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PRIMAL STRONG CO-IDEALS IN SEMIRINGS

S. EBRAHIMI ATANI ∗, S. DOLATI PISH HESARI AND M. KHORAMDEL

Abstract. In this paper, we introduce the notion of primal strong
co-ideals and give some results involving them. It is shown that
subtractive strong co-ideals are intersection of all primal strong co-
ideals that contain them. Also we prove that the representation of
strong co-ideals as reduced intersections of primal strong co-ideals
is unique.

1. Introduction

As a generalization of rings, semirings have been found useful for
solving problems in different areas of applied mathematics and infor-
mation sciences, since the structure of a semiring provides an algebraic
framework for modelling and studying the key factors in these applied
areas. They play an important role in studying optimization theory,
graph theory, theory of discrete event dynamical systems, generalized
fuzzy computation, automata theory, coding theory, cryptography the-
ory.

Primal ideals in a commutative ring with non-zero identity have
been introduced and studied by Ladislas Fuchs in [10] and continued
to primal ideals over semirings in [5]. Moreover, the theory of pri-
mal decomposition of ideals is studied extensively in [1]. This paper
is concerned with generalizing some results of primal ideals and from
commutative rings theory and commutative semiring theory to pri-
mal strong co-ideals in commutative semirings theory. We introduce
the notion of primal strong co-ideals and give some result involving
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them such subtractive strong co-ideals are intersection of all primal
strong co-ideals that contain them and give examples of primal strong
co-ideals(subtractive irreducible strong co-ideals and primary strong
co-ideals). Also Intersection of primal strong co-ideals are considered
in Sec.3.

For the sake of completeness, we state some definitions and nota-
tions used throughout. A commutative semiring R is defined as an
algebraic system (R,+, .) such that (R,+) and (R, .) are commutative
semigroups, connected by a(b+c) = ab+ac for all a, b, c ∈ R, and there
exists 0, 1 ∈ R such that r + 0 = r and r0 = 0r = 0 and r1 = 1r = r
for each r ∈ R. In this paper all semirings considered will be assumed
to be commutative semirings with non-zero identity.

Definition 1.1. Let R be a semiring.
(1) A non-empty subset I of R is called a co-ideal, if it is closed

under multiplication and satisfies the condition r + a ∈ I for all a ∈ I
and r ∈ R. A co-ideal I in R is called strong co-ideal provided that
1 ∈ I. (clearly, 0 ∈ I if and only if I = R) [2], [8], [11] and [12].

(2) A strong co-ideal I of a semiring R is called subtractive if x, xy ∈
I, then y ∈ I [8].

(3) A proper strong co-ideal P of a semiring R is called prime if
x+ y ∈ P , then x ∈ P or y ∈ P [2] and [8].

(4) A proper strong co-ideal I of a semiring R is said to be maximal
if J is a strong co-ideal in R with I ⊆ J and I 6= J , then J = R [2]
and [8].

(5) A proper co-ideal I of a semiring R is called primary if a+ b ∈ I,
then a ∈ I or b ∈ co − rad(I) = {r ∈ R : nr ∈ I for some n ∈ N} [8].

(6) A strong co-ideal I of a semiring R is called a partitioning strong
co-ideal (= Q-strong co-ideal) if there exists a subset Q of R such that

(1) R =
⋃

{qI : q ∈ Q}, where qI = {qt : t ∈ I}.
(2) If q1, q2 ∈ Q, then (q1I) ∩ (q2I) 6= ∅ if and only if q1 = q2. [8]

If A and B are nonempty subsets of the semiring R, then we define
A + B = {a + b : a ∈ A, b ∈ B} ⊆ R. Moreover, if I is a Q-strong
co-ideal of R and q, q′ ∈ Q, then q + q′ ∈ qI + q′I; so qI + q′I 6= ∅.

Let R/I = {qI : q ∈ Q}. Define the binary operations ⊕ and ⊙ on
R/I as follows:

(1) (q1I) ⊕ (q2I) = q3I, where q3 is the unique element in Q such
that (q1I + q2I) ⊆ q3I; and

(2) (q1I) ⊙ (q2I) = q3I, where q3 is the unique element in Q such
that (q1q2)I ⊆ q3I (note that q1I = q2I if and only if q1 = q2) [8].

We need the following propositions, proved in [2], [8] and [9], respec-
tively.
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Proposition 1.2. (a) If I is a non-zero proper co-ideal of a semiring
R, then I is contained in a maximal co-ideal of R.

(b) If P is a maximal co-ideal of R, then P is a prime co-ideal of R.
(c) If P is a maximal co-ideal of R, then P is subtractive strong

co-ideal of R and R− P is an ideal of R.
(d) Let I be a Q-strong co-ideal in the semiring R. If x ∈ R, then

there exists a unique q ∈ Q such that xI ⊆ qI. In particular, x = qa
for some a ∈ I.

