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Abstract. One of the purposes of edge detection is to use methods that be able to process visual informa-
tion according to human needs. Therefore, an edge detector is reliable when evaluated by measurement
criteria before use in computer vision tools. These criteria compute the difference between the ground
truth edge map (reference image) and the original image. In this study, we propose an improved Canny
edge detection method based on the fractional-order operators to extract the ideal edge map. Then, by
changing the hysteresis thresholds, the thin edges are obtained by filtering gradient calculations based on
fractional-order masks. In addition, we employ common fractional-order derivative operators to extract
the edge strength and enhance image edge contrast. The plotted curves of the edge detection criteria
show that the obtained edge map of the proposed edge detection operator, which is considered to be the
minimal rating of measurement, is visually and quantitatively closer to ground truth.
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1 Introduction

Edge detection is an important technique utilized in many applications in the field of image processing
such as pattern recognition, medical image analysis, computer vision, and robotics. It is one of the
most popular methods applied for feature extraction and object tracking, which considerably diminishes
the processed data amount and maintains the structure of the image. The purpose of edge detecting is
to find meaningful transfer information in an image and to identify discontinuities in the image where
the color intensity of the image changes drastically [14]. Many effective methods have been suggested
for edge detection in studies. Most of these methods are made based on integer-order derivatives, the
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namely first-order derivative of the gradient operator, such as the Sobel [28], Prewitt [24], Canny [4],
and Roberts [10], and second-order derivative of Laplacian operator [17], such as Laplacian of Gaussian.
Usually, first-order derivative methods lead to thicker edges, which results in a lake of image details and
second-order derivative methods could produce better edges but are very noise sensitive [2].

Utilizing fractional-order filters for edge detection has strongly solved these disadvantages [30]. This
operator can maintain low-frequency components in smooth regions, preserve high-frequency edgy char-
acteristics and also enhance medium-frequency texture details. In comparison with the property of the
classical derivative, which leads to staircase artifact in the smooth areas, the fractional differential model
is able to eliminate the block effect and maintain textures [32].

In the past three hundred years, fractional calculus has been an important branch of mathematics
that is the generalization of integer derivatives and integration to non-integer arbitrary order. Leibniz
had already discussed it in the eighteenth century, and other famous names of the past have studied
and contributed to the development of fractional calculus in the field of pure mathematics [13]. The
most popular used definitions of fractional differentiation are Riemann-Liouville, Grünwald- Letnikov,
and Caputo [8]. Fractional calculus has played a fundamental role in several fields including automatic
control, physics, signal, and image processing (see, e.g., [21–23, 31]). The fractional-order differential
can enhance the edges and produce a texture more clear while maintaining the details information in
smooth regions of the image [25].

Ref. [19] suggested a method of edge detection based on a fractional-order operator named CRONE,
which can be remarkably improved the edge details and efficiency of noisy images. According to the
numerical results, it can be seen that the proposed method generated fewer false negatives in the areas
and also extracted edges with more precise details. In [1], authors proposed an approach for creat-
ing a fractional convolution mask based upon Riemann-Liouville fractional derivative. In [26], authors
demonstrated that introduced method using fractional differential can be retained the low-frequency con-
tour feature in smooth regions of the image, and can be preserved high-frequency marginal features
in regions with a very diverse gray-level nonlinearly, it was indicated that by obtaining stronger edges
and maintained the image texture it had better performance than the integer order derivatives. In the
branches of image processing, fractional-based operators have been utilized for image resolution en-
hancement [33], image texture enhancement [26], image denoising [11], image segmentation [?], and so
on.

In our paper, we accomplish two things. First, we propose a new way for edge detection so that
the fractional-order derivative operator is combined in the Canny algorithm. Indeed, the derivative
step in Canny operator is modified on the fractional-order gradient. The calculation of this gradient
is obtained using common fractional-order derivative operators, including Grünwald-Letnikov (GL),
Riemann-Liouville (RL), Caputo (C), Caputo-Fabrizio (CF), and Atangana and Baleanu in the Caputo
sense (ABC) fractional-order integrals. Next, we utilize non-maximum suppression (NMS) and hys-
teresis thresholding to obtain the ideal edge map and to remove false edges respectively. In fact, this
mathematical technique has been suggested to lay a base of our method for image enhancement such
as preserving high-frequency edge and low-frequency contour features in a smooth region of the image.
Second, we employ popular fractional-order derivative operators to be utilized for image edge detection
and image edge contrast enhancement. Components of the gradient vector are calculated by applying
fractional-based convolution mask. Then, we extract the edge strength by using the fractional gradient
magnitude. In fact, we compare all the edge detection methods based on fractional-order derivatives and
integer-order derivatives that researchers have presented in prior studies, both quantitatively and quali-
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tatively, and determine the best method for achieving the most ideal edge strength. It should be noted
that most researchers in their published works have evaluated the performance of their proposed method
only with traditional methods based on integer derivatives. But here the performance of all non-integer
derivative operators is evaluated with the performance of integer derivative operators. In addition, lit-
erature works published in recent years have used a determined α value to detect the edge using all
comparative methods for all images. But here we get the optimal α value for each image block in accor-
dance with the image structure in that block in different algorithms. We employ different measurement
criteria such as PSNR, MSE, SSIM, and PR to evaluate the results of the experiments. Also, we utilize
three types of datasets, including natural images, Chest X-Rays (CXR) images, and medical images to
test the proposed method. The experimental results indicate that our proposed algorithm by using ABC
fractional integral formulations with a non-local and non-singular kernel has a remarkable performance
in improving the edge information, and gained an edge map closer to the ground truth image compared
with other traditional integer-order methods and fractional-order derivatives methods.

