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Abstract. In this paper, the banded Toeplitz matrices generated by f (θ) = (2(1− cos(θ − θ̃)))d are
studied. The function f is a real non-negative function with a zero of order 2d at θ̃ and the generated
matrices are ill-conditioned Hermitian positive definite. We show that these banded Toeplitz matri-
ces are similar to the banded real symmetric positive definite Toeplitz matrices that are generated by
f (θ) = (2(1− cos(θ)))d . A fast direct solver is proposed to compute the inverse of these real matrices.
Numerical experiments show that our proposed method is faster and more stable than the stable Levinson
algorithm.
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1 Introduction

An n×n banded Hermitian Toeplitz matrices with bandwidth 2d−1 can be defined as follows

T (d)
n =



t0 t̄1 · · · t̄d−1 · · · 0
t1 t0 t̄1 · · · t̄d−1 0
...

. . . . . .
...

td−1 · · · t1 t0 · · · 0
...

. . . . . .
...

0 · · · td−1 · · · t1 t0


. (1)
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We see that T (d)
n =

(
ti− j
)

i, j=1,2,...,n, where t−k = t̄k and tk = 0 for |k| ≥ d. As known, the Toeplitz matrices

Tn =
(
ti− j
)

i, j=1,...,n can be interpreted as the Fourier coefficients of the generating function

f (θ) =
∞

∑
−∞

tkeikθ , (2)

defined on [−π,π], i.e.,

tk =
1

2π

∫
π

−π

f (θ)e−ikθ dθ , k = 0,±1,±2, . . . . (3)

If the generating function f (θ) is non-negative real, then Tn is Hermitian positive definite (HPD) matrix.
Furthermore for the even function f , the Toeplitz matrix Tn is a real symmetric matrix.

In this paper we assume that

f (θ) = (2(1− cos(θ − θ̃)))d , (4)

where θ̃ ∈ [−π,π] is a constant number. In this case we denote the generated Toeplitz matrix by T (d)
θ̃ ,n

.

T (d)
θ̃ ,n

is banded HPD, with bandwidth 2d−1 (as we show in (1)). For the special case θ̃ = 0, we omit the

subscript θ̃ in T (d)
θ̃ ,n

and we name it T (d)
n . These linear systems arise in the discretization of differential

equations. In [4] and [5] the authors showed that these banded Toeplitz matrices can be performed as a
good preconditioner.

Function f in (4) has zero of order 2d at θ̃ , hence the condition number of these matrices can be very
large. As an example for d = 2, in [1], the authors showed that the condition number of these matrices is
about 162(n+2

3π
)4.

Some of the terminology used in this paper will be given for convenience. Tf is the infinity Toeplitz
matrix that is generated by the function f , and defined by

Tf =


t0 t−1 t−2 t−3 · · ·
t1 t0 t−1 t−2 · · ·
t2 t−1 t0 t−1 · · ·
...

. . .
...

 , (5)

and Tf ,n denotes its n-by-n leading principal submatrix. We define the Hankle matrix generated by f as
follows

H f =


t1 t2 t3 · · ·
t2 t3 t4 · · ·
t3 t4 t5 · · ·
...

. . .
...

 , (6)

and

H f̃ =


t−1 t−2 t−3 · · ·
t−2 t−3 t−4 · · ·
t−3 t−4 t−5 · · ·

...
. . .

...

 . (7)
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some MATLAB notations are used; for instance, A(m1 : m2,n1 : n2) denotes the portion of A with rows
from m1 to m2 and columns from n1 to n2.

If A is an infinity matrix, we use the notation A(m1 : m2, :) as the selection of rows from m1 to m2 of
A, the same definition can be used for columns of A. The vectors will be shown with bold case letters,
and we use upper case to show matrices.

This paper is organized as follows. In Section 2, we review preliminary and main results on banded
Toeplitz matrices. The algorithm and some computational notes are discussed in Section 3. Numerical
tests are given in Section 4 to show the efficiency of our algorithm.

2 Main results

In (4), let w= eiθ̃ and d = 1. Then the Toeplitz matrix T (1)
θ̃ ,n

is tridiagonal of the form T (1)
θ̃ ,n

= tridiag(t1, t0, t̄1),
where

t0 =
1

2π

∫
π

−π

2(1− cos(θ − θ̃))dθ = 2,

and

t1 =
1

2π

∫
π

−π

2(1− cos(θ − θ̃))eiθ dθ =−w̄.

If θ̃ = 0, then we have T (1)
n = tridiag(−1,2,−1). The eigenvalues of T (1)

n are known:

λk = 2(1− cos(
kπ

n+1
)), for k = 1,2, . . . ,n.