(e)If I is a Q-strong co-ideal in the semiring R, then (R/I,⊕,⊙) is
a commutative semiring with identity.

(f) If I is a Q-strong co-ideal of a semiring R, then there exists a
unique qe ∈ Q such that I = qeI = q2eI.

(g)Let I be a Q-strong co-ideal of a semiring R, and let L be a
subtractive strong co-ideal of R with I ⊆ L. Then L/I = {qI : q ∈
Q ∩ L} is a subtractive strong co-ideal of R/I.

(h) Let I be a Q-strong co-ideal of a semiring R, and let P be a
subtractive strong co-ideal of R with I ⊆ P . Then P is a prime co-
ideal of R if and only if P/I is a prime strong co-ideal of R/I.

(l)Let I1, I2, I3, ..., In be subtractive co-ideals of a semiring R such
that at most two of the Ir are not prime. If I is a co-ideal of R such
that I ⊆

⋃r

i=1 Ii, then I ⊆ Ir for some r.

2. Primal strong co-ideals

The main purpose of this section is to investigate some properties of
strong primal co-ideal.

Definition 2.1. (i) Let R be a semiring and I be a strong co-ideal of
R. An element r ∈ R is called prime to I if a + r ∈ I, then a ∈ R,
that is (I : r) = I ((I : r) = {a ∈ R : a + r ∈ I}).

(ii) A strong co-ideal I of R is called primal if the set of all elements
of R that are not prime to I forms a strong co-ideal.

Lemma 2.2. Let I be proper strong co-ideal of a semiring R and P be
the set of all elements of R that are not prime to I. Then

(i) I ⊆ P ;
(ii) If P is a strong co-ideal of R, then P is a prime strong co-ideal.

Proof. (i) Let b ∈ I. As b + 0 ∈ I and 0 /∈ I, b is not prime to I
(because I is proper). Hence b ∈ P . Therefore I ⊆ P .

(ii) Let a, b ∈ R such that a + b ∈ P . Thus a + b is not prime to I.
So there exists r ∈ R \ I such that a + b + r ∈ I. If a /∈ P , then a is
prime to I, hence a+ b+ r ∈ I implies that b+ r ∈ I. If b /∈ P , then b
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is prime to I. Therefore r ∈ I, a contradiction. Therefore b ∈ P . Thus
P is prime. �

Let I be a primal strong co-ideal of a semiring R and P be the set of
all elements of R that are not prime to I. Then we say I is P -primal
or Primal strong co-ideal with adjoint prime P.

Proposition 2.3. Let Q be a P-primary strong co-ideal of a semiring
R. Then Q is P-primal.

Proof. We claim that the set of elements of R that are not prime to Q
is equal to P . Assume that a is not prime to Q, hence a + r ∈ Q for
some r ∈ R \Q. Thus a ∈ P , because Q is P -primary.

Let a ∈ P , we have two possibilities.
case 1: a ∈ Q. It is clear that a is not prime to Q.
case 2: a /∈ Q. Then a ∈ P implies that na ∈ Q for some n ∈ N.

Therefore a is not prime to Q. �

Lemma 2.4. Let I be a subtractive strong co-ideal of a semiring R.
Then (I : x) is a subtractive strong co-ideal of R for each x ∈ R.

Proof. Let a ∈ (I : x). Then a + x ∈ I. Thus for each r ∈ R,
r + a + x ∈ I. Hence r + a ∈ (I : x) for each r ∈ R.
Let a, b ∈ (I : x). Then a+x ∈ I and b+x ∈ I. Thus ab+x2+ax+bx ∈
I. Therefore

(ab+ x)(a + 1)(x+ 1)(b+ 1) = c+ ab+ x2 + ax+ bx ∈ I.

where c ∈ R. As I is subtractive, ab+x ∈ I. Therefore (I : x) is strong
co-ideal of R. Clearly (I : x) is subtractive. �

Note that the condition ”I is subtractive ” is necessary in Lemma
2.4, as the following example shows.

Example 2.5. Assume that R = {0, 1, 2, 3, 4, 5}. Define

a+ b =















5 if a 6= 0, b 6= 0, a 6= b,
a if a = b,
b if a = 0,
a if b = 0.

and

a ∗ b =























0 if a=0 or b=0,
3 if a=b=2,
b if a=1,
a if b=1,
5 Otherwise
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Then (R,+, ∗) is easily checked to be a commutative semiring. An
inspection will show that I = {1, 4, 5} is a strong co-ideal of R, but
(I : 3) = {1, 2, 4, 5} is not a strong co-ideal of R since 2∗2 = 3 /∈ (I : 3).