The rest of this paper is arranged as follows: Section 2 presents a brief review of integer-order
derivative edge detectors and popular fractional-order derivatives definitions. Section 3 first presents
edge detection using the fractional derivative, then proposes a fractional Canny edge detector. The ex-
perimental results and the proposed methods’ performance evaluation are discussed in Section 4. Finally,
this study’s conclusion presents in Section 5.

2 Background

In this section, we briefly review the methods of edge detection based on the integer-order derivative and
basic definitions and theory of fractional calculus.

2.1 Review of edge detection operators

The edge goal is to recognize points of discontinuities in an image where image color intensity changes
sharply, and these changes are detected by computing the integer first-order derivative or the gradient of
the image intensity. The most common first-order derivative algorithms include Sobel, Prewitt, Lapla-
cian, and Robert operators, demonstrated in Figure 1. The Roberts edge detector utilizes the distance
between two diagonally neighbor pixels. The Roberts kernels are in action too small and cannot signifi-
cantly recognize edges in the presence of noise. The Prewitt edge detector is obtained by approximating
the first-order derivative based on the central difference algorithm. Another important edge detector is
called the Sobel operator, which is obtained based on the finite-difference of the central. Unlike the Pre-
witt algorithm, this detector does give significance to pixels closer to the mask’s center. The Sobel edge
detector can give more detailed edge direction information, but this operator could generate many false
edges with a thick edge width. The Sobel algorithm is more sensitive to the diagonal edges than to the
horizontal and vertical ones, while the Prewitt edge detector is more sensitive to horizontal and vertical
edges and to noise.

2.2 Basic definitions of the fractional calculus

The fundamental theory of fractional calculus is generalized from the theory of integer-order derivative,
which extended from integer-order to any complex order or real.
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Figure 1: The integer-order edge detection masks. (a,b) Sobel, (c,d) Prewitt, (e,f) Laplacian (g,h) Robert.

As we know, the image smooth region corresponds to the low-frequency component, in which ad-
jacent pixels values are approximately the same. The region of the texture, which is the values of the
neighboring pixels, has small variations corresponding to the medium frequency component. Edges and
noise are in the form of high-frequency components, the adjacent image pixel values of which change
sharply. Therefore, using the integer-order derivative approach to deal with the image smooth area, the
texture details of the smooth area significantly lead to linear damping and the result is becoming close
to zero. As a result, edge detectors based on traditional methods can not detect the details of the texture
in the smooth area. In contrast, the low frequency of the signals is maintained by the fractional-order
derivative [25]. The fractional-order α can constantly change, we can get the best edge information
by choosing the best order α . We present primary definitions of Grünwald-Letnikov (GL), Riemann-
Liouville (RL), Caputo (C), Caputo-Fabrizio (CF), and Atangana and Baleanu in the Caputo sense (ABC)
fractional-order derivatives.

Definition 1. [6] Assume for all α ∈R, the signal Ψ(τ) ∈ [a,τ] for a < τ and a,τ ∈R has the dαe
order continuous differential. The GL fractional order derivative with α > 0 can be defined as follows :

GL
a Dα

τ Ψ(τ) = lim
h→0

Ψ
(α)
h (τ) = lim

h→0
h−α

[ τ−a
h ]

∑
r=0

(−1)r Γ(α +1)
r!Γ(α− r+1)

Ψ(τ− rh). (1)

Definition 2. [1] Let for all α ∈R, a < τ and a,τ ∈R has the dαe order continuous differential. The
RL fractional order derivative of ψ of order α is described at a point τ(a,b) can be defined as follows:

RL
0 Dα

τ ψ(τ) =
1

Γ(α)

d
dτ

∫
τ

a

ψ(ζ )

(τ−ζ )α
dζ , n−1 < α ≤ n. (2)

Definition 3. [27] Let Ψ ∈H 1(a,b), a < b, α ∈ [0,1], H 1 is the Sobolev space, the Liouville-Caputo
fractional derivative of Ψ of order α is described at a point τ(a,b) as:

C
0D

α
τ Ψ(τ) =

1
Γ(α)

∫
τ

a
(τ−ζ )α−1

Ψ̇(ζ )dζ , n−1 < α ≤ n. (3)

Definition 4. [3] Let Ψ ∈H 1(a,b), a < b, α ∈ [0,1]. The Caputo-Fabrizio derivative in Liouville-
Caputo sense (CFC) of Ψ of order α is expressed at a point τ(a,b) as:

CFC
0 Dα

τ Ψ(τ) =
(2−α)Ω(α)

2(1−α)

∫
τ

0
exp
[
−α

(τ−ζ )

