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Abstract. In this paper, we consider the problem of approximating the displacement and the wave
sink or source in a 1D wave equation from various measurements. First, the problem is recast as a
certain hyperbolic equation. Then, we propose a Ritz approximation as the solution of the reformulated
problem and apply the collocation method to convert the inverse problem to a system of linear equations.
Since the problem is not well-posed, the numerical discretization of the problem may produce a system
of equations that is not well-conditioned. Therefore, we apply the Tikhonov regularization method to
obtain a stable solution. For the contaminated measurements, we take advantage of the mollification
method in order to derive stable numerical derivatives. Several test examples are provided to show the
effectiveness of the proposed technique for obtaining satisfactory results.
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1 Introduction

Consider a one-dimensional second-order hyperbolic equation

utt −uxx = f (x) in (0,L)× (0,T ), (1)

with the initial conditions

u(x,0) = u0(x), ut(x,0) = u1(x) on (0,L), (2)

and the Dirichlet boundary conditions

u(0, t) = b0(t), u(L, t) = b1(t) on (0,T ). (3)
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Eqs. (1)-(3) describe the propagation of wave in a uniform string with certain length L > 0, which acts
on a space-dependent force f (x). If the function f (x) is given, the problem of recovering u(x, t) within
Eqs. (1)-(3) is referred to as direct problem.

In contrast to the direct problem, wave source f (x) of the inverse problem is unknown and additional
specification is needed to obtain a unique solution [3, 10, 11]. In this paper, we investigate two inverse
problems based on different overspecifications as follows:

• Suppose that the additional condition is the normal derivative of u at one of the boundary points,
say at x = 0, namely,

ux(0, t) = h0(t) on (0,T ). (4)

Then, the problem of finding (u(x, t), f (x)) using Eqs. (1)-(4) is called the inverse problem 1 (IP1).

• Assume that the extra condition is the displacement measurement in space at final time, i.e.

u(x,T ) = uT (x) on (0,L). (5)

Then, the problem of finding (u(x, t), f (x)) using Eqs. (1)-(3) and (5) is called the inverse problem
2 (IP2).

The outline of this paper is as follows. In Section 2, we propose the reconstruction procedures
based on applying the satisfier function and the Ritz collocation method for numerically discretizing the
considered problems IP1 and IP2. In Section 3, we discuss the numerical results of solving four test
examples. In Section 4, some concluding remarks are presented.

2 Reconstruction algorithm

In this section we propose the specific algorithm for solving problems IP1 and IP2. The key feature
of the method is applying the interpolation techniques to construct an auxiliary function, the so-called
satisfier function which fulfills all the given initial and boundary conditions [9,13]. Apart from the initial
and boundary conditions, some physical information about the solution such as oscillatory behavior or
the descending behavior of the solution can be useful to build the appropriate satisfier function that is
close enough to the exact solution [16]. If a product form [1, 23, 24] for the solution of the problem is
assumed, then under some restrictions one can find the unique satisfier function otherwise the satisfier
functions are not unique globally. Following, we introduce a computational method for obtaining the
satisfier function provided that the initial and boundary conditions are continuous in corners [19, 20].

2.1 The solution of inverse problem 1

Assume that the given initial and boundary conditions are smooth on (0,L)× (0,T ) and the following
compatibility conditions hold

b0(0) = u0(0), b′0(0) = u1(0), b1(0) = u0(L), b′1(0) = u1(L), u′0(0) = h0(0), h′0(0) = u′1(0), (6)

and consider
B1(x, t) = γ1(x)b0(t)+ γ2(x)b1(t)+ γ3(x)h0(t), (7)
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where

γi(x) =
2

∑
j=0

γi jx j, i = 1,2,3,

and γi j are unknown coefficients. To apply the boundary conditions (3) and (4), we take the following
equations into account 

γ1(0) = 1, γ1(L) = 0, γ ′1(0) = 0,
γ2(0) = 0, γ2(L) = 1, γ ′2(0) = 0,
γ3(0) = 0, γ3(L) = 0, γ ′3(0) = 1,

(8)

and obtain

γ1(x) = 1− x2

L2 , γ2(x) =
x2

L2 , γ3(x) = x− x2

L
. (9)

To impose the initial conditions (2), we consider

I1(x, t) = θ1(t)u0(x)+θ2(t)u1(x), (10)

where

θi(t) =
1

∑
j=0

θi jt j, i = 1,2.