If we define the diagonal matrix Ω = diag(1,w,w2, . . . ,wn−1), then Ω is unitary and we can easily infer
that T (1)

θ̃ ,n
= ΩHT (1)

n Ω. Hence, two matrices T (1)
θ̃ ,n

and T (1)
n are similar and have the same eigenvalues.

The same results will be established for the matrices T (d)
θ̃ ,n

and T (d)
n . For this end, we use the following

proposition (Proposition 1.3, [2]).

Proposition 1. Let Tf and Tg be the Toeplitz matrices generated by f (θ) and g(θ) respectively, then
Tf g = Tf Tg +H f Hg̃.

Theorem 1 satisfies for infinite Toeplitz matrices that generated by f and g. We use (4) in Theorem
1 and derive the following result.

Theorem 1. Let T (d)
θ̃ ,n

is an n by n banded Toeplitz matrix with bandwidth 2d − 1 and generated by

f (θ) = (2(1− cos(θ − θ̃)))d , then

T (d)
θ̃ ,n

= T (d−1)
θ̃ ,n

T (1)
θ̃ ,n
−wt(d−1)

θ̃
eT

1 − w̄Jt̄(d−1)
θ̃

eT
n , (8)

where
t(d−1)
θ̃

= ZT T (d−1)
θ̃ ,n

(1 : n,1).
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Proof. We partition T (d−1)
θ̃

into

T (d−1)
θ̃

=

(
T (d−1)

θ̃ ,n
T (d−1)

1,2

T (d−1)H
1,2 T (d−1)

θ̃

)
, (9)

where T (d−1)
1,2 = T (d−1)

θ̃
(1 : n, :). Similarly T (1)

θ̃
can be partitioned into

T (1)
θ̃

=

(
T (1)

θ̃ ,n
−weneT

1

−w̄e1eT
n T (1)

θ̃

)
. (10)

In Proposition 1, let f (θ) = (2(1− cos(θ − θ̃)))d−1 and g(θ) = 2(1− cos(θ − θ̃)), then we have

T (d)
θ̃

= T (d−1)
θ̃

T (1)
θ̃

+H f Hg̃. (11)

By using (9) and (10), we infer that the n×n leading principal submatrix of T (d−1)
θ̃

T (1)
θ̃

can be written as
follows

(T (d−1)
θ̃

T (1)
θ̃

)(1 : n,1 : n) = T (d−1)
θ̃ ,n

T (1)
θ̃ ,n
− w̄T (d−1)

1,2 e1eT
n . (12)

The result can be obtained by using the relation T (d−1)
1,2 e1 = Jt̄(d−1)

θ̃
, the fact that H(g̃) = −we1eT

1 , and

(H f Hg̃)(1 : n,1 : n) =−wt(d−1)
θ̃

eT
1 .

As a special case, by letting θ̃ = 0, the relation (8) reduces to the form

T (d)
n = T (d−1)

n T (1)
n − t(d−1)eT

1 − Jt(d−1)eT
n , (13)

where t(d−1) = ZT T (d−1)
n (1 : n,1). As a corollary, from Theorem 1 we can prove that T (d)

θ̃
and T (d)

n are
similar.

Remark 1. T (d)
θ̃ ,n

= ΩH
n T (d)

n Ω.

Proof. The proof can be done by induction on d. For d = 1 the proof is obvious. By using the definition
of t(d−1)

θ̃
and induction hypothesis for d−1, we can simply conclude that

wΩt(d−1)
θ̃

= ZT
ΩT (d−1)

θ̃ ,n
(:,1)

= ZT
ΩT (d−1)

θ̃ ,n
Ωe1

= ZT T (d−1)
n (:,1) = t(d−1).

In the similar way it is easily to prove that w̄nΩJt̄(d−1)
θ̃

= Jt(d−1).
If we multiply the relation of (8) from the left by Ω and from the right by ΩH , then we have

ΩT (d)
θ̃ ,n

Ω
H = ΩT (d−1)

θ̃ ,n
Ω

H
ΩT (1)

θ̃ ,n
Ω

H −wΩt(d−1)
θ̃

eT
1 − w̄n

ΩJt̄(d−1)
θ̃

eT
n

= T (d−1)
n T (1)

n − t(d−1)eT
1 − Jt(d−1)eT

n

= T (d)
n .
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Hence,
ΩT (d)

θ̃ ,n
Ω

H = T (d)
n , (14)

which completes the proof.

As a consequence, we can focus on T (d)
n instead of computing the inverse of T

θ̃ ,n.