1−α

]
Ψ̇(ζ )dζ , n−1 < α < n. (4)
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Definition 5. [9, 15] Let Ψ ∈H 1(a,b), a < b, α ∈ [0,1]. The Atangana-Baleanu fractional derivative
with order α in Liouville-Caputo sense (ABC) is described as follows:

ABC
0 Dα

τ Ψ(τ) =
Ω(α)

(1−α)

∫
τ

0
Eα

[
−α

(τ−ζ )α

1−α

]
Ψ̇(ζ )dζ , n−1 < α ≤ n. (5)

In addition, the fractional integral of Atangana-Baleanu for a given function Ψ(τ) is represented as
follows:

AB
0 I α

τ Ψ(τ) =
1−α

Ω(α)
Ψ(τ)+

α

Γ(α)Ω(α)

∫
τ

0
Ψ(ζ )(τ−ζ )α−1 dζ , n−1 < α ≤ n, (6)

where Ω(·) function used in definitions mentioned is utilized as a normalized function, is given by follows:

Ω(α) = 1−α +
α

Γ(α)
, Ω(0) = Ω(1) = 1. (7)

The use of the Mittag-Leffler function with order α is a keynote feature of the definition of ABC fractional
derivative, expressed as:

Eα(τ) =
∞

∑
i=1

τ i

Γ(αi+1)
, α > 0. (8)

3 The proposed edge detector

In the first section, we employ popular fractional-order derivative operators for image edge detection and
image edge contrast enhancement. We obtain gradient operators by applying the convolution fractional-
order masks. Then edge strength is extracted by the fractional gradient magnitude. The second section
proposed the improved Canny algorithm in which the derivative step is modified on the fractional-order
gradient so that it can produce an ideal edge map. The computation of this gradient leans on common
fractional-order derivative operators, including GL, RL, C, CF, and ABC fractional-order integral for-
mulations with non-singular and singular kernels.

3.1 Edge detection using fractional derivative

The fractional-order derivative operators can enhance the contrast edges and produce a texture more
clear. The fractional-order differential can nonlinearly preserve the low-frequency contour information
in smooth regions and also nonlinearly improve the high-frequency components like the edge.

To design masks, we utilize fractional discrete integrals and derivatives operators, the expansion of
the image function is expressed as follows:

K α
Ψ(τ)≈ ρ0Ψ(τ)+ρ1Ψ(τ−1)+ρ2Ψ(τ−2)+ · · · , (9)

where ρ0, ρ1, and ρ2 are the value of the nonzero coefficients of expansion of the fractional differential
definition of K α .

Let Ψ(x,y) is an image function in the Hilbert space, for the 2-D signal (x,y), the numerical algorithm
of the fractional differentiation in the x-and y-directions respectively, can be approximated as:

xK α
GLΨ(x,y)≈ ρ0Ψ(x,y)+ρ1Ψ(x−1,y)+ρ2Ψ(x−2,y)+ · · · , (10)

yK α
GLΨ(x,y)≈ ρ0Ψ(x,y)+ρ1Ψ(x,y−1)+ρ2Ψ(x,y−2)+ · · · .
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We consider the mask structure introduced in [12], the coefficients of which are derived from frac-
tional derivative operators. As a consequence of a 3×3 kernel constructed as follows:

M α
x =

−ρ0 0 ρ0
−ρ1 0 ρ1
−ρ2 0 ρ2

 , M α
y =

−ρ0 −ρ1 −ρ2
0 0 0
ρ0 ρ1 ρ2

 . (11)

To enhance the accuracy of edge positioning, kernels (11) is rotating through 180◦ with the desired stage
and can be expanded to eight directions. Therefore, edges are acquired using the input image convolution
and rotated kernels. Rotating the kernel with step 45◦, eight various masks of the fractional derivatives
to detect edges are considered, which these masks are implemented on input image with angles 0◦, 45◦,
90◦, 135◦, 180◦, 225◦, 270◦ and 315◦ (as shown in Figure 2). These kernels play an important role in
extracting image details and features that can maintain texture and edge details.

These kernels are used to calculate the gradient operators Gx and Gy. Then, the edge strength is
extracted by using the gradient magnitude. Finally, we infer the gradient magnitude and orientation of
the fractional gradient of an image Ψ(x,y) as follows:

G α
x (x,y) = M α

x ∗Ψ(x,y), G α
y (x,y) = M α

y ∗Ψ(x,y),

FractionalEdge =
√
(G α

x (x,y))2 +(G α
x (x,y))2,

θ = arctan
(

G α
y

G α
x

)
.

In order to process a digital image, the nonlinear filter template is to move the mask along the image’s
pixels. The fractional filter on pixel (x,y) can be computed as follows:

g(x,y) =
a

∑
i=−a

b

∑
j=−b

M α
x (i, j)Ψ(x+ i,y+ j), (12)

where Ψ(x,y) and M α
x (i, j) are, respectively the value of a pixel and the value of the mask. The mask

M is given into the m×n size, which m and n are taken odd. Then, a = m−1
2 and b = n−1

2 .