The unknown coefficients θi j are computed by applying the following equations{
θ1(0) = 1, θ ′1(0) = 0,
θ2(0) = 0, θ ′2(0) = 1,

(11)

which results in the following
θ1(t) = 1, θ2(t) = t. (12)

We establish the satisfier function s1(x, t) utilizing the following equation

s1(x, t) = I1(x, t)+B1(x, t)−
{

B1(x,0)+ t
∂B1(x, t)

∂ t

∣∣∣∣
t=0

}
, (13)

and obtain

s1(x, t) = θ1(t)u0(x)+θ2(t)u1(x)+ γ1(x)
(

b0(t)−b0(0)− tb′0(0)
)
+ γ2(x)

(
b1(t)−b1(0)− tb′1(0)

)
+γ3(x)

(
h0(t)−h0(0)− th′0(0)

)
. (14)

To solve the inverse problem IP1, we compute the wave source f (x) by setting t = 0 in the governing
Eq. (1), that is

f (x) = utt(x, t)|t=0−u0
′′(x). (15)

Accordingly, Eq. (1) is rewritten as

utt −uxx = utt(x, t)|t=0−u0
′′(x) in (0,L)× (0,T ), (16)
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and the Ritz approximation of IP1 based on polynomial basis functions is sought in the form of the
following truncated series

uN,N′(x, t) =
N

∑
i=0

N′

∑
j=0

ci jt2+ j(xi+3−Lxi+2)+ s1(x, t). (17)

Substituting the approximation uN,N′(x, t) in Eq. (16), the residual function is constructed as follows

Res1(x, t) :=
N

∑
i=0

N′

∑
j=0

ci j

{
(2+ j)(1+ j)t j(xi+3−Lxi+2)− t2+ j

(
(i+3)(i+2)xi+1−L(i+2)(i+1)xi

)}

−
N

∑
i=0

2ci0(xi+3−Lxi+2)+H1(x, t) = 0, (18)

where

H1(x, t) =
∂ 2s1(x, t)

∂ t2 − ∂ 2s1(x, t)
∂x2 − ∂ 2s1(x, t)

∂ t2

∣∣∣∣
t=0

+u′′0(x), (19)

and
∂ 2s1(x, t)

∂ t2 = γ1(x)b
′′
0(t)+ γ2(x)b

′′
1(t)+ γ3(x)h

′′
0(t), (20)

∂ 2s1(x, t)
∂x2 = θ1(t)u

′′
0(x)+θ2(t)u

′′
1(x)−

2
L2

(
b0(t)−b0(0)− tb′0(0)

)
+

2
L2

(
b1(t)−b1(0)− tb′1(0)

)

− 2
L

(
h0(t)−h0(0)− th′0(0)

)
. (21)

By applying the collocation method [2, 17, 19, 20] for Res1(xi, t j) = 0 and by using the following
collocation points

(xi, t j) = (
iL

N +2
,

jT
N′+2

), i = 1,2, . . . ,N +1, j = 1,2, . . . ,N′+1, (22)

we form the following system of linear equations

Ac = g, (23)

where c is the vector of unknown constants ci j that we need to determine to form our approximation.
Typically, A is an ill-conditioned matrix, therefore we require using regularization techniques [18, 22]
to obtain a stable solution. Hence, instead of (23), according to the Tikhonov regularization method
[4–7, 10], we solve the following modified system of equations

(AT A+λ I)c = AT g, (24)

where I is the identity matrix and λ > 0 is the regularization parameter.
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2.2 The solution of inverse problem 2

By utilizing the extra condition (5), we derive the following relation

f (x) = utt(x, t)|t=T −u′′T (x), (25)

which is used to convert (1) to the following equation

utt −uxx = utt(x, t)|t=T −u′′T (x). (26)

