تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,128 |
تعداد مشاهده مقاله | 10,280,245 |
تعداد دریافت فایل اصل مقاله | 6,912,102 |
بررسی آزمایشگاهی و تحلیلی تیرهای بتن مسلح تقویت شده با پلیمرهای مسلح الیافی و مواد پایه سیمانی مسلح الیافی | ||
تحقیقات بتن | ||
دوره 15، شماره 3 - شماره پیاپی 39، مهر 1401، صفحه 5-17 اصل مقاله (1.02 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jcr.2022.21288.1540 | ||
نویسندگان | ||
جواد سبزی1؛ محمدرضا اصفهانی* 2 | ||
1گروه مهندسی عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
2گروه مهندسی عمران ،دانشکده مهندسی، دانشگاه فردوسی مشهد ،مشهد | ||
چکیده | ||
هدف از پژوهش حاضر مقایسه بین تیرهای تقویت شده با پلیمرهای مسلح الیافی (FRP) و مواد پایه سیمانی مسلح الیافی (FRCM) میباشد. بدین منظور شش تیر بتن مسلح ساخته شده و با FRP و FRCM تقویت گردیدند. همچنین پارامترهای دیگری مانند نوع روش تقویت و مقدار میلگرد خمشی نیز مورد بررسی قرار گرفت. نتایج نشان میدهد که در روش تسلیح خارجی (EBR)، تقویت با FRCM منجر به افزایش ظرفیت باربری در مقاطع با مقدار میلگرد خمشی و به ترتیب به میزان 8/12 درصد و 8/16 درصد در مقایسه با تقویت با FRP میگردد. همچنین مود گسیختگی تیرهای تقویت شده با روش EBR، در تقویت با FRP به صورت جداشدگی ورق FRP و در تقویت با FRCM به صورت پارگی شبکه FRCM میباشد. در روش تسلیح خارجی بر روی شیار (EBROG)، ظرفیت باربری تیرهای تقویت شده با FRP و FRCM تقریباً مشابه یکدیگر میباشد. همچنین مود گسیختگی مشاهده شده در روش EBROG برای تقویت با FRP و FRCM به ترتیب به صورت جداشدگی بخشی از پوشش بتن و جداشدگی کامل پوشش بتن روی میلگردهای کششی میباشد. در نهایت نتایج آزمایشگاهی با روابط آییننامهها و مدلهای تحلیلی موجود مورد بررسی قرار گرفت. نتایج نشان داد که با افزایش مقدار میلگرد خمشی در تیرهای تقویت شده با FRP، ظرفیت باربری به دست آمده از روابط آییننامهها و مدلهای تحلیلی به ظرفیت باربری آزمایشگاهی نزدیکتر میگردد. | ||
کلیدواژهها | ||
تیر؛ بتن مسلح؛ پلیمرهای مسلح الیافی (FRP)؛ مواد پایه سیمانی مسلح الیافی (FRCM)؛ تقویت | ||
مراجع | ||
[1] Khorasani AM, Esfahani MR, Sabzi J. The effect of transverse and flexural reinforcement on deflection and cracking of GFRP bar reinforced concrete beams. Composites Part B: Engineering. 2019;161:530-46.
[2] Farahi B, Esfahani M, Sabzi J. Experimental investigation on the behavior of reinforced concrete beams retrofitted with NSM-SMA/FRP. Amirkabir Journal of Civil Engineering. 2019;51:685-98.
[3] Arabshahi A, Tavakol M, Sabzi J, Gharaei-Moghaddam N. Prediction of the effective moment of inertia for concrete beams reinforced with FRP bars using an evolutionary algorithm. In Structures. 2022; 35: 684-05.
[4] Sabzi J, Esfahani MR. Effects of tensile steel bars arrangement on concrete cover separation of RC beams strengthened by CFRP sheets. Construction and Building Materials. 2018;162:470-9.
[5] Sabzi J, Esfahani MR. Flexural Behavior of RC Beams Strengthened by CFRP Sheets in the Beams with low and high Reinforcement Ratios. Amirkabir Journal of Civil Engineering, 2018;50:907-18.