-ρ0 -ρ1 -ρ2

0 0 0
ρ0 ρ1 ρ2

(a) M α
0◦

-ρ1 -ρ2 0
-ρ0 0 ρ2

0 ρ0 ρ1

(b) M α
45◦

-ρ0 0 ρ0

-ρ1 0 ρ1

-ρ2 0 ρ2

(c) M α
90◦

0 ρ0 ρ1

-ρ0 0 ρ2

-ρ1 -ρ2 0
(d) M α

135◦

ρ0 ρ1 ρ2

0 0 0
-ρ0 -ρ1 -ρ2

(e) M α
180◦

ρ1 ρ2 0
ρ0 0 -ρ2

0 -ρ0 -ρ1

(f) M α
225◦

ρ0 0 -ρ0

ρ1 0 -ρ1

ρ2 0 -ρ2

(g) M α
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0 -ρ0 -ρ1
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ρ1 ρ2 0
(h) M α
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Figure 2: Fractional differential 3×3 mask on eight directions.
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3.2 Fractional Canny edge detection

We propose a modified Canny edge detection algorithm in this section. In fact, the proposed method
is a combination of the common fractional-order derivative operators such as GL, RL, C, CF, and ABC
fractional-order integrals and Canny edge detector, in which we use the fractional order filter instead of
an integer order filter for the gradient computation. The main purpose of this project is to modify the
Canny algorithm and optimize the fractional filter. Flowchart 3 showed the overall framework of the
proposed method. The implementation of the modified Canny edge detection algorithm followed four
steps [4]:

Step1: Smoothing image: 2D Gaussian convolution is applied to the filter to smooth input image in
order to remove the noise and details. The convolution filter size is usually much smaller than the real
image. Fundamentally, the larger the size of the Gaussian filter, the more visible the smoothing blur, and
localization error in the detected edges is increased, which can be written as:

Gσ (x,y) =
1

2πσ2 exp(
x2 + y2

2σ2 ), Ψc(x,y) = Ψ(x,y)∗Gσ (x,y). (13)

Step2: Finding the intensity gradient: The edge strength is acquired by calculating the image intensity
gradient. The edge magnitude can be got by calculating two fractional-order partial derivatives ∇α

x Ψ and
∇α

y Ψ and by convolving kernels M α
x and M α

y are given in (11), as follows:

∇
α
x Ψ(x,y) = M α

x ∗Ψc(x,y), ∇
α
y Ψ(x,y) = M α

y ∗Ψc(x,y), (14)

mag(∆α
Ψ) = ‖∇α

Ψ(x,y)‖=
√
(∇α

x Ψ(x,y))2 +(∇α
y Ψ(x,y))2,

θ = arctan
(

∇α
y Ψ

∇α
x Ψ

)
.

Step3: Non-maximum Suppression: The goal of the third step is to perform non-maximum suppression
(NMS) to gain thin edges after specifying the edge directions. This is done to remove pixels that may
not be part of an edge point. As a result, the output function (edge map) value at that point is set to be
zero value. This operation will give into a binary image with ”thin edges”.

Step4: Thresholding with hysteresis: This step determined two high threshold (τH) and the low threshold
(τL) values to keep the strong edges and remove the fake edges. These two threshold values identify all
pixels in three classes such as strong, weak, and fake pixels. All pixels with an intensity gradient value
greater than the high threshold are marked as ”strong pixels”, and thus will be preserved. But, if any
pixels gradient value is smaller than the low threshold, the pixel is marked as ”fake pixel”, thus will
be removed. However, weak pixels’ gradient values between the low threshold and high threshold are
considered. Finally, a series of lines remain between the two threshold values, which are divided into
two categories, including the real pixels and fake pixels. If they are included in ”strong pixels”, they are
considered part of the edge otherwise they must be suppressed.
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Figure 3: Flowchart of the fractional-order Canny edge detection algorithm.
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4 Experimental results and discussions

In this section, we test the performance of the proposed method in view of visual quality and numerical
quantities on a few datasets from various sources. In this research, the aim of the experiments given here
is to acquire the best edge map by using the proposed algorithm with different fractional order masks such
as Grünwald-Letnikov fractional derivative mask (GL) [6], Riemann-Liouville fractional derivative mask
(RL) [1], Caputo fractional derivative mask (C) [20], Caputo-Fabrizio fractional derivative mask (CF)
[16], masks based on ABC- fractional integral methods such as Grünwald-Letnikov fractional integral
mask (GL-ABC) [12], Toufik-Atangana fractional mask (TA-ABC) [12], and Euler fractional mask (Eu-
ABC) [12]. In order to analyze the performance of the proposed edge detection operator evaluation
measures, each measure is compared by changing the hysteresis threshold of the thin edges computed
with various fractional-order masks and integer-order masks such as Sobel.

Finally, compared to a ground truth image, the ideal edge map for measures corresponds to the
wanted contour, in which the evaluation gains the minimal rating for the measures considered among the
threshold thin gradient images. The size of the fractional differential mask is set to 3×3, and the value
of the fractional power is considered 0.2≤ α < 1. All experiments and implementation have been done
utilizing Matlab 2018b on an Intel(R) Core i7-73687U personal computer of CPU @ 2.10 GHz, 4GB
RAM, utilizing 32 bits Windows10.