For solving IP2, we consider the following Ritz type approximation

uN,N′(x, t) =
N

∑
i=0

N′

∑
j=0

ci j(t3+ j−Tt2+ j)(xi+2−Lxi+1)+ s2(x, t), (27)

where the notation s2(x, t) stands for the satisfier function corresponding the initial and boundary condi-
tions (2)-(3) and (5), provided that the given initial and boundary conditions are smooth on (0,L)×(0,T )
and the following consistency conditions are satisfied

b0(0) = u0(0), b′0(0) = u1(0), b1(0) = u0(L), b′1(0) = u1(L), b0(T ) = uT (0), b1(T ) = uT (L). (28)

We construct the satisfier function s2(x, t) through the following steps:

Step (1): Assume that
I2(x, t) = α1(t)u0(x)+α2(t)u1(x)+α3(t)uT (x),

where αi(t) = ∑
2
j=0 αi jt j, i = 1,2,3. By applying the following system of equations

α1(0) = 1, α ′1(0) = 0, α1(T ) = 0,
α2(0) = 0, α ′2(0) = 1, α2(T ) = 0,
α3(0) = 0, α ′3(0) = 0, α3(T ) = 1,

(29)

we get the unknown coefficients αi j and distinguish the functions αi(t), i = 1,2,3 as

α1(t) = 1− t2

T 2 , α2(t) = t− t2

T
, α3(t) =

t2

T 2 .

Step (2): Consider
B2(x, t) = β1(x)b0(t)+β2(x)b1(t),

where βi(x) = ∑
1
j=0 βi jx j, i = 1,2. We use the following equations to get the unknown coefficients βi j{

β1(0) = 1, β1(L) = 0,
β2(0) = 0, β2(L) = 1,

(30)

and specify the functions β j(x), j = 1,2 as

β1(x) = 1− x
L
, β2(x) =

x
L
.
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Step (3): Define

s2(x, t) = I2(x, t)+B2(x, t)−
{
(1− x

L
)I2(0, t)+

x
L

I2(L, t)
}
,

which is equivalent to

s2(x, t) = α1(t)
(

u0(x)− (1− x
L
)u0(0)−

x
L

u0(L)
)
+α2(t)

(
u1(x)− (1− x

L
)u1(0)−

x
L

u1(L)
)

+α3(t)
(

uT (x)− (1− x
L
)uT (0)−

x
L

uT (L)
)
+β1(x)b0(t)+β2(x)b1(t). (31)

By substituting the approximation (27) in Eq. (26), we get the residual function Res2(x, t) as

Res2(x, t) :=
N

∑
i=0

N′

∑
j=0

ci j

{
(3+ j)(2+ j)t j+1−T (2+ j)(1+ j)t j

}
(xi+2−Lxi+1)

−
N

∑
i=0

N′

∑
j=0

ci j

{
(2+ i)(1+ i)xi−L(i+1)ixi−1

}
(t3+ j−Tt2+ j)+H2(x, t) = 0,

where

H2(x, t) =
∂ 2s2(x, t)

∂ t2 − ∂ 2s2(x, t)
∂x2 − ∂ 2s2(x, t)

∂ t2 |t=T +u′′T (x)−
N

∑
i=0

N′

∑
j=0

2ci j(2+ j)T j+1(xi+2−Lxi+1). (32)

It should be noted that the functions ∂ 2s2(x,t)
∂x2 and ∂ 2s2(x,t)

∂ t2 are computed as:

∂ 2s2(x, t)
∂x2 = α1(t)u

′′
0(x)+α2(t)u

′′
1(x)+α3(t)u

′′
T (x), (33)

∂ 2s2(x, t)
∂ t2 =

−2
T 2

(
u0(x)− (1− x

L
)u0(0)−

x
L

u0(L)
)
− 2

T

(
u1(x)− (1− x

L
)u1(0)−

x
L

u1(L)
)

+
2

T 2

(
uT (x)− (1− x

L
)uT (0)−

x
L

uT (L)
)
+β1(x)b

′′
0(t)+β2(x)b

′′
1(t). (34)

Finally, by applying the collocation points (22) to the equation Res2(xi, t j) = 0, we get a system of linear
equations for the unknown coefficients ci j which is solved by employing the Tikhonov regularization
technique, i.e. similar to Eq. (24).

