تعداد نشریات | 31 |
تعداد شمارهها | 738 |
تعداد مقالات | 6,941 |
تعداد مشاهده مقاله | 9,883,240 |
تعداد دریافت فایل اصل مقاله | 6,702,178 |
Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications | ||
Journal of Algebra and Related Topics | ||
مقاله 2، دوره 2، شماره 1، شهریور 2014، صفحه 15-25 اصل مقاله (157.27 K) | ||
نوع مقاله: Research Paper | ||
نویسنده | ||
M. Nasernejad* | ||
University of Payame Noor | ||
چکیده | ||
Let $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if $\mathrm{Ass}_R(R/I^k)\subseteq \mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $k\geq 1$, which $\mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring $R=K[x_1,\ldots,x_n]$ over field $K$ which are associated to unrooted trees such that if $G$ is a unrooted tree and $I_t(G)$ is the ideal generated by the paths of $G$ of length $t$, then $J_t(G):=I_t(G)^\vee$, where $I^\vee$ denotes the Alexander dual of $I$, satisfies the persistence property. We also present a class of graphs such that the path ideals generated by paths of length two satisfy the persistence property. We conclude this paper by giving a criterion for normally torsion-freeness of monomial ideals. | ||
کلیدواژهها | ||
Monomial ideals؛ associated prime ideals؛ trees؛ paths | ||
آمار تعداد مشاهده مقاله: 4,505 تعداد دریافت فایل اصل مقاله: 2,169 |