4.1 Dataset

In our experiments, we utilize three types of datasets, including natural images, Chest X-Rays (CXR)
images, and medical images. The natural image dataset is extracted from “The Berkeley Segmenta-
tion Dataset (BSDS300)” (https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/
grouping/segbench/). This dataset consists of 300 natural images with their manual segmentations
divided into 200 training images and 100 testing images. It includes also human annotations that serve
as ground truth for fairness of boundary detection [18]. The size of the BSDS300 images and its ground
truth is 481×321 pixels. Figure 4 demonstrates samples of the selected images from BSDS300.

Chest X-Rays (CXR) images dataset is categorized into COVID-19, Viral Pneumonia, and Normal
(healthy), Lung Opacity images, which are extracted from Tawsifurrahman’s Kaggle dataset (https://
www.kaggle.com/tawsifurrahman/COVID19-radiography-database/) and Tawsifurr’s dataset [7,
29]. The size of the CXR images is 299× 299. In total 21,165 images are collected in the X-Ray
database, which includes 3616 COVID-19 positive cases, 10192 Normal images, 6012 Lung Opac-
ity (Non-COVID lung infection), and 1345 Viral Pneumonia images. Here we select COVID-19 im-
ages from Radiopedia which belongs to a patient 80-year-old female (https://radiopaedia.org/
cases/aspiration-pneumonia-5) and Cohens dataset [5]. The size of positive (COVID-19) images
is resized to 512× 512. Figure 5 demonstrates samples of the selected X-Rays images. Medical im-
ages contain Aneurysms images, X-ray hand images, and CT images are extracted from Radiopedia
(https://radiopaedia.org/cases?lang=us&page=1), as shown in Figure 6.

4.2 Quantitative Measures of Analysis

To make the quantitative performance comparison of the edge detectors, we employ four different mea-
surement criteria, such as Mean Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
https://www.kaggle.com/tawsifurrahman/COVID19-radiography-database/
https://www.kaggle.com/tawsifurrahman/COVID19-radiography-database/
https://radiopaedia.org/cases/aspiration-pneumonia-5
https://radiopaedia.org/cases/aspiration-pneumonia-5
https://radiopaedia.org/cases?lang=us&page=1
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4: Sample images for testing comparison from BSDS300; (a) “35010” image , (b) “189011”
image, (c) “167062” image, (d) “159091” image, (e) “118035” image, (f) “42049” image, (g) “12003”
image.

(a) (b) (c) (d) (e)

Figure 5: Sample images chest X-Ray images from a patient (]5) for testing comparison. This 80-year-
old female survived a COVID-19 infection [5, 7]; (a) Normal image, (b) Viral Pneumonia image, (c-e)
COVID-19 images: (c) Day 1, (d) Day 10, (e) Day 24.

Similarity Index (SSIM), and Performance Ratio (PR). In each sample, the behavior of the computed
values of four metrics is displayed for various orders α . Anyhow, computing these metrics requires
ground truth as reference edge images that are annotated manually by humans. The MSE and PSNR are
computed as follows:

MSE =
1

MN

M

∑
i=1

N

∑
j=1

(Ψ(i, j)−V (i, j))2 ,

PSNR = 10log10

(
2552

MSE

)
,

where Ψ is the original image, and V is the recovered image. The PSNR value depends wholly on the
mask window size and the fractional-order α value. As you know the higher PSNR and a lower MSE
illustrates, the better recovery performance of the proposed fractional-order masks obtains.
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(a) Hand image (Img1) (b) Aneurysm image (Img2) (c) CT image (Img3)

Figure 6: Sample medical images for testing comparison were extracted from Radiopedia.

SSIM index is utilized to measure the similarity between two images. SSIM is a full reference
criterion to measure image quality employing an initial image with perfect quality as a reference. The
SSIM values range expands between −1 and +1 and only in the case equals 1 if the two images are
identical. The SSIM formulation is expressed as:

SSIM(A ,B) =
(2µA µB +C1)(2σA B +C2)

(µ2
A +µ2

B +C1)(σ2
A +σ2

B +C2)
,

σA B =

(
1

N−1

N

∑
i=1

(Ai−µA )(Bi−µB)

)
,

where µA and µB are the mean intensity of A and B, respectively, σ2
A and σ2

B are the variance of of
A and B, respectively, σA B is the covariance, and C1 and C2 are two small constants.

PR (Performance Ratio of True to False Edges) is another criterion for evaluating edge detection.
It is computed using a ground truth (Gt) map edge, where ”True Edges” are edge pixels recognized as
edges, while ”False Edges” are the sum of non-edge pixels recognized as non-edge pixels. Its formula is
defined as follows:

PR =
TrueEdges
FalseEdges

×100.

4.3 Qualitative Comparison

In this work, the experimental results are divided into two sections. In Section 4.3.1, we extract edge
strength by using integer and fractional gradient magnitude. Then, the performance of the obtained re-
sults of all methods based on integer-order and fractional-order derivatives are compared and evaluated in
terms of quantitative and qualitative analysis. In Section 4.3.2, we utilize the kernels based on fractional-
order operators in Canny edge detection algorithm. Then, changing the hysteresis thresholding, the best
edge map is acquired by using fractional gradient computations and compared to the ground truth. The
performance of the results is evaluated in terms of quantitative and qualitative analysis on the Berkeley
segmentation dataset and medical image dataset.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Qualitative comparison of the edge strength obtained using GL-ABC fractional order mask on
eight directions on image “42078” with α = 0.9; (a) Original image, (b) fractional M 0.9

x gradient in x
direction, (c) fractional M 0.9

y gradient in y direction, (d) fractional M 0.9
θ

gradient in θ = 45◦ direction,
(e) fractional M 0.9

θ
gradient in θ = 135◦ direction, (f) fractional M 0.9

θ
gradient in θ = 225◦ direction,

(g) fractional M 0.9
θ

gradient in θ = 270◦ direction, (h) fractional M 0.9
θ

gradient in θ = 315◦ direction.