3 Numerical experiments

In this section, we numerically solve four different problems to demonstrate the effectiveness of our
technique. We define

E(u) = |uexact(x, t)−uM,M′(x, t)|, E( f ) = | fexact(x)− fapproximation(x)|,

as the absolute error for functions u and f respectively. Moreover, Π(A) denotes the condition number
of the matrix A. All experiments are performed with Wolfram Mathematica on a PC.
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Example 1. The first problem is IP1 which is described by Eqs. (1)-(4) with

u0(x) = sin(πx), u1(x) = 1, h0(t) = π, (35)

b0(t) = t +
t2

2
= b1(t) = t +

t2

2
.

We assume L = T = 4 and offer a solution by following the numerical method of Section 2.1, with
N = N′ = 3 and derive the following s1(x, t) = sin(πx)+ t + t2

2 . Following the proposed solution and
according to Eq. (23), we arrive at a homogenous system of equations Ac = 0 where the matrix A is
nonsingular with determinant equal to −1.11346×1032. Thus, we have ci, j = 0 and so u(x, t) = s1(x, t),
and it can be concluded from Eq. (15) that f (x)= 1+π2 sin(πx) which is the exact solution. Therefore, in
some cases, the satisfier function not only provides the approximation to satisfy the initial and boundary
conditions, but also may lead to the exact solution.

Example 2. The second problem is IP1 which is described by Eqs. (1)-(4) with

u0(x) = cos(x)+ sin(πx), u1(x) = 1+ ex− sin(x), h0(t) = π−1+ et − sin(t), (36)

b0(t) = et + cos(t)+ t +
t2

2
−1, b1(t) = eL+t + cos(L+ t)− eL + t +

t2

2
,

where the analytical solution is

f (x) = 1+ ex +π
2 sin(πx), u(x, t) = ex+t + cos(x+ t)− ex + sin(πx)+ t +

t2

2
, (x, t) ∈ [0,L]× [0,T ].

By considering L = T = 2, and applying the numerical scheme presented in Subsection 2.1, we obtain
the results as shown in Table 3 with different values of N = N′ ∈ {2,3,4}. Table 3 demonstrates that the
approximate solution is close to the analytical solution and errors are decreased as the number of basis
functions increases gradually which indicate that our method is convergent.

Next, we assume L= T = 3 and study the numerical stability of the approximate solution with respect
to the small perturbations of the input data. In this respect, we contaminate the extra condition (4) with
artificial errors using the following rule [8]

hσ
0 (t) = h0(t)+σ sin(

t
σ2 ), σ = r×10−2, r ∈ N. (37)

Remark 1. It must be noted that employing Eqs. (20)-(21) in (19) is acceptable as long as we have exact
boundary data. Nevertheless, the presence of inaccuracies in the input data in practical applications such
as (37), suggests performing the regularization procedure to obtain stable numerical derivatives of the
perturbed data such as h′0(t) and h0

′′(t). Therefore, regarding the perturbed boundary data, if hσ
0 (t) be

perturbation such that ‖h0(t)−hσ
0 (t)‖∞ ≤ σ , then we employ the mollification method of [12] by taking

into account the Gaussian mollifier

Fδ (t) =
exp(− t2

δ 2 )

δ
√

π
,

where δ > 0 is the radius of mollification. The mollification of the perturbed data (hσ
0 (t))

′′ is performed
utilizing the following convolution [21]{

Fδ ∗ (hσ
0 )
′′
}
(t) :=

∫ +∞

−∞

Fδ (r)(h
σ
0 )
′′(t− r)dr.
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By the property of convolution, {
Fδ ∗ (hσ

0 )
′′
}
(t) =

{
F
′′

δ
∗ (hσ

0 )

}
(t), (38)

and for a given δ > 0 we calculate
{

F
′′

δ
∗ (hσ

0 )

}
(t) numerically [14, 15] using the mid-point integration

rule, that is{
F
′′

δ
∗ (hσ

0 )

