(t),y1(t)),

C
0 Dq

t yn(t) =−µnyn(t)+an f I
n(x1(t),y1(t)).

(9)

In order to get the linear part of system (9), expand the functions f R
1 (x j(t − τ),y j(t − τ)), f I

1(x j(t −
τ),y j(t − τ)) and f R

j (x1(t),y1(t)), f I
j (x1(t),y1(t)), where j = 2, . . . ,n, at the equilibrium point z∗j =

(x∗j ,y
∗
j) = (0,0), j = 1, . . . ,n, Z∗ = (z∗1, . . . ,z

∗
n)

T :

f R
1 (x j(t− τ),y j(t− τ)) = f R

1 (x
∗
j ,y
∗
j)+

∂ f R
1 (x
∗
j ,y
∗
j)

∂x j
(x j(t− τ)− x∗j)+

∂ f R
1 (x
∗
j ,y
∗
j)

∂y j
(y j(t− τ)− y∗j)+h.o.t,

f I
1(x j(t− τ),y j(t− τ)) = f I

1(x
∗
j ,y
∗
j)+

∂ f I
1(x
∗
j ,y
∗
j)

∂x j
(x j(t− τ)− x∗j)+

∂ f I
1(x
∗
j ,y
∗
j)

∂y j
(y j(t− τ)− y∗j)+h.o.t,

f R
j (x1(t),y1(t)) = f R

j (x
∗
1,y
∗
1)+

∂ f R
j (x
∗
1,y
∗
1)

∂x1
(x1(t)− x∗1)+

∂ f R
j (x
∗
1,y
∗
1)

∂y1
(y1(t)− y∗1)+h.o.t,

f I
j (x1(t),y1(t)) = f I

j (x
∗
1,y
∗
1)+

∂ f I
j (x
∗
1,y
∗
1)

∂x1
(x1(t)− x∗1)+

∂ f I
j (x
∗
1,y
∗
1)

∂y1
(y1(t)− y∗1)+h.o.t.

By using the above relations, the system (9) results in

C
0 Dq

t x1(t) =−µ1x1(t)+
n

∑
j=2

(q j1x j(t− τ)+q j2y j(t− τ))

C
0 Dq

t y1(t) =−µ1y1(t)+
n

∑
j=2

(w j1x j(t− τ)+w j2y j(t− τ))

C
0 Dq

t x2(t) =−µ2x2(t)+ e21x1(t)+ e22y1(t)
C
0 Dq

t y2(t) =−µ2y2(t)+ r21x1(t)+ r22y1(t)
...
C
0 Dq

t xn(t) =−µnxn(t)+ en1x1(t)+ en2y1(t)
C
0 Dq

t yn(t) =−µnyn(t)+ rn1x1(t)+ rn2y1(t)

(10)

where

q j1 = b j
∂ f R

1 (x
∗
j ,y
∗
j)

∂x j
, q j2 = b j

∂ f R
1 (x
∗
j ,y
∗
j)

∂y j
, w j1 = b j

∂ f I
1(x
∗
j ,y
∗
j)

∂x j
, w j2 = b j

∂ f I
1(x
∗
j ,y
∗
j)

∂y j
,
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e j1 = a j
∂ f R

j (x
∗
1,y
∗
1)

∂x1
, e j2 = a j

∂ f R
j (x
∗
1,y
∗
1)

∂y1
, r j1 = a j

∂ f I
j (x
∗
1,y
∗
1)

∂x1
, r j2 = a j

∂ f I
j (x
∗
1,y
∗
1)

∂y1
,

for j = 2, . . . ,n. Therefore, the characteristic equation of system (10), by using the hypothesis (H2) and
Definition 2, can be obtained as

det



sq +µ1 0 −q21e−sτ −q22e−sτ . . . −qn1e−sτ −qn2e−sτ

0 sq +µ1 −w21e−sτ −w22e−sτ . . . −wn1e−sτ −wn2e−sτ

−e21 −e22 sq +µ2 0 . . . 0 0
−r21 −r22 0 sq +µ2 . . . 0 0
...

...
...

...
. . .

...
...