4.3.1 Experiment 1: Edge Strength Extracted by Integer and Non-integer Operators

In this section, we utilize non-integer edge detectors such as CF [16], RL [1], GL-ABC [12], TA-ABC
[12], and Eu-ABC [12] and integers edge detectors such as Roberts [10], Prewitt [24], Sobel [28], Canny
[4] to detect image edge strength and enhance image edge contrast. Here, first the gradient components
by applying the convolution fractional order masks are calculated. Then, we extract the edge strength
by using the fractional gradient magnitude. Therefore, we compare all the non-integer and integer edge
detectors both quantitatively and qualitatively, and determine the best method for achieving the most
ideal edge strength. Before describing more details about experiments on the aforementioned databases,
we present an example in Figure 7 to demonstrate the results of the fractional mask in eight directions in
Figure 2. In this test, we use the GL-ABC fractional operators with different values of α on the image
“42078”, the test image used in this experiment is selected from dataset BSDS300.

For the eyes qualitative analysis, Figure 8 indicates a comparison of the performance of all edge
detectors. It should be noted that to avoid the crowded experiment result section and to avoid the paper
being long, we provid the rest of the numeric results in the Supplementary Materials file. Please see
Section 1 of the Supplementary Material file. Figure 8 demonstrates that integer and non-integer order
edge detectors both can find the edge. But when dealing with some points, they can not differentiate
between the image’s main part and its background. Figure 8(c-f) demonstrates the results of integer order
masks on “159091” image. It can be observed that Roberts operator is poorly detected low-frequency
characteristic and is found discontinuity of the edge during the operation. The Canny operator is an
ideal edge detection method, but for a better result, it needs a larger filter which may cause more image
information to be lost. In addition, Figure 8(g-k) indicates the results of fractional order masks. As
it can be seen in Figure 8(h) the RL operator maintained well low-frequency characteristics ineffective
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(a) Original image (b) Gt (c) Roberts (d) Sobel

(e) Prewitt (f) Canny (g) CF, at α = 0.64 (h) RL, at α = 0.53

(i) GL-ABC, at α = 0.9 (j) TA-ABC, at α = 0.62 (k) Eu-ABC, at α = 0.89

Figure 8: Qualitative comparison of the edge strength obtained using various edge detectors on “159091”
image.

regions and did not effectively consider the complexity of the local texture. Therefore, it only led to
the outer edges. The same observations can be expressed for the rest of the figures in Section 1 of the
Supplementary Material file. It seems that the TA-ABC fractional mask has obtained the best output
compared to the other methods. The operators based on the ABC-fractional integral take into account
high and low-frequency features compared to other integer and non-integer differential algorithms. As
a result, the fractional-order filters based on the ABC-fractional differential operator can be detected
the whole of the important image details. They generate sharper, more accurate, and thicker edges, and
moreover can remove the false negatives in the textured areas, increasing the image edge contrast.

4.3.2 Experiment 2: Edge Map Extracted By Using Hysteresis Thresholding

The goal of the experiments presented in this study is to get the best edge map in the proposed way, and
prove the performance of the proposed algorithm for accurate detection of edges in different databases.
In order to explore the efficiency of edge detection evaluation measures, we compare each measure
by changing the threshold of the thin edges with different edge detectors: Prewitt [24], Sobel [28],
Canny [4], GL [6], C [20], CF [16], RL [1], GL-ABC [12], TA-ABC [12], and Eu-ABC [12] operators.
Next, each image of the selected dataset is processed by the mentioned algorithms, then the acquired ideal
edge map is compared with ground truth image to get the minimum score for measurement criteria. On
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9: Qualitative comparison of edge map obtained by NMS into Canny operator using various
edge detectors on “118035” image with Hysteresis thresholding values, τH = 0.15 and τL = 0.08, (a)
Original image, (b) Ground Truth(Gt), (c) Prewitt, (d) Sobel, (e) Canny+sobel, (f-l) Result using our
proposed method: (f) Canny+GL at (α = 0.98), (g) Canny +C at (α = 0.2), (h) Canny+CF at (α = 0.92),
(i) Canny+RL at (α = 0.2), (j) Canny+GL-ABC at (α = 0.2), (k) Canny+TA-ABC at (α = 0.2), (l)
Canny+Eu-ABC at (α = 0.2).

the other hand, as we said, all the tested methods are based on the Canny algorithm process. Therefore,
all the parameters used in this process must be fixed, and we also consider the lower and higher threshold
values to be the same for all algorithms. In Figure 9, we can observe the performance of the kernels based
on ABC- fractional integral and the rest of fractional and integer-order kernels into the Canny algorithm.
The rest of the test results in Section 1 of the Supplementary Materials file are inserted. As you can see
from the resulting tests, apparently all edge detectors detected more edges than the ground truth image.
Human edge images (ground truth images) have been manually annotated with strong edges by multiple
human observers, while Edge detectors extract all discontinuities, including weak edges, in an image.