}
(t)' π

mδ

mδ−1

∑
i=0

Q(t,−π

2
+

πi
mδ

+
π

2mδ

), Q(t,r) = F
′′

δ
(t− tanr)hσ

0 (tanr)sec2 r. (39)

Then, we consider the following

(hσ
0 )
′′(t) =

{
F
′′

δ
∗ (hσ

0 )

}
(t)'

N′

∑
i=0

dδ ,σ
i t i, (40)

and consequently

(hσ
0 )
′(t)'

N′

∑
i=0

dδ ,σ
i

t i+1

i+1
+u′1(0), hσ

0 (t)'
N′

∑
i=0

dδ ,σ
i

t i+2

(i+1)(i+2)
+ tu′1(0)+u′0(0). (41)

We call the strategy given by (38)-(41) admissible if for a small value ε > 0, and the appropriate given
values δ and mδ we have∥∥∥∥∥ N′

∑
i=0

dδ ,σ
i

t i+2

(i+1)(i+2)
+ tu′1(0)+u′0(0)−hσ

0 (t)

∥∥∥∥∥
∞

≤ ε. (42)

By employing the method investigated in Section 2.1, paying attention to Remark 1 to retrieve the
regularized values for (hσ

0 )(t), (h
σ
0 )
′(t), (hσ

0 )
′′(t) when N = N′ = 3 and σ ∈ {3,6}× 10−2, we obtain

the results as shown in Figure 1 and Table 1. In all cases, we set mδ = 500, ε = σ , where finding the
appropriate value for δ is accomplished by trial and error. We take δ = 0.07 when σ = 3×10−2 whilst
for the case σ = 6×10−2, we find the best results by choosing δ = 0.1. Following the obtained results,
it can be seen that by using the regularization method, the errors introduced into the extra measurement
of the problem are controlled and acceptable approximations are obtained.

Example 3. The third problem is IP2 which is described by Eqs. (1)-(3) and (5) with

u0(x) =−e4x− sec(0.3− x)+ sinh2(x), u1(x) = 2sinh(x)cosh(x), (43)

uT (x) = sinh2(x+T )− e4x−T 2− sec(x−0.3),

b0(t) =−2.04675− t2 + sinh2(t), b1(t) = sinh2(L+ t)− e4L− t2− sec(L−0.3),

where the exact solution of this problem is

f (x) =−2+16e4x + sec(x−0.3)
1+ sin2(x−0.3)

cos2(x−0.3)
, u(x, t) = sinh2(x+ t)− e4x− t2− sec(x−0.3).

We set L = T = 1 and apply the numerical scheme presented in subsection 2.2, with different values of
N = N′ ∈ {2,3,4}, and derive the results tabulated in Table 4. As shown, the accuracy improves as the
number of basis functions increases. In other words, our method converges numerically as the number
of basis functions increases.
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Table 1: Comparison between the infinity norm of absolute errors for the unknown functions u and f , in
the presence of the contaminated boundary data discussed in Example 2.

r ‖E(u)‖∞ ‖E( f )‖∞

0 0.063 0.23

3 0.36 0.39

6 0.44 0.56

Example 4. Consider IP2 given by Eqs. (1)-(3) and (5) with the following initial and boundary condi-
tions

u0(x) = e−2x− sin(3x), u1(x) =−2e−2x, uT (x) = 2.25+ e−3−2x− sin(3x), (44)

b0(t) = e−2t + t2, b1(t) = e−3−2t + t2− sin(4.5),

and the following exact solution

f (x) = 2−9sin(3x), u(x, t) = e−2x−2t + t2− sin(3x), (x, t) ∈ [0,1.5]× [0,1.5].