Theorem 2.6. Let I be a strong co-ideal of a semiring R such that
(I : a) is strong co-ideal. If I is irreducible, then I is primal.

Proof. It sufficies to show that if a, b ∈ R are not prime to I, then
ab is not prime to I. We claim that (I : a)

⋂

(I : b) ⊆ (I : ab). Let
c ∈ (I : a)

⋂

(I : b), then c + a ∈ I and c + b ∈ I. By hypothesis
(I : c) is a strong co-ideal of R. Since a, b ∈ (I : c), ab ∈ (I : c). Thus
c + ab ∈ I and hence c ∈ (I : ab). Therefore (I : a)

⋂

(I : b) ⊆ (I : ab).
If ab is prime to I, then (I : ab) = I. As I ⊆ (I : a) and I ⊆ (I : b),
I ⊆ (I : a)

⋂

(I : b). Therefore I = (I : a)
⋂

(I : b). Since I is
irreducible, (I : a) = I or (I : b) = I. Hence a or b is prime to I, a
contradiction. Thus ab is not prime to I and so I is primal. �

Corollary 2.7. Let I be subtractive irreducible strong co-ideal of a
semiring R, then I is primal.

Proof. it is clear by Lemma 2.4 and Theorem 2.6. �

Example 2.8. (i) Let T be the set of all non-negative integers. Define
a + b = gcd(a, b) and a × b = lcm(a, b),(take 0 + 0 = 0 and 0 × 0 = 0
). Then (T,+,×) is easily checked to be a commutative semiring. Let
J = {1}. Then it is clear that J is a strong co-ideal of T . An inspection
will shows that the set of elements that are not prime to J is equal to
T \ {0}. Since T \ {0} is a strong co-ideal of T , J is primal. As
J = J1

⋂

J2 where J1 = {1, 2} and J2 = {1, 3}(J1 and J2 are strong
co-ideal of T ), J is not irreducible.

Also, Since 2+ 3 ∈ J and 2, 3 /∈ J = co− rad(J), J is not a primary
strong co-ideal of T .

(ii) Let X={a,b,c} and R = (P (X),
⋃

,
⋂

) a semiring, where P(X)=
the set of all subsets of X. Let I = {X, {a, b}}. It is clear that I is a
strong co-ideal of R. Let Q denotes the set of all elements of R that are
not prime to I, then it is equal to {X, {a, b}, {b, c}, {a, c}, {b}, {a}, {c}}.
Since {a}

⋂

{b} = ∅ /∈ Q, Q is not a strong co-ideal of R. Hence I is
not primal.

We need the following definition to push the theory further.

Definition 2.9. Let R be a semiring. We say that R is co-valuation
semiring if its strong co-ideals are linearly ordered by inclusion.

Proposition 2.10. Let I be a strong co-ideals of a co-valuation semir-
ing R such that (I : a) is strong co-ideal for each a ∈ R. Then I is
primal with adjoint prime P = {r ∈ R : (I : r) 6= I}.
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Proof. Let I = J
⋂

K for strong co-ideals J,K of R. As R is co-
valuation, either J ⊆ K or K ⊆ J . Hence I = J or I = K. Therefore
I is irreducible and so it is primal by Theorem 2.6. The other statement
is clear. �

Example 2.11. Let T = (Z+ ∪ {∞}, max,min). An inspection will
show that the list of strong co-ideals of T are T , In = {k : k ≥ n}. It
is clear each T is co-valuation semiring and and its strong co-ideals are
subtractive. Hence its strong co-ideals are primal.

The following proposition offer several characterization of P , for
some P -primal strong co-ideal I of a semiring R.

Proposition 2.12. Let I be P-primal and subtractive strong co-ideal
of a semiring R. Then the following are hold.

(i) If ab ∈ P (a, b ∈ R), then a ∈ P and b ∈ P .
(ii) P is subtractive.
(iii) R − P is a prime ideal of R.

Proof. (i) Let a, b ∈ R such that ab ∈ P . Thus ab + c ∈ I for some
c ∈ R\ I. Therefore (b+1)(a+ c) = ab+ c+a+ bc ∈ I. Since b+1 ∈ I
and I is subtractive, a + c ∈ I. As c 6∈ I, a ∈ P . Similarly, we can
show b ∈ P .

(ii) It is clear from (i).
(iii) Let a, b ∈ R − P . Hence a, b are prime to I. We show a + b is

prime to I. Let r ∈ R and a+b+r ∈ I. Since a is prime to I, b+r ∈ I.
Therefore r ∈ I, because b is prime to I. Hence a+ b is prime to I and
so a + b /∈ P .