In Figure 9, we can apperceive that the combination of Canny algorithm with fractional edge detec-
tors especially GL and C operators produce external lines, lose texture details, the effect of edge gradient
leads to artifacts in edge, generate thick edges, create false negative in the textured areas. Whereas
GL-ABC, TA-ABC, and Eu-ABC edge detectors have a good performance on all images and improve
image objective quality remarkably, obtain the thin edges by filtering gradient computations based on
ABC-fractional integral kernels, extract better edge maps than other detectors by changing the hysteresis
thresholding, reduce the effect of artifacts on the edges, suppress weak edges to a certain extent and
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Figure 10: Image “118035”: Comparison of edge detection evaluation with different α’s for three mea-
sures: (a) PSNR, (b) MSE, (c) SSIM.

debilitate false negatives in the textured areas. By choosing the best α order, the false negatives in the
textured areas are removed and the resulting edge map is closer to human edge images.

4.4 Quantitative Comparison

The plotted curve in Figure 10 exhibits the evolution of the numerical simulations of MSE, SSIM, and
PSNR for the proposed edge detector with fractional masks in Section 4.3.2, in which various colors are
utilized to distinguish different filters. Since the detailed results for all images make the paper very long,
we insert the rest of the graphs in Section 2 of the Supplementary Materials file. The graph 10 illustrates
that our proposed method based on ABC- fractional order masks have the highest performance for the
small values of α = 0.2 because of better localization of edges. As you can notice from all graphs, by
increasing the fractional-order α from 0.2 to 1, the error indicated by the MSE metric increases, and the
SSIM and PSNR decrease to reach the worst value of 1, which corresponds to the integer-order derivative.
For all experiments, the PSNR, SSIM, PR, and MSE values for the GL-ABC fractional operator with
Canny in Section 4.3.2 have superiority over other operators illustrating more likeness between ground
truth and the edge map obtained from GL-ABC mask.

For the quantitative analysis, Tables 1 and 2 exhibit the comparison results of texture analysis for
different masks in terms of different measure criteria for all considered datasets. Each cell demonstrate
the value of the corresponding criteria for the mentioned image and method. The method which won
first place is highlighted in bold, and the second place is highlighted in underlined. Table 1 gives the
numerical simulations using the MSE, SSIM, PR, and PSNR metrics on each one of the natural images
presented in Figure 4 and their ground truth. By the definition of MSE, we as know that the smaller the
MSE is, the more similar the edge map obtained by non-maximum suppression and ground truth, and
also compatible with the human visual system. In addition, the computed PR values illustrate that the
GL-ABC, TA-ABC, and Eu-ABC masks detected more edges than the comparative masks.

Tabel 2 evaluates measure criteria results for CXR images and medical images presented in Figures
5 and 6, respectively. The numerical results confirm the ABC-fractional-order filters excellence with less
MSE and higher PSNR than the integer and non-integer order derivative filters. It should be noted that the
computational cost of the ABC- fractional order masks in this manuscript is equal to the corresponding
costs in other fractional order masks. Based on the obtained results, we can conclude that the proposed
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approach with ABC fractional integral masks with a non-local and non-singular kernel have achieved the
best results in terms both visually and qualitatively than other approaches.

4.5 Advantages and Disadvantages of Edge Detector

There are disadvantages and advantages to using the integer-order differential methods with edge detec-
tion operators. There are disadvantages and advantages to using the integer-order differential methods
with edge detection operators. The primary advantages of integer-order algorithms are simplicity .These
algorithms could enhance the edge information effectively. The major disadvantages of these classical
operators are sensitivity to the noise, in the detection of the edges and their orientations and the inaccu-
racy. Using the fractional calculus, one can overcome the existing problems in the well-known masks
such as Canny, Prewitt, and Sobel. The primary advantages of fractional-order operators are flexibility in
choosing the fractional derivative order. The fractional-order parameter gives an extra degree of freedom
in designing different masks, and the order α can continuously change, we can obtain the best image edge
information by adjusting the value of α in our experiments. The disadvantages of these fractional-order
operators are that the numerical implementation of fractional order calculus is very complicated. The use
of the fractional differential in the convolution mask can be devastating if not attentively constructed.

5 Conclusion

This manuscript is divided into two parts. In the first part, we extract the edge strength map by us-
ing the gradient magnitude. Indeed, the image gradient is calculated by the convolution masks of the
fractional-order operators. In the second part, we introduce a modified Canny edge detection algorithm.
In fact, the introduced method is a combination of the fractional-order operators and Canny edge detec-
tion algorithm. Here, after computing gradient magnitude (edge strength), we employ non-maximum
suppression (NMS) to obtain the ideal edge map. Finally, hysteresis thresholding is utilized to eliminate
false edges. In this work, we analyze the performance evaluation of the proposed method compared
to other methods from the view of visual and quantitative quality on three types of datasets, including
natural images, CXR images, and medical images. The measurement criteria used to evaluate the result-
ing tests are PSNR, MSE, SSIM, and PR. In the first experiment, we observe that the obtained masks
based on ABC-fractional integral formulation enhance image contrast while preserving the smooth area
of the image, and also generate sharp and highlighted edges compared to other edge detectors. In the
second experiment, we observe that the proposed method with ABC-fractional order masks suppress the
false edges, by choosing the best α order and hysteresis thresholding, it has produced strong edges and
thin edges. The resulting edge map is visually closer to the ground truth image. Finally, we conclude
that the efficiency of the GL-ABC, TA-ABC and Eu-ABC fractional-order operators is superior to other
comparative operators.