[6] Sabzi J, Esfahani MR, Ozbakkaloglu T, Farahi B. Effect of concrete strength and longitudinal reinforcement arrangement on the performance of reinforced concrete beams strengthened using EBR and EBROG methods. Engineering Structures. 2020;205:110072.
[7] Mostofinejad D, Mahmoudabadi E. Grooving as alternative method of surface preparation to postpone debonding of FRP laminates in concrete beams. Journal of Composites for Construction. 2010;14:804-11.
[8] Ombres L. Flexural analysis of reinforced concrete beams strengthened with a cement based high strength composite material. Composite Structures. 2011;94:143-55.
[9] Shrestha KC, Ebead U, Younis A. Effect of Surface Roughening on Concrete/TRM Bond. Proceedings of the Ninth International Structural Engineering and Construction Conference, Resilient Structures and Sustainable Construction: ISEC Press Valencia, Spain; 2017.
[10] Ombres L. Debonding analysis of reinforced concrete beams strengthened with fibre reinforced cementitious mortar. Engineering Fracture Mechanics. 2012;81:94-109.
[11] Tetta ZC, Koutas LN, Bournas DA. Shear strengthening of full-scale RC T-beams using textile-reinforced mortar and textile-based anchors. Composites Part B: Engineering. 2016;95:225-39.
[12] Ebead U, Shrestha KC, Afzal MS, El Refai A, Nanni A. Effectiveness of fabric-reinforced cementitious matrix in strengthening reinforced concrete beams. Journal of Composites for Construction. 2017;21: 04016084.
[13] Wakjira TG, Ebead U. Hybrid NSE/EB technique for shear strengthening of reinforced concrete beams using FRCM: Experimental study. Construction and Building Materials. 2018;164:164-77.
[14] Wakjira TG, Ebead U. FRCM/internal transverse shear reinforcement interaction in shear strengthened RC beams. Composite Structures. 2018;201:326-39.
[15] Ebead U, El-Sherif H. Near surface embedded-FRCM for flexural strengthening of reinforced concrete beams. Construction and Building Materials. 2019;204:166-76.
[16] ACI-549.4R-13. Guide to design and construction of externally bonded fabric-reinforced cementitious matrix systems for repair and strengthening concrete and masonry structures. Reported by ACI Committee 549. 2013.
[17] Raoof SM, Koutas LN, Bournas DA. Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams. Construction and Building Materials. 2017;151:279-91.
[18] Triantafillou TC, Papanicolaou CG. Textile Reinforced Mortars (TRM) versus Fiber ReinforcedPolymers (FRP) as StrengtheningMaterials of Concrete Structures. Special Publication. 2005;230:99-118.
[19] D’Ambrisi A, Focacci F. Flexural strengthening of RC beams with cement-based composites. Journal of Composites for Construction. 2011;15:707-20.
[20] Gonzalez-Libreros JH, Sneed L, D'Antino T, Pellegrino C. Behavior of RC beams strengthened in shear with FRP and FRCM composites. Engineering Structures. 2017;150:830-42.
[21] ASTM. (2009). “Standard test methods for tension testing of metallic materials.” ASTM E8/E8M, American Society for Testing and Materials, West Conshohocken, PA.
[22] ASTM C109 / C109M-16a, Standard test method for compressive strength of hydraulic cement mortars (Using 2 in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA, (2016).
[23] ASTM C496/C496M-11, Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM International, West Conshohocken, PA, (2011).
[24] ACI Committee 318. Building code requirements for structural concrete and commentary. Farmington Hills: American Concrete Institute; 2014.
[25] ACI 440.2R-17. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. Reported by ACI Committee 440. 2017.
[26] CNR-DT 200 R1/2013. Guide for the design and construction of externally bonded FRP systems for strengthening existing structures. Rome, Italy: National Research Council; 2013.
[27] Lu X, Teng J, Ye L, Jiang J. Intermediate crack debonding in FRP-strengthened RC beams: FE analysis and strength model. Journal of Composites for Construction. 2007;11:161-74.
[28] Said H, Wu Z. Evaluating and proposing models of predicting IC debonding failure. Journal of composites for construction. 2008;12:284-99. | ||
آمار تعداد مشاهده مقاله: 390 تعداد دریافت فایل اصل مقاله: 352 |