Let a ∈ R − P and r ∈ R. We show that ra ∈ R − P . If ra ∈ P ,
then r ∈ P and a ∈ P by (ii), a contradiction. Thus R− P is an ideal
of R. We show R − P is a prime ideal of R. Since 1 ∈ P , R − P is
proper. Let ab ∈ R − P and a /∈ R − P, b /∈ R − P . Hence a, b ∈ P .
Thus ab ∈ P . This contradicts ab /∈ P . Therefore R − P is a prime
ideal of R. �

By Proposition 1.2(c), If P is a maximal co-ideal of a semiring R,
then P is subtractive strong co-ideal of R such that R \ P is a prime
ideal of R. By considering Proposition 2.12, we may suspect that if I
is a subtractive primal strong co-ideal of R, then the adjoint prime P
of I is maximal. However, the following example erase this possibility.

Example 2.13. Let R be the set of all non-negative integers. Define
a + b = gcd(a, b) and a × b = lcm(a, b),(take 0 + 0 = 0 and 0 × 0 = 0
). Then (R,+,×) is easily checked to be a commutative semiring. Let
I = {2k+1 : k ∈ R}, then I is a prime strong co-ideal of R and so it is
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primal. An inspection shows that R − I is an ideal of R. But I is not
a maximal co-ideal of R, because I is properly is contained in R−{0}
and R− {0} is maximal co-ideal of R.

The next theorem investigate the relationship between the primal
co-ideals of semirings R and R/I, for some Q-strong co-ideal J of R
containing I.

Theorem 2.14. Let J be a Q-strong co-ideal of a semiring R, I a
proper subtractive strong co-ideal of R and J ⊆ I. Then I is a primal
strong co-ideal of R if and only if I/J is a primal strong co-ideal of
R/J . In particular, there is a bijective correspondence between the
primal strong co-ideals of R containing J and the primal strong co-
ideals of R/J .

Proof. Let I be a primal strong co-ideal of R with adjoint prime P
and J ⊆ I. Since I is subtractive, P is subtractive by Proposition
2.12. Therefore by Proposition 1.2(h), P/J is a prime strong co-ideal
of R/J . It suffices to show that P/J is is the set of all elements of R/J
that are not prime to I/J . Let qJ ∈ P/J , so q ∈ Q

⋂

P by Proposition
1.2(g). Since P is adjoint prime strong co-ideals of I, there exists
b ∈ R − I such that a + b ∈ I. Let qe be unique element of Q that
1 ∈ qeJ . By Proposition 1.2(f), J = qeJ . Let q

′J be unique element of
R/J that b ∈ q′J . Since b /∈ I, b /∈ J . Thus b /∈ qeJ . If q

′J ∈ I/J , then
q′I

⋂

Q by Proposition 1.2(g). Therefore J ⊆ I gives q′J ⊆ q′I ⊆ I.
As b ∈ q′J , b ∈ I, a contradiction. Hence q′J /∈ I/J . It remains to
show that qJ ⊕ q′J ∈ I/J . Let qJ ⊕ q′J = q′′J where qJ + q′J ⊆ q′′J .
Since a ∈ qJ and b ∈ q′J , a + b ∈ qJ + q′J ⊆ q′′J . Hence a + b = q′′j
for some j ∈ J . Since j ∈ J , a + b ∈ I and I is subtractive, q′′ ∈ I.
Thus q′′J ∈ I/J . Hence every element of P/J is not prime to I/J .
Now assume that qJ ∈ R/J is not prime to I/J . Thus qJ ⊕ q′J ∈ I/J
for some q′J ∈ R/J − I/J . Let q′′J ∈ R/J such that qJ + q′J ⊆ q′′J .
Hence qJ ⊕ q′J = q′′J and q′′J ∈ I/J . Therefore q′′ ∈ I ∩ Q. Since
q′J /∈ I/J , q′ /∈ I. As q + q′ ∈ qJ + q′J ⊆ q′′J , q + q′ = q′′j for some
j ∈ J . Therefore j ∈ J ⊆ I and q′′ ∈ I gives q + q′ ∈ I. Since q′ /∈ I,
q is not prime to I. Therefore q ∈ P and hence qJ ∈ P/J . Hence P/J
is equal to the set of elements of R/J that are not prime to I/J and
so I/J is primal.