−en1 −en2 0 0 . . . sq +µn 0
−rn1 −rn2 0 0 . . . 0 sq +µn


= 0. (11)

For an arbitary n, the above equation can be expressed as

s2nq +A1s(2n−1)q +A2s(2n−2)q +A3s(2n−3)q + · · ·+A2n−1sq +A2n

+(Bnsnq +Bn−1s(n−1)q + · · ·+B1sq +B0)e−sτ +Ce−2sτ = 0. (12)

Now, for the convenience of further analysis, denote

F = s2nq +A1s(2n−1)q +A2s(2n−2)q +A3s(2n−3)q + · · ·+A2n−1sq +A2n,

E = Bnsnq +Bn−1s(n−1)q + · · ·+B1sq +B0.

Thus, Eq. (12) can be written as
F +Ee−sτ +Ce−2sτ = 0. (13)

Multiplying esτ on both sides of Eq. (13) leads to

Fesτ +E +Ce−sτ = 0. (14)

Let s = ωi = ω(cos(π

2 )+ isin(π

2 )), ω > 0, and F1,F2, E1,E2 be the real and imaginary parts of F,E,
respectively. Then, Eq. (14) results in

(F1 + iF2)(cos(ωτ)+ isin(ωτ))+(E1 + iE2)+C(cos(ωτ)− isin(ωτ)) = 0 (15)

where

F1 = ω
2nq cos(qπn)+A1ω

(2n−1)q cos((2n−1)q
π

2
)+ · · ·+A2n−1ω

q cos(q
π

2
)+A2n,

F2 = ω
2nq sin(qπn)+A1ω

(2n−1)q sin((2n−1)q
π

2
)+ · · ·+A2n−1ω

q sin(q
π

2
),

E1 = Bnω
nq cos(nq

π

2
)+Bn−1ω

(n−1)q cos((n−1)q
π

2
)+ · · ·+B1ω

q cos(q
π

2
)+B0,

E2 = Bnω
nq sin(nq

π

2
)+Bn−1ω

(n−1)q sin((n−1)q
π

2
)+ · · ·+B1ω

q sin(q
π

2
).

Separating the real and imaginary parts of Eq. (15), we have{
(F1 +C)cos(ωτ)−F2 sin(ωτ)+E1 = 0,
F2 cos(ωτ)+(F1−C)sin(ωτ)+E2 = 0.

(16)
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We solve (16) as follows

cos(ωτ) =

det

−E1 −F2
−E2 F1−C


det

F1 +C −F2
F2 F1−C

 = −E1F1+E1C−F2E2
F2

1 −C2+F2
2

,

sin(ωτ) =

det

F1 +C −E1
F2 −E2


det

F1 +C −F2
F2 F1−C

 = −F1E2−E2C+E1F2
F2

1 −C2+F2
2

.

(17)

Now, by considering the fact sin2
ωτ + cos2 ωτ = 1, one can easily compute the value of ω , as long as

all the parameters are provided. Moreover, by using (17), one can get

τ
k
1 =

1
ω

(
arccos(

−E1F1 +E1C−F2E2

F2
1 −C2 +F2

2
)+2kπ

)
, k = 0,1,2, . . . ,

τ
k
2 =

1
ω

(
arcsin(

−F1E2−E2C+E1F2

F2
1 −C2 +F2

2
)+2kπ

)
, k = 0,1,2, . . . .

Let
τ0 = min{τk

1 ,τ
k
2}, k = 0,1,2, . . . ,

as the bifurcation point.
When τ = 0, let λ = sq. Then, the characteristic equation (12) can be written as

λ
2n +A1λ

2n−1 + · · ·+A2n−1λ +A2n +Bnλ
n +Bn−1λ

n−1 + · · ·+B1λ +B0 +C = 0. (18)

The above equation gives

λ
2n + p1λ

2n−1 + p2λ
2n−2 + · · ·+ pnλ

n + · · ·+ p2n−1λ + p2n = 0, (19)

where p1 = A1, p2 = A2, . . ., pn = An +Bn, . . ., p2n−1 = A2n−1 +B1 and p2n = A2n +B0 +C.
Now, by the well-known Routh-Hurwitz criteria, we can find the following set of conditions

(H4) p1 > 0, det
(

p1 1
p3 p2

)
> 0, det

p1 1 0
p3 p2 p1
p5 p4 p3

> 0, . . ., p2n > 0.