3 Some Computational Notes

For a given vector b, we aim to solve the linear system T (d)
n x(d) = b. Letting a(d−1) = T−(d−1)

n t(d−1), we
can rewrite (8) as

T−(d−1)
n T (d)

n = T (1)
n −a(d−1)eT

1 − Ja(d−1)eT
n . (15)

If we define An = T (1)
n −a(d−1)eT

1 − Ja(d−1)eT
n , then by using (15), xd

n satisfies the recursive relation

Anx(d)n = x(d−1)
n . (16)

If x(d−1)
n is known, by solving this linear system then we get x(d)n . The coefficient matrix in (16) has the

following block structure

An =

−b1−2 −eT
1 −bn

c T (1)
n−2 Jc

−bn−1 −eT
n−2 −b1−2

 , (17)

where c =−e1−a(2 : n−2). If we define the permutations matrix

En =

0n−2 In−2 0n−2
1 0T

n−1 0
0 0T

n−1 1

 , (18)

and Ã = EnAnET
n , then Ã can be partitioned as

Ãn =

(
T (1)

n−2 R
S T

)
, (19)

where R =
(
c Jc

)
, S =

(
−e1 −en−2

)T , and

T =

(
−b1−2 −bn

−bn −b1−2

)
. (20)

By defining x̃(d)n = Enx(d)n , the relation (16) can be rewritten as

Ãnx̃(d)n = x̃(d−1)
n (21)

In order to solve this equation, we decompose Ãn as Ãn = PnQn, where

Pn =

(
In−2

S T−(1)n−2 I2

)
, (22)



458 N. Akhoundi

Qn =

(
T (1)

n−2 R
0 Z

)
, (23)

with

Z = T −S T−(1)n−2 R

= T +
(

x(1)n−2 Jx(1)n−2

)T
R. (24)

So the linear system Ãnx̃(d)n = x̃(d−1)
n can be solved by Pnun = x̃(d−1)

n and Qnx̃(d)n = un. Hence we, have

un(1 : n−2) = x̃(d−1)
n−2 , (25)

un(n−1 : n) = x̃(d)n (n−1 : n)−S T−(1)n−2 un(1 : n−2))

= x̃(d)n (n−1 : n)+
(

x(1)n−2 Jx(1)n−2

)T
un(1 : n−2)), (26)

and

x̃(d)n (n−1 : n) = Z −1un(n−1 : n), (27)

x̃(d)n (1 : n−2) = T−(1)n−2 (un(1 : n−2)−Run(n−1 : n)) . (28)

The main step of the recursive algorithm to compute x(d)n may be summarized as follows

Algorithm 1 Recursive algorithm
1: procedure RECURSIVE(b,d)
2: if d == 1 then
3: return x1

n = T−(1)n b.
4: else
5: x(d−1)

n = Recursive(b,d−1).
6: a(d−1)

n = Recursive(t(d−1),d−1).
7: Define the permutation matrix En as in (18). and set x̃(d−1)

n = Enx(d−1)
n

8: Compute u from (25) and (26).
9: Compute Z as defined in (24).

10: x̃(d)n (n−1 : n) = Z −1un(n−1 : n).
11: x̃(d)n (1 : n−2) = T−(1)n−2 (un(1 : n−2)−Run(n−1 : n)).

12: return x(d)n = ET
n x̃(d)n

13: end if
14: end procedure

We note that the vector T−(1)n b can be computed by the Gaussian elimination of order O(n). If we
define the sequence {αk}k≥1 as follows

α1 = 2, αk = 2− 1
αk−1

, k = 2,3, . . . , (29)
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then the LU-factorization of T 1
n = tridiag{−1,2,−1} can be computed as follows

L =


1 0 0 · · · 0
− 1

α1
1 0 · · · 0

...
. . .

...
0 0 0 − 1

αn−1
1

 , U =


α1 −1 0 · · · 0
0 α2 −1 · · · 0
...

. . .
...

0 0 0 · · · αn

 . (30)

Hence, the computational complexity for solving the linear system T 1
n x(1) = b is O(n), and it uses O(n)

storage. We note that αk ≥ 1 for k = 1,2,3, . . .. Hence, the Gaussian elimination is stable and fast.

3.1 Stability notes

Let x̃(d−1)∗
n denotes as an approximation of x̃(d−1)

n , i.e.,

x̃(d−1)∗
n = x̃(d−1)

n +δ
(d)
n .

As we assume that the other terms of (25) to (28) are exact, then we have

x̃(d)∗n (1 : n−2) = x̃(d−1)∗
n (1 : n−2)+T−(1)n−2 δ

(d−1)
n (1 : n−2).