Conversely, suppose that I/J is P/J-primal strong co-ideal of R/J ;
we show that I is a primal strong co-ideal of R with adjoint prime P .
By Proposition 1.2(h), P is a prime strong co-ideal of R. It is enough
to show that P is equal to the set of elements of R that are not prime
to I. Let a ∈ P . Then there is a unique element qJ ∈ R/J such that
a ∈ qJ . Thus a = qj for some j ∈ J . Since j ∈ J ⊆ P, a ∈ P and P is
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subtractive, q ∈ P . Thus qJ ∈ P/J . Since P/J is adjoint prime of I/J ,
qJ ⊕ q′J ∈ I/J for some q′J ∈ R/J − I/J . Let qJ ⊕ q′J = q′′J ∈ I/J
where qJ + q′J ⊆ q′′J and q′′ ∈ I ∩Q. Since a + q′ ∈ qJ + q′J ⊆ q′′J ,
a + q′ ∈ q′′J . As J ⊆ I, q′′J ⊆ q′′I. Therefore q′′ ∈ I gives q′′I ⊆ I
and so a + q′ ∈ I. If q′ ∈ I, then q′J ∈ I/J which is a contradiction.
Therefore q′ /∈ I and a is not prime to I. Now, suppose that a is not
prime to I; we show a ∈ P . Since a is not prime to I, a+b ∈ I for some
b ∈ R− I. Let q′′ ∈ Q be unique element of Q that a+ b ∈ q′′J . Since
I is subtractive and J ⊆ I, q′′ ∈ I. Let q, q′ ∈ Q be unique element
of Q such that a ∈ qJ and b ∈ q′J . Since I is subtractive, q′ ∈ I
gives b ∈ I, which is a contradiction. Hence q′ /∈ I and q′J /∈ I/J .
Let qJ ⊕ q′J = q′′′J where qJ + q′J ⊆ q′′′J . As a + b ∈ q′′J and
a + b ∈ qJ + q′J ⊆ q′′′J , q′′J

⋂

q′′′J 6= ∅. Thus q′′J = q′′′J . Hence
qJ ⊕ q′J ∈ I/J . Since q′J /∈ I/J , qJ is not prime to I/J . Hence
qJ ∈ P/J and so q ∈ P and qJ ⊆ P . As a ∈ qJ , a ∈ P , as required. �

The following theorem shows every strong co-ideal I of a semiring R
is an intersection of all primal strong co-ideals which contain I.

Theorem 2.15. Let I be a subtractive strong co-ideal of semiring R.
Then I is intersection of all primal strong co-ideals of R that contains
I.

Proof. Let I be a subtractive strong co-ideal of R and {Pα}α∈Γ be
collection of all primal strong co-ideals that contain I. We show that
I =

⋂

α∈Γ Pα. Clearly, I ⊆
⋂

α∈Γ Pα. For the reverse of inclusion, let
a /∈ I, set

Σ = {J : J is subtractive strong co− ideal, I ⊆ J and a /∈ J}.

It is clear that (Σ,⊆) is a poset. By Zorn, Lemma, Σ has a maximal
element. Let K be a maximal element of Σ, we claim that Σ is irre-
ducible. If K = K1

⋂

K2 where K1 ⊂ K and K2 ⊂ K, maximality of
K implies that a ∈ K1 and a ∈ K2. Therefore a ∈ K, a contradiction.
This shows that K is irreducible. Since K is subtractive, K is primal
by corollary 2.7. Hence a /∈ K implies that a /∈

⋂

α∈Γ Pα. Therefore
⋂

α∈Γ Pα ⊆ I and so
⋂

α∈Γ Pα = I. �

In the following theorem, it is shown that under Noetherian property
of semirings, every subtractive strong co-ideal is a finite intersection of
primal strong co-ideals.

Theorem 2.16. Let R be Noetherian semiring. Then every strong
co-ideal is an intersection of finitely many primal strong co-ideals.
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Proof. we show every strong co-ideal is a finite intersection of subtrac-
tive irreducible strong co-ideals. Let Σ denotes the set of all proper
strong co-ideals I of R such that I is not a finite intersection of sub-
tractive irreducible strong co-ideals. we claim that Σ = ∅. For if
not, Σ has a maximal element K. But K is not irreducible and so
K = K1

⋂

K2 where K1 and K2 are strong co-ideals of R. Thus K1

and K2 are finite intersection of irreducible strong co-ideals and so is I,
a contradiction. By Corollary 2.7, every irreducible strong co-ideal is
primal. Hence every strong co-ideal is an intersection of finitely many
primal strong co-ideals. �

In Theorem 2.15, it is shown that every subtractive strong co-ideal
is an intersection of a primal strong co-ideals. The following example
shows that this intersection may be infinite for some semirings.

Let A be any nonempty subset of a semiring R. Then the set F (A)
consisting of all elements of R of the form a1a2...an + r (with ai ∈ A
for all 1 ≤ i ≤ n and r ∈ R) is a co-ideal of R containing A [8] and
[11]. If A is a subset of R that 1 ∈ A, then F (A) is a strong co-ideal
of R.