The hypotheses (H4) and the well-known Routh-Hurwitz criteria ensure that all the roots of Eq. (12),
when τ = 0, have negative real parts.

To obtain the main result, the following assumption is also needed
(H5) Re( ds

dτ
)|τ=τ0 6= 0

Taking the derivative of Eq. (12) with respect to τ , we have

2nqs2nq−1 ds
dτ

+A1(2n−1)qs(2n−1)q−1 ds
dτ

+ · · ·+qA2n−1sq−1 ds
dτ

+ e−sτ(
ds
dτ

)(nqBnsnq−1 +(n−1)qBn−1s(n−1)q−1 + · · ·+qB1sq−1)

+(Bnsnq +Bn−1s(n−1)q + · · ·+B1sq +B0)(−se−sτ − τ
ds
dτ

e−sτ)

+C(−2se−2sτ −2τ
ds
dτ

e−2sτ) = 0. (20)
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From (20), one can acquire
ds
dτ

=
X(s)
Y (s)

, (21)

where
X(s) = s(Bnsnq +Bn−1s(n−1)q + · · ·+B1sq +B0)e−sτ +2sCe−2sτ , (22)

and

Y (s) = 2nqs2nq−1 +A1(2n−1)qs(2n−1)q−1 + · · ·+qA2n−1sq−1

+ e−sτ(nqBnsnq−1 +(n−1)qBn−1s(n−1)q−1 + · · ·+qB1sq−1

− τ(Bnsnq +Bn−1s(n−1)q + · · ·+B1sq +B0))−2Cτe−2sτ . (23)

Also, we have

Re(
X(s)
Y (s)

) = Re(
X1(s)+ iX2(s)
Y1(s)+ iY2(s)

× Y1(s)− iY2(s)
Y1(s)− iY2(s)

) =
X1Y1 +X2Y2

Y 2
1 +Y 2

2
, (24)

where Xi,Yi(i = 1,2) are the real and imaginary parts of X(s),Y (s), respectively.
Now, by the above discussion, we can state the following theorem:

Theorem 1. Suppose (H1) – (H5) hold. As τ increases from zero, there exists a value τ0 such that the
zero equilibrium point is locally asymptotically stable when τ ∈ [0,τ0) but unstable when τ > τ0. In fact,
system (8) undergoes a Hopf bifurcation at the origin when τ passes through τ0.

5 Global stability analysis

In this section, we introduce a suitable Lyapunov function for system (9) that is model (8) under the
assumptions. In fact, we discuss on the global stability of the equilibrium point of system (9).

In order to get the main result, the following hypothesis is imposed
(H6) Suppose the functions f R

i and f I
i , i= 1,2, . . . ,n are Lipschitz continuous. That is, there exist positive

constants LR
i and MI

i , i = 1,2, . . . ,n such that

| f R
i (u1,y)− f R

i (u2,y)| ≤ LR
i |u1−u2|,

| f I
i (x,v1)− f I

i (x,v2)| ≤MI
i |v1− v2|.

Now, we define a Lyapunov function as follows:

V (t) =C
0 D−(1−q)

t (
n

∑
i=1

(|xi(t)|+ |yi(t)|))+
n

∑
j=2
|b j||LR

1 |
∫ t

t−τ

|x j(s)|ds+
n

∑
j=2
|b j||MI

1|
∫ t

t−τ

|y j(s)|ds. (25)

Calculating the derivative of V along the solution of the system (9) gives

V̇ (t)=
d
dt
(C0 D−(1−q)

t (
n

∑
i=1

(|xi(t)|+ |yi(t)|)))+
d
dt
(

n

∑
j=2
|b j|(|LR

1 |
∫ t

t−τ

|x j(s)|ds+ |MI
1|
∫ t

t−τ

|y j(s)|ds)). (26)
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So,

V̇ (t) =C
0 Dq

t (
n

∑
i=1

(|xi(t)|+ |yi(t)|))+
n

∑
j=2
|b j|(|LR

1 |(|x j(t)|− |x j(t− τ)|)+ |MI
1|(|y j(t)|− |y j(t− τ)|)). (27)

Then,

V̇ (t)≤
n

∑
i=1

(sgn(xi(t))C0 Dq
t xi(t)+ sgn(yi(t))C0 Dq

t yi(t))+
n

∑
j=2
|b j|(|LR

1 |(|x j(t)|− |x j(t− τ)|)