We examine the performance of the suggested method in the presence of inaccurate additional specifica-
tion data uT (x) [8] given by

uσ
T (x) = uT (x)+σ sin(

x
σ2 ), σ = r×10−2, r ∈ N. (45)

We apply the mollification method to obtain stable numerical derivatives of the perturbed data such as
u′T (x) and uT

′′(x). Similar to Example 2, we first take

Fδ1(x) =
exp(− x2

δ 2
1
)

δ1
√

π
,

and perform the mollification of the perturbed data (uσ
T (x))

′ using the following convolution{
Fδ1 ∗ (u

σ
T )
′
}
(x) :=

∫ +∞

−∞

Fδ1(r)(u
σ
T )
′(t− r)dr. (46)

We take advantage of the following relation{
Fδ1 ∗ (u

σ
T )
′
}
(x) =

{
F
′

δ1
∗ (uσ

T )

}
(x), (47)

and for or a given δ1 > 0, calculate
{

F
′

δ1
∗ (uσ

T )
}
(x) numerically using the mid-point integration rule,

that is{
F
′

δ1
∗ (uσ

T )

}
(x)' π

mδ1

mδ1
−1

∑
i=0

Q1(x,−
π

2
+

πi
mδ1

+
π

2mδ1

), Q1(x,r) = F
′

δ1
(x− tanr)uσ

T (tanr)sec2 r. (48)
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Then, we consider the following

(uσ
T )
′(x) =

{
F
′

δ1
∗ (uσ

T )

}
(x)'

N

∑
i=0

dδ1,σ
i xi, (49)

and consequently

(uσ
T )(x)'

N

∑
i=0

dδ1,σ
i

xi+1

i+1
+b0(T ). (50)

The strategy given by Eqs. (47)-(50) is admissible if for a small value ε1 > 0, and the appropriate given
values δ1 and mδ1 , we have the following

‖
N

∑
i=0

dδ1,σ
i

xi+1

(i+1)
+b0(T )−uσ

T (x)‖∞ ≤ ε1. (51)

After recovering (uσ
T )
′(0) ' dδ1,σ

0 from (49), we employ the mollification method one more time to get
stable value of (uσ

T )
′′(x) with the parameters δ2, mδ2 , N, that is

(uσ
T )
′′(x)' π

mδ2

mδ2
−1

∑
i=0

Q2(x,−
π

2
+

πi
mδ2

+
π

2mδ2

)'
N

∑
i=0

dδ2,σ
i xi, (52)

where Q2(x,r) = F
′′

δ2
(x− tanr)uσ

T (tanr)sec2 r. The approximation given by Eq. (52) is acceptable if for
a small value ε > 0, and the appropriate given values δ2 and mδ2 , we have the following

‖
N

∑
i=0

dδ2,σ
i

xi+2

(i+1)(i+2)
+ xdδ1,σ

0 +b0(T )−uσ
T (x)‖∞ ≤ ε. (53)

The results of this experiment are shown in Figures (2)-(9) and Table 2 to present the agreement between
the approximate and exact solutions. In other words, the numerical findings obtained for the wave source
f (x) and the displacement u(x, t) deviate from the analytical solution approximately proportionally to
the amount of introduced errors. This indicates that we have obtained stable numerical solutions.

Table 2: Comparison between the infinity norm of absolute errors for the unknown functions u and f , in
the presence of the contaminated boundary data discussed in Example 4.

r ‖E(u)‖∞ ‖E( f )‖∞

0 0.0004 0.001

4 0.076 0.12

7 0.12 0.14

10 0.166 0.17
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Figure 1: In this figure, the blue curve shows the exact values. The approximation of f is derived by
our method with N = N′ = 3 where the perturbed boundary data depends on the values of σ , i.e. ◦ ◦ ◦:
corresponding to σ = 6×10−2, HHH: corresponding to σ = 3×10−2 as discussed in Example 2.

Table 3: Comparison between the infinity norm of errors for the approximations of unknown functions
u and f , the condition number Π(A) and regularization parameter λ for approximations of unknown
functions u and f in the presence of precise boundary data as discussed in Example 2.

Dimensions o f A ‖E( f )‖∞ ‖E(u)‖∞ Π(A) λ

9×9 0.12 0.092 1.5×103 10−1

16×16 0.031 0.022 7.39×105 10−2

25×25 0.0026 0.00061 1.072×107 10−5

49×49 7×10−4 1.1×10−4 2.96×1011 10−4

81×81 1×10−4 6.3×10−5 3.9×1015 10−5
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Table 4: Comparison between the infinity norm of errors for the approximations of unknown functions
u and f , the condition number Π(A) and regularization parameter λ for approximations of unknown
functions u and f in the presence of precise boundary data as discussed in Example 3.