Example 2.17. Let X = {xi : i ∈ N} and R = (P (X),+,×) a
semiring, where P(X)= the set of all subsets of X and + and × means
⋃

and
⋂

, respectively. In six steps, we show that there is a subtractive
strong co-ideals I of R such that I is not an intersection of finite primal
strong co-ideals.(co-spec(R) denotes the set of all prime strong co-ideals
of R).

Step 1: For each t ∈ R where 0, 1 6= t there exists t′ 6= 0, 1 such
that t× t′ = 0 and t+ t′ = 1.

Proof: It is clear.
Step 2: Strong co-ideal P of R is prime if and only if it is maximal.
Proof: Let P be a prime strong co-ideal of R and P ⊂ Q where

Q 6= P is a strong co-ideal of R. Hence there exists q ∈ Q such that
q /∈ P . By Step 1, there exists q′ ∈ R such that q + q′ = 1 and
q × q′ = 0. Thus q + q′ ∈ P and q′ /∈ P gives q′ ∈ P and so q′ ∈ Q.
Thus 0 = q × q′ ∈ Q. Therefore Q = R. Hence P is maximal. The
converse is clear.

Step 3: Strong co-ideal P is primal if and only if P is prime.
Proof: Let P be a primal strong co-ideal of R with adjoint co-ideal

Q. We will show that Q = P . If not, then there exists q ∈ Q such that
q /∈ P . By Step 1, q + q′ = 1 and q × q′ = 0 for some 0, 1 6= q′ ∈ R.
Since q /∈ P , q′ is not prime to P . This implies that q′ ∈ Q. Hence
0 ∈ Q. This is a contradiction. Therefore Q = P and so P is prime.
The converse is clear.
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Step 4: The subset {1} is a subtractive strong co-ideal of R and
every strong co-ideal is subtractive.

Proof: It is clear.
Step 5: {1} =

⋂

P∈co−spec(R) P .

Proof: It is clear that {1} ⊆
⋂

P∈co−spec(R) P . For the reverse inclu-

sion, let x ∈
⋂

P∈co−spec(R)P . Assume that x 6= 1. Set Σ = {I : x /∈

I, I is a strong co−ideal of R }. Since {1} ∈ Σ, Σ 6= ∅. An inspection
shows that (Σ,⊆) is a poset and every chain in Σ has a upper bound. By
Zorn, Lemma, Σ has a maximal element K. Since x /∈ K, K 6= R. We
claim thatK is prime. Let a+b ∈ K and a /∈ K, b /∈ k. SinceK is prop-
erly contained in F (K

⋃

{a}) and F (K
⋃

{b}), x ∈ F (K
⋃

{a}) and
x ∈ F (K

⋃

{b}). Hence x = r1+k1×an = r2+k2×bm for some r1, r2 ∈ R
, k1, k2 ∈ K , n,m ∈ N. Since k1 × (a + b)n = k1 × an + b × t ∈ K,
x+ b× t = r1+ k1 × an + b× t ∈ K (t ∈ R). Hence b× t ∈ (K : x). By
Step 4 and Lemma 2.4, (K : x) is a subtractive co-ideal of R. Hence
b ∈ (K : x). Therefore k2 × bm ∈ (K : x), because k2 ∈ K ⊆ (K : x).
So x = r2 + k2 × bm ∈ (K : x), hence x = x+ x ∈ K, a contradiction.
Therefore K is prime implies x ∈ K. This contradicts x /∈ K. Hence
x = 1.

Step 6: {1} is not an intersection of finite primal strong co-ideals
of R.

Proof: Let {1} =
⋂n

i=1 Pi for some prime strong co-ideals Pi of R.
Let ri = X \ {xi}. Then for each i 6= j, xi + xj = 1. Since xi 6= 1
for each i ∈ N, we have xi ∈ Pt for some 1 ≤ t ≤ n. As N is infinite,
there exists 1 ≤ t ≤ n such that xi, xj /∈ Pt for some i 6= j. But
xi+xj = 1 ∈ Pt gives a contradiction. Hence {1} is not an intersection
of finite prime(primal) strong co-ideals of R.

Definition 2.18. Let I be a strong co-ideal of semiring R and P be a
prime strong co-ideal of R that contains I. The isolated P -component
of I, U(I, P ), is the intersection of all strong co-ideals which contain I
and are such that every element not in P is prime to them.

Lemma 2.19. If I is a primal strong co-ideal of semiring R with ad-
joint prime P , then I = U(I, P ).