+ |MI
1|(|y j(t)|− |y j(t− τ)|)). (28)

Using system (9), we have

V̇ (t)≤ sgn(x1(t))(−µ1x1(t)+
n

∑
j=2

b j f R
1 (x j(t− τ),y j(t− τ)))

+ sgn(y1(t))(−µ1y1(t)+
n

∑
j=2

b j f I
1(x j(t− τ),y j(t− τ)))

+
n

∑
j=2

((sgn(x j(t)))(−µ jx j(t)+a j f R
j (x1(t),y1(t)))+(sgn(y j(t)))(−µ jy j(t)+a j f I

j (x1(t),y1(t))))

+
n

∑
j=2
|b j|(|LR

1 |(|x j(t)|− |x j(t− τ)|)+ |MI
1|(|y j(t)|− |y j(t− τ)|)). (29)

By (H6) and (H2), one can obtain

V̇ (t)≤−
n

∑
i=1

µi(|xi(t)|+ |yi(t)|)+
n

∑
j=2
|b j|(|LR

1 ||x j(t− τ)|+ |MI
1||y j(t− τ)|)

+
n

∑
j=2
|a j|(|LR

j ||x1(t)|+ |MI
j||y1(t)|)

+
n

∑
j=2
|b j|(|LR

1 |(|x j(t)|− |x j(t− τ)|)+ |MI
1|(|y j(t)|− |y j(t− τ)|)). (30)

Thus,

V̇ (t)≤−
n

∑
i=1

µi(|xi(t)|+ |yi(t)|)+
n

∑
j=2
|a j|(|LR

j ||x1(t)|+ |MI
j||y1(t)|)

+
n

∑
j=2
|b j|(|LR

1 ||x j(t)|+ |MI
1||y j(t)|). (31)

Now, we rewrite (31) as follows:

V̇ (t)≤
n

∑
j=2
|LR

j |(
−µ1

(n−1)|LR
j |
+ |a j|)|x1(t)|+

n

∑
j=2
|MI

j|(
−µ1

(n−1)|MI
j|
+ |a j|)|y1(t)|

+
n

∑
j=2
|LR

1 |(
−µ j

|LR
1 |

+ |b j|)|x j(t)|+
n

∑
j=2
|MI

1|(
−µ j

|MI
1|
+ |b j|)|y j(t)|. (32)
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Let

ζ
(1)
j = |LR

j |(
µ1

(n−1)|LR
j |
− |a j|), ζ

(2)
j = |MI

j|(
µ1

(n−1)|MI
j|
− |a j|),

α
(1)
j = |LR

1 |(
µ j

|LR
1 |
− |b j|), α

(2)
j = |MI

1|(
µ j

|MI
1|
− |b j|).

Therefore,

V̇ (t)≤−
n

∑
j=2

ζ
(1)
j |x1(t)|−

n

∑
j=2

ζ
(2)
j |y1(t)|−

n

∑
j=2

α
(1)
j |x j(t)|−

n

∑
j=2

α
(2)
j |y j(t)|. (33)

Now, suppose
ζ̂
(1) = min

j
{ζ (1)

j }> 0, ζ̂
(2) = min

j
{ζ (2)

j }> 0,

α̂
(1) = min

j
{α(1)

j }> 0, α̂
(2) = min

j
{α(2)

j }> 0.

So,

V̇ (t)≤−(n−1)ζ̂ (1)|x1(t)|− (n−1)ζ̂ (2)|y1(t)|−
n

∑
j=2

α̂
(1)|x j(t)|−

n

∑
j=2

α̂
(2)|y j(t)|. (34)

Hence, V̇ < 0 and we can state the following theorem:

Theorem 2. Suppose that (H2) and (H6) hold. Then the equilibrium point of system (9) is globally
asymptotically stable if ζ̂ (1) > 0, ζ̂ (2) > 0, α̂(1) > 0 and α̂(2) > 0, where

ζ̂
(1) = min

j
{ζ (1)

j }, ζ̂
(2) = min

j
{ζ (2)

j }, α̂
(1) = min

j
{α(1)

j }, α̂
(2) = min

j
{α(2)

j }

and

ζ
(1)
j = |LR

j |(
µ1

(n−1)|LR
j |
− |a j|), ζ

(2)
j = |MI

j|(
µ1

(n−1)|MI
j|
− |a j|),

α
(1)
j = |LR

1 |(
µ j

|LR
1 |
− |b j|), α

(2)
j = |MI

1|(
µ j

|MI
1|
− |b j|).