Dimensions o f A ‖E( f )‖∞ ‖E(u)‖∞ Π(A) λ

9×9 0.019 0.0014 1.38×103 10−3

16×16 0.0041 0.00065 3.59×1017 10−4

25×25 0.001 0.000034 8.89×106 10−5

49×49 1.3×10−4 7.12×10−6 1.21×1010 10−8

81×81 1×10−5 3×10−6 3.3×1013 10−10

Figure 2: In this figure, the graphs of the approximate values of u and the exact values of u are sketched
according to our method with N = N′ = 5, δ1 = δ2 = 0.06, mδ1 = 600, mδ2 = 700 and λ = 0.01. Plots
for the perturbed boundary data with σ = 10×10−2 as discussed in Example 4.
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Figure 3: In this figure, the orange curve shows the exact solution of f while the black curve shows the
approximate solution of f which is derived by our method with N = N′ = 5, δ1 = δ2 = 0.06, mδ1 =
600, mδ2 = 700 and λ = 0.01. Plots for the perturbed boundary data with σ = 10×10−2 as discussed in
Example 4.

Figure 4: In this figure, the graph of the absolute error for function u is derived by our method with
N = N′ = 5, δ1 = 0.01, δ2 = 0.02, mδ1 = mδ2 = 600 and λ = 0.01. Plot for the perturbed boundary data
with σ = ε = ε1 = 4×10−2 as discussed in Example 4.
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Figure 5: In this figure, the graph of the absolute error for function f is derived by our method with
N = N′ = 5, δ1 = 0.01, δ2 = 0.02, mδ1 = mδ2 = 600 and λ = 0.01. Plot for the perturbed boundary data
with σ = ε = ε1 = 4×10−2 as discussed in Example 4.

Figure 6: In this figure, the graph of the absolute error for function u is derived by our method with
N = N′ = 5, δ1 = 0.03, δ2 = 0.045, mδ1 = mδ2 = 600 and λ = 0.01. Plot for the perturbed boundary
data with σ = ε = ε1 = 7×10−2 as discussed in Example 4.
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Figure 7: In this figure, the graph of the absolute error for function f is derived by our method with
N = N′ = 5, δ1 = 0.03, δ2 = 0.045, mδ1 = mδ2 = 600 and λ = 0.01. Plot for the perturbed boundary
data with σ = ε = ε1 = 7×10−2 as discussed in Example 4.

Figure 8: In this figure, the graph of the absolute error for function u is derived by our method with
N = N′ = 5, δ1 = 0.03, δ2 = 0.045, mδ1 = mδ2 = 600 and λ = 0.01. Plot for the perturbed boundary
data with σ = ε = ε1 = 10×10−2 as discussed in Example 4.
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Figure 9: In this figure, the graph of the absolute error for function f is derived by our method with
N = N′ = 5, δ1 = δ2 = 0.06, mδ1 = 600, mδ2 = 700 and λ = 0.01. Plot for the perturbed boundary data
with σ = ε = ε1 = 10×10−2 as discussed in Example 4.

4 Conclusion

This article presents an approximation for the solution of the inverse problem of a one-dimensional wave
equation from two additional measurements. We recast the problem as a certain hyperbolic equation
and consider the Ritz approximation as the solution of the unknown displacement. Then, the collocation
technique is employed to convert the problem to a system of linear equations. We take advantage of
the mollification method to derive stable numerical derivatives and solve the system of equations that
is not well-conditioned by employing the Tikhonov regularization method. Following the numerical
simulations, it is confirmed that our method is a robust approach in dealing with introduced artificial
errors in the input boundary data. Furthermore, our method performs quite well in the presence of exact
boundary data since the approximate solutions converge to the exact solutions numerically. Compared
to the results presented in [3], it can be observed that the algorithms proposed in this paper yield better
results. In fact, the proposed algorithms provide higher accuracy with lower computational cost due to
the use of a satisfier function. Moreover, in some cases, we arrive at the exact solution (see example 1).
The proposed technique can be adapted to solve similar problems in higher dimensions.
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