Proof. Clearly, I ⊆ U(I, P ). Since U(I, P ) is the intersection of all
strong co-ideals J which I ⊆ J and if x /∈ P , then x is prime to J and
I is itself such an strong co-ideal, U(I, P ) ⊆ I. Hence I = U(I, P ). �

Theorem 2.20. Let I be a subtractive strong co-ideal of R, then I =
⋂

α∈Γ U(I, Pα) where P ,
as are the adjoint of all primal strong co-ideals

Iα that contains I.
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Proof. By Theorem 2.15, I =
⋂

α∈Γ Iα where Iα is a primal strong co-
ideals that contains I. Let Pα be adjoint prime of Iα for each α ∈
Γ. By Lemma 2.19 , Iα = U(Iα, Pα). Since I ⊆ Iα and if x /∈ Pα,
then x is prime to Iα, we have U(I, Pα) ⊆ Iα = U(Iα, Pα). Also it is
clear that I ⊆ U(I, Pα) for each α ∈ Γ. Hence I ⊆

⋂

α∈Γ U(I, Pα) ⊆
⋂

α∈Γ U(Iα, Pα) =
⋂

α∈Γ Iα = I and the equality follows. �

3. Intersection of primal strong co-ideals

We now inquire when the intersection of primal strong co-ideals is
again primal. It will seem no doubt somewhat surprising at first glance
that the intersection of two primal strong co-ideals is not necessarily
primal as the following example shows. But if we restrict ourselves to
some conditions, we may state the following theorem (e.g. Theorem
3.4 ).

Example 3.1. Let X={a,b,c} and R = (P (X),∪,∩) a semiring, where
P(X)= the set of all subsets of X. Let

P1 = {{a}, {a, b}, {a, c}, X},

P2 = {{b}, {a, b}, {b, c}, X}.

An inspection shows that P1 and P2 are Primal. Now P1

⋂

P2 =
{X, {a, b}} is not primal by Example 2.8.

Definition 3.2. Let R be a semiring and I be a strong co-ideal of R.
The representation I = I1

⋂

...
⋂

In of I by strong co-ideals Ii is called
reduced, if none of the components may be replaced by a larger strong
co-ideal without changing the intersection.

We continue, as follows, to study the properties of the co-ideal I of
the semiring R in terms of it, s reduced representation.

Lemma 3.3. Let I = I1
⋂

I2
⋂

...
⋂

In be a reduced representation of
I by subtractive primal strong co-ideals Ii with adjoint prime strong Pi.
Then r ∈ R is not prime to I if and only if r is not prime to Ii for
some 1 ≤ i ≤ n.

Proof. Assume that r is not prime to I. Then r+a ∈ I for some a /∈ I.
Since a /∈ I, a /∈ Ii for some 1 ≤ i ≤ n. Thus r + a ∈ I ⊆ Ii and a /∈ Ii
gives r is not prime to Ii.

Conversely, assume that r ∈ R is not prime to Ii where ≤ i ≤ n.
Then there is a ∈ R−Ii such that r+a ∈ Ii. Therefore J = F ({a}

⋃

Ii)
properly contains Ii. Since I = I1

⋂

I2
⋂

...
⋂

In is reduced,

I1
⋂

I2
⋂

...
⋂

Ii−1

⋂

J
⋂

Ii+1

⋂

I2
⋂

...
⋂

In 6⊆ I.
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Hence there is x ∈ I1
⋂

I2
⋂

...
⋂

Ii−1

⋂

J
⋂

Ii+1

⋂

I2
⋂

...
⋂

In 6⊆ I
such that x /∈ I. As x ∈ J , x = b + c1...csa

m for some ct ∈ Ii(1 ≤
t ≤ s), b ∈ R and m ∈ N. Since x ∈ Ij, for each i 6= j, we have
r + x ∈ Ij , for each i 6= j. By Lemma 2.4, (Ii, r) is a strong co-
ideal of R. As a ∈ (Ii : r) and ct ∈ (Ii : r) (1 ≤ t ≤ s), we have
c1...csa

m ∈ (Ii : r). Hence c1...csa
m + r ∈ Ii and so r + x ∈ Ii. As

r + x ∈ Ik for each 1 ≤ k ≤ n, r + x ∈ I. Since x /∈ I, r is not prime
to I. �

Theorem 3.4. Let I = I1
⋂

I2
⋂

...
⋂

In be a reduced representation of
I by subtractive Pi-primal strong co-ideals Ii. Then I is primal if and
only if there is a 1 ≤ j ≤ n such that Pi ⊆ Pj for all 1 ≤ i ≤ n.

Proof. Assume that there is a 1 ≤ j ≤ n such that Pi ⊆ Pj for all
1 ≤ i ≤ n. By Lemma 3.3, r is not prime to I if and only if r ∈

⋃n

i=1 Pi.
Since for all 1 ≤ i ≤ n, Pi ⊆ Pj ,

⋃n

i=1 Pi = Pj . Therefore the set of all
elements of R that are not prime to I is a strong co-ideal of R. Hence
I is primal.