To find the other kind of Lyapunov function and so global asymptotic stability, we need the following
lemma.

Lemma 1. Suppose that ω1,ω2 : R→ R are continuous nondecreasing functions, ω1(s),ω2(s) are pos-
itive for s > 0, and ω1(0) = ω2(0) = 0. If there exists a continuously differentiable function V : R→ R
such that ω1(‖x(t)‖)≤V (t,x(t))≤ ω2(‖x(t)‖) holds, and there exist two constants r > p > 0 such that
for any given t0 ∈ R the fractional derivative of V along the solution x(t) of the fractional system

Dαx(t) = f (t,x(t),x(t− τ)),

satisfies
DαV (t,x(t))≤−rV (t,x(t))+ p sup

−τ≤θ≤0
V (t +θ ,x(t +θ)),

for t ≥ t0, then the fractional system is globally asymptotically stable.
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Proof. For the proof, see [4].

For system (9), consider the following Lyapunov function

V (t) =
n

∑
i=1

(|xi(t)|+ |yi(t)|).

By calculating the derivative of V (t) along the solutions of system (9), we get

DqV (t) =
n

∑
i=1

(Dq|xi(t)|+Dq|yi(t)|)

=
n

∑
i=1

(sgn(xi(t))Dqxi(t)+ sgn(yi(t))Dqyi(t))

= sgn(x1(t))(−µ1x1(t)+
n

∑
j=2

b j f R
1 (x j(t− τ),y j(t− τ)))+ sgn(y1(t))(−µ1y1(t)

+
n

∑
j=2

b j f I
1(x j(t− τ),y j(t− τ)))+

n

∑
i=2

(sgn(xi(t))(−µixi(t)+ai f R
i (x1(t),y1(t)))

+ sgn(yi(t))(−µiyi(t)+ai f I
i (x1(t),y1(t)))). (35)

Now, by using (H2) and (H6), we get

DqV (t)≤−µ1|x1(t)|−µ1|y1(t)|+
n

∑
j=2

(|b j|LR
1 |x j(t− τ)|+ |b j|MI

1|y j(t− τ)|)

−
n

∑
i=2

µi(|xi(t)|+ |yi(t)|)+
n

∑
i=2

(|ai|LR
i |x1(t)|+ |ai|MI

i |y1(t)|). (36)

So,

DqV (t)≤−
n

∑
i=1

µi(|xi(t)|+ |yi(t)|)+
n

∑
j=2
|b j|(LR

1 |x j(t− τ)|+MI
1|y j(t− τ)|)

+
n

∑
j=2
|a j|(LR

j |x1(t)|+MI
j|y1(t)|). (37)

Now, let
r = min

i
{µi}, b̂ = max

j
{|b j|}, â = max

j
{|a j|LR

j }, ã = max
j
{|a j|MI

j},

ĉ = max{b̂LR
1 , â}, d̂ = max{b̂MI

1, ã}, p = max{ĉ, d̂}.
Thus,

DqV (t)≤−rV (t)+ p sup
t−τ≤s≤t

V (s).

Lemma 1 and above calculations result in global asymptotic stability of the equilibrium point of sys-
tem (9), and we can state the following theorem:

Theorem 3. Suppose (H2) and (H6) hold. Then the equilibrium point of system (9) is globally asymp-
totically stable if r > p > 0, where r = mini{µi}, p = max{ĉ, d̂}, ĉ = max{b̂LR

1 , â}, d̂ = max{b̂MI
1, ã},

b̂ = max j{|b j|}, â = max j{|a j|LR
j } and ã = max j{|a j|MI

j}.
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Figure 1: Curves of the real and imaginary parts of
system (9) with q = 0.95 and τ = 0.4 < τ0 = 0.55.
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Figure 2: Curves of the real and imaginary parts of
system (9) with q = 0.95 and τ = 0.8 > τ0. A family
of periodic solutions bifurcate from the origin and
Hopf bifurcation occurs.

