تعداد نشریات | 31 |
تعداد شمارهها | 743 |
تعداد مقالات | 7,071 |
تعداد مشاهده مقاله | 10,141,967 |
تعداد دریافت فایل اصل مقاله | 6,855,222 |
Parameter-uniform fitted operator method for singularly perturbed Burgers-Huxley equation | ||
Journal of Mathematical Modeling | ||
مقاله 9، دوره 10، شماره 4، اسفند 2022، صفحه 515-534 اصل مقاله (339.88 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2022.21484.1883 | ||
نویسندگان | ||
Eshetu Belete Derzie* 1؛ Justin B. Munyakazi2؛ Tekle Gemechu Dinka1 | ||
1Department of Mathematics, Adama Science and Technology University, Adama, Ethiopia | ||
2Department of Mathematics and Applied Mathematics, University of the Western Cape, Private BagX17, Bellville 7535, South Africa | ||
چکیده | ||
We develop a robust uniformly convergent numerical scheme for singularly perturbed time dependent Burgers-Huxley partial differential equation. We first discretize the time derivative of the equation using the Crank-Nicolson finite difference method. Then, the resulting semi-discretized nonlinear ordinary differential equations are linearized using the quasilinearization technique, and finally, design a fitted operator upwind finite difference method to resolve the layer behavior of the solution in the spatial direction. Our analysis has shown that the presented method is second order parameter uniform convergent in time and first order in space. Numerical experiments are conducted to validate the theoretical results. | ||
کلیدواژهها | ||
Singularly perturbed problem؛ Burgers-Huxley equation؛ Crank-Nicolson finite difference scheme؛ fitted operator method؛ parameter uniform convergence | ||
آمار تعداد مشاهده مقاله: 295 تعداد دریافت فایل اصل مقاله: 319 |