Conversely, suppose that I is a primal strong co-ideal of R with
adjoint prime P . Let r ∈ P . Since r is not prime to I, r ∈

⋃n

i=1 Pi,
by Lemma 3.3. Hence P ⊆

⋃n

i=1 Pi. By Proposition 1.2(l), P ⊆ Pj for
some 1 ≤ j ≤ n. On the other hand, for each i, Pi ⊆ P by Lemma 3.3.
Thus P = Pj and Pi ⊆ Pj for each 1 ≤ j ≤ n. �

Definition 3.5. Let I be a strong co-ideal of a semiring R. A strong
co-ideal J is called is not prime to I, if every element of J is not prime
to I.

Lemma 3.6. Let I = I1
⋂

I2
⋂

...
⋂

In be a reduced representation of
I by subtractive Pi-primal strong co-ideals Ii. Then J is not prime to
I if and only if J ⊂ Pi for some 1 ≤ i ≤ n.

Proof. It is clear from Lemma 3.3. �

Definition 3.7. Let I be a strong co-ideal of a semiring R. The maxi-
mal prime of I is a strong co-ideal which is maximal in the poset (Σ,⊆)
where

Σ = {P : P is prime strong co−ideal which is not prime to I and I ⊆ P}.

Proposition 3.8. Let I = I1
⋂

...
⋂

In be a reduced representation of I
as an intersection of Pi-primal strong co-ideals Ii of R. Then the max-
imal primes of I are the maximal elements of the ”inclusion ordered”
set {P1, P2, ..., Pn}.

Proof. Let P be a maximal prime of I. By Lemma 3.6, there exists
1 ≤ i ≤ n such that P ⊆ Pi. Moreover, by Lemma 3.3, Pi is not prime
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to I, hence P = Pi, because P is maximal prime of I. This gives P is
a prime strong co-ideal of R.

Conversely, let Pj be maximal in the set {P1, ..., Pn} with respect the
inclusion. We claim that Pj is maximal prime of I. Otherwise, let Q
be a prime strong co-ideals of R that is not prime to I and Pj ⊂ Q.
As Q is not prime to I, Q ⊆ Pi for some 1 ≤ i ≤ n. Hence Pj ⊂ Pi, a
contradiction, as needed. �

Definition 3.9. If I = I1
⋂

...
⋂

In is an irredundant representation of
I by primal strong co-ideals Ii, and is such that Ii ∩ Ij is not primal if
i 6= j, then it will be called a short representation of I by primal strong
co-ideals.

Theorem 3.10. Let I = I1
⋂

...
⋂

In be a reduced representation of
I by primal strong co-ideals with prime adjoints Pi. Then I has a
short representation by primal strong co-ideals whose adjoints are the
maximal primes of I.

Proof. Let I = I1
⋂

...
⋂

In be a reduced representation of I. Hence
we can assume that this representation is irredundant. Otherwise, if
I = I1

⋂

...
⋂

In is not irredundant, we can eliminate some I ,is and
the remaining intersection is again reduced. Let the indexing be such
that P1, P2, ..., Pr are the maximal elements of the set {P1, ..., Pn}. Let
I ′1 =

⋂

{Ii : Pi ⊆ P1} and I ′j =
⋂

{Ii : Pi ⊆ Pj and Pi 6⊆ Pt if t < j}.
Each of I ′1, ..., I

′

r satisfies the condition of Theorem 3.4, and so they
are all primal with prime adjoints P1, ..., Pr. Also I = I ′1

⋂

...
⋂

I ′r. For
each i 6= j, I ′i

⋂

I ′j is a reduced representation by primal strong co-ideals
I ′i and I ′j , not all of whose adjoints are contained in any one adjoint,
hence by Theorem 3.4, I ′i

⋂

I ′j is not primal and so I = I ′1
⋂

...
⋂

I ′r is
short. By Proposition 3.8, P1, ..., Pr are the maximal primes of I. �

Theorem 3.11. Let I be a strong co-ideals of semiring R. In any short
reduced representation of I by primal ideals with prime adjoints, the
adjoints and the number of primal components are uniquely determined.

Proof. Let I = I1
⋂

...
⋂

In with adjoint prime ideals P1, P2, ..., Pn

and I = I ′1
⋂

...
⋂

I ′m with adjoint prime ideals P ′

1, P ′

2, ..., P
′

m be two
short primal reduced representation of I. Since both representations
are short, neither Pi properly contains the another Pj nor P

′

i properly
contains another P ′

j . Thus by Proposition 3.8, both sets {P1, P2, ..., Pn}
and {P ′

1, P
′

2, ..., P
′

m} are the set of maximal primes of I. Therefore
n = m and {P1, P2, ..., Pn} = {P ′

1, P
′

2, ..., P
′

m}. �
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