References

[1] P. Amoako-Yirenkyi, J.K. Appati, I.K. Dontwi, A new construction of a fractional derivative mask
for image edge analysis based on riemann-liouville fractional derivative, Adv. Differ. Equ. 2016
(2016) 1–23.



Improving canny edge detection algorithm 511

Table 1: Comparison of quantitative performance of different edge detectors on the nature image 4.

Method \ Image Measures “35010” “42049” “189011” “167062” “118035” “12003” “159091”

Prewitt

PSNR 60.6887 63.9337 64.4683 67.2504 62.7784 61.4480 63.2873
MSE 0.0559 0.0265 0.0234 0.0123 0.0346 0.0470 0.0307
SSIM 0.9981 0.9993 0.9992 0.9996 0.9990 0.9980 0.9989

PR 12.0814 15.7919 5.9794 8.2221 11.6522 8.8784 8.0686

Sobel

PSNR 60.6245 63.8921 64.6750 68.6628 62.7620 61.2555 63.4567
MSE 0.0568 0.0267 0.0223 0.0089 0.347 0.491 0.0296
SSIM 0.9981 0.9993 0.9992 0.9997 0.9990 0.9979 0.9989

PR 12.2539 15.8362 5.6932 7.7767 11.8948 9.2115 7.8456

Canny+Sobel

PSNR 59.8963 63.7807 65.0292 69.1537 62.8324 61.9412 64.3651
MSE 0.0671 0.0274 0.0206 0.008 0.0341 0.0419 0.0240
SSIM 0.9975 0.9992 0.9992 0.9997 0.9988 0.9982 0.9990

PR 14.9279 17.211 5.6405 8.2771 14.4659 9.664 8.1931

Canny+GL

PSNR 60.5912 64.0733 65.5335 65.9153 61.9806 60.4332 63.4313
MSE 0.0572 0.0257 0.0183 0.0168 0.0415 0.0593 0.0297
SSIM 0.9981 0.9992 0.9993 0.9995 0.9988 0.9975 0.9988

PR 11.0811 11.0946 4.2865 6.0546 14.6172 9.175 6.8642

Canny+C

PSNR 60.0244 64.5330 65.3821 66.8140 62.4776 60.9374 62.1386
MSE 0.0652 0.0231 0.0190 0.0136 0.0370 0.0528 0.0401
SSIM 0.9975 0.9992 0.9991 0.9997 0.9987 0.9980 0.9984

PR 6.9951 8.2765 3.1399 2.5901 7.9008 7.2589 6.0796

Canny+CF

PSNR 60.6025 64.1504 65.3348 68.6360 62.7502 61.0526 64.1881
MSE 0.0571 0.0252 0.0192 0.009 0.0348 0.0514 0.0250
SSIM 09981 0.9993 0.9993 0.9997 0.9988 0.9979 0.9990

PR 11.3147 14.0543 2.7365 7.5477 12.3465 9.6066 7.1893

Canny+RL

PSNR 60.7762 64.2294 65.4198 68.7926 62.8195 61.2986 64.3790
MSE 0.0548 0.0247 0.0188 0.0087 0.0342 0.0486 0.0239
SSIM 0.9981 0.9993 0.9993 0.9997 0.9988 0.9980 0.9990

PR 10.8927 13.7856 4.5632 7.3941 12.1609 9.1121 6.8882

Canny+GL-ABC

PSNR 60.8741 64.9374 65.8900 69.2291 63.1620 61.9594 64.4040
MSE 0.0536 0.0210 0.0169 0.0078 0.0316 0.0417 0.0238
SSIM 0.9980 0.9994 0.9993 0.9997 0.9989 0.9982 0.9992

PR 14.2191 17.4936 6.2465 8.3412 14.6353 9.748 8.2793

Canny+TA-ABC

PSNR 60.8465 64.8403 65.7813 69.2646 63.1519 61.9118 64.3216
MSE 0.0539 0.0215 0.0173 0.0077 0.0317 0.0422 0.0242
SSIM 0.9980 0.9994 0.9993 0.9997 0.9989 0.9982 0.9991

PR 14.2576 17.6734 6.2436 8.2277 14.5819 9.767 8.0868

Canny+Eu-ABC

PSNR 60.5212 64.4976 65.6505 69.2404 62.9931 61.8902 64.3216
MSE 0.0581 0.0233 0.0178 0.0078 0.0329 0.0424 0.0242
SSIM 0.9978 0.9993 0.9993 0.9997 0.9988 0.9981 0.9991

PR 14.5601 17.7972 6.2173 8.3059 14.7418 9.9088 8.037
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