By simple induction, we can conclude that

x̃(d)∗n (1 : n−2) = x̃(d)n (1 : n−2)+δ
(d)
n (1 : n−2)

= x̃(d)n (1 : n−2)+(T−(1)n−2 )d−1
δ
(1)
n (1 : n−2). (31)

It is known that Tn−2 is symmetric positive definite, and its eigenvalues are 2(1− cos( jπ
n−1)) for j =

1, . . . ,n−2. Hence

‖Tn−2‖2 = 2(1− cos(
(n−2)π

n−1
)), and ‖T−1

n−2‖2 =
1

2(1− cos( π

n−1))
.

When n is large enough we can conclude that ‖T−1
n−2‖2 ≈ (n−1)2

2π2 . From (31), we see that

‖δ (d)
n (1 : n−2)‖2 ≤ ‖(T−(1)n−2 )d−1‖2‖δ (1)

n (1 : n−2)‖2

≈ (
(n−1)2

2π2 )(d−1)‖δ (1)
n (1 : n−2)‖2.

For example, for n = 1000 and ‖δ (1)
n (1 : n− 2)‖2 = ε , and assuming that all other computations are

exactly done or about ε , then we have ‖δ (5)
n (1 : n− 2)‖2 ≤ 3.1250× 108ε . In Section 4, the numerical

experiments confirm this fact.
The complexity of Algorithm 1, depends on the complexity of T−(1)n a. As we see in Algorithm 1 the

complexity computation of T−(1)n a is O(n). So the complexity of Algorithm 1 is O(n).
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Table 1: Comparison the results of the RS algorithm with the GLev Algorithm for T (2)
n .

RS Glev
n ‖rn‖ CPU ‖rn‖ CPU
29 1.3267×10−12 0.00127 4.6825×10−12 0.01011
210 1.5947×10−11 0.0018 2.0252×10−11 0.0221
211 6.5652×10−11 0.0054 7.8021×10−11 0.049430
212 2.4837×10−10 0.0152 3.1374×10−10 0.1452
213 1.0242×10−9 0.0325 1.2520×10−9 0.7443
214 4.0362×10−9 0.1253 5.1109×10−9 2.8594
215 1.5964×10−8 0.42035 1.7007×10−8 11.3476
216 6.3628×10−8 1.3627 4.2896×10−8 53.8154

Table 2: Comparison the results of the RS algorithm with the GLev Algorithm for T (3)
n .

RS Glev
n ‖rn‖ CPU ‖rn‖ CPU
29 2.8586×10−10 0.0053 9.4174×10−10 0.01011
210 7.3404×10−9 0.0038 6.2314×10−9 0.0221
211 5.9609×10−8 0.006566 6.8530×10−8 0.049430
212 4.9623×10−7 0.01612 4.6794×10−4 0.1452
213 4.0173×10−6 0.07099 5.1728×10−4 0.7443
214 3.1982×10−5 0.2238 6.2078×10−4 2.8594
215 2.5724×10−4 0.7596 0.0084 11.3476
216 0.0021 2.8229 0.0338 53.8154

4 Numerical Experiments

In this section, we compare our recursive solver (RS) as described in Algorithm 1 with general Levinson
algorithm (GLev) [3] for linear systems with coefficient matrices T (2)

n , T (3)
n , and T (4)

n , respectively.We
used a random vector scaled to have the unit length for the right-hand side vector b. All tests are per-
formed in MATLAB with double precision. Our comparisons are done for the norm of residual vector
‖rn‖ and the elapsed CPU time (denoted by “CPU”). All the numerical results are performed for n = 2k

for k = 9, . . . ,16. The corresponding numerical results are listed in Tables 1-3.

In the following, we summarize the observation from Tables 1-3. In all cases, in terms of the CPU
time needed for solving the linear systems, the RS is faster than the GLev method. CPU time shows that
the complexity of the RS algorithm is O(n). Despite the results of Table 1 that indicate the RS and GLev
have the same rate of the residual norm, Tables 2 and 3 show that the norm of residual vector for the RS
algorithm is much better than GLev algorithm. These results imply that the computational efficiency of
the RS method is higher than that of the GLev algorithm.
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Table 3: Comparison the results of the RS algorithm with the GLev Algorithm for T (4)
n .

RS Glev
n ‖rn‖ CPU ‖rn‖ CPU
29 4.8009×10−8 0.0067 1.2512×10−7 0.01011
210 2.4612×10−6 0.0046 5.3260×10−5 0.0221
211 4.1866×10−5 0.0110 8.6481×10−5 0.049430
212 6.538×10−4 0.0265 0.0935 0.1452
213 0.0103 0.0928 1.5059 0.7443
214 0.1638 0.2572 > 103 2.8594
215 2.6122 1.0627 > 103 11.3476
216 41.3931 4.0536 > 103 53.8154
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