6 Numerical simulations

In this section, to illustrate our theoretical results, three numerical examples are given. The numerical
simulations are based on the Adams-Bashforth-Moulton predictor-corrector algorithm.

Example 1. Select n = 2, the activation functions f j(z) = tanh(x)+ tanh(y)+ i(tanh(x)+ tanh(y)) for
j = 1,2, q = 0.95, µ1 = µ2 = 0.5, b2 = 1, a2 =−0.5 and the initial condition (1.2,−1.8,1.1,2.4) in sys-
tem (9). By some calculations, we get the critical bifurcation value τ0 = 0.55. Then, the zero equlibrium
point is asymptotically stable when τ = 0.4 < τ0, as shown in Figure 1. When τ = 0.8 > τ0, Hopf bi-
furcation occurs and a family of periodic solutions appeares, as depicted in Figure 2. To illustrate more,
three dimensional phase portraits are given in Figures 3, 4, 5 and 6.

Example 2. Consider system (9) with n = 3 and activation functions f1(z) = f3(z) = tanh(x)+ i tanh(y),
f2(z) = − tanh(x)− i tanh(y). Set µ1 = 1.5, µ2 = µ3 = 0.5, b2 = −0.05, b3 = 0.1, a2 = −0.1 and a3 =

0.02. By some simple computations, one has LR
j = MI

j = 1; j = 1,2,3, ζ
(1)
2 = ζ

(2)
2 = 0.65, ζ

(1)
3 = ζ

(2)
3 =

0.73, α
(1)
2 = α

(2)
2 = 0.45, α

(1)
3 = α

(2)
3 = 0.4, and so ζ̂ (1) = ζ̂ (2) = 0.65 > 0, α̂(1) = α̂(2) = 0.4 > 0.

Thus, the conditions in Theorem 2 are satisfied. So, the equilibrium point of system (9) is globally
asymptotically stable. Figure 7 shows the trajectories of the system in this example.

Example 3. In this case, consider system (9) with n = 3 and activation functions f1(z) = − tanh(x)+
i tanh(y), f2(z) = tanh(x) + i tanh(y), f3(z) = tanh(x)− i tanh(y). Set µ1 = 1.5, µ2 = 1.2, µ3 = 0.6,
b2 = −0.1, b3 = 0.3, a2 = 0.45 and a3 = −0.1. By some simple computations, it is easy to see that
LR

j = MI
j = 1; j = 1,2,3, r = 0.6, b̂ = 0.3, â = ã = 0.45, ĉ = d̂ = 0.45 and so p = 0.45. Thus, r =
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Figure 3: Curves of the real and imaginary parts of
system (9) with q = 0.95 and τ = 0.4 < τ0 = 0.55.

Figure 4: Curves of the real and imaginary parts of
system (9) with q = 0.95 and τ = 0.4 < τ0 = 0.55.

Figure 5: Curves of the real and imaginary parts of
system (9) with q = 0.95 and τ = 0.8 > τ0. A family
of periodic solutions bifurcate from the origin and
Hopf bifurcation occurs.

Figure 6: Curves of the real and imaginary parts of
system (9) with q = 0.95 and τ = 0.8 > τ0. A family
of periodic solutions bifurcate from the origin and
Hopf bifurcation occurs.
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Figure 7: Time response of state variables of system (9) in Example 2.

0.6 > p = 0.45 > 0, the conditions in Theorem 3 are satisfied. So, the equilibrium point of system (9) is
globally asymptotically stable. The trajectories of this system are shown in Figure 8.

7 Conclusions

In this paper, a general class of fractional-order complex-valued bidirectional associative memory neural
network with time delay is first proposed. The model contains an arbitrary number of neurons, i.e. one
neuron in the X-layer and other neurons in the Y-layer. We investigated Hopf bifurcation and global
asymptotic stability of the system. Taking the time delay as the bifurcation parameter, the occurrence
of Hopf bifurcation and the critical value of the time delay for Hopf bifurcation have been determined.
Furthermore, two sets of sufficient conditions were obtained to ensure the system to be globally asymp-
totically stable. In fact, we constructed two kinds of appropriate Lyapunov functions to get the results.
The new results were easy to test in the practical fields. Finally, in the three representative numerical
examples, the correctness and effectiveness of the theoretical results of the theorems have been verified.
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