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CO-INTERSECTION GRAPH OF SUBACTS OF AN
ACT

A. DELFAN∗, H. RASOULI, K. MORADIPOR

Abstract. In this paper, we define the co-intersection graph G(A)
of an S-act A which is a graph whose vertices are non-trivial sub-
acts of A and two distinct vertices B1 and B2 are adjacent if
B1 ∪ B2 6= A. We investigate the relationship between the al-
gebraic properties of an S-act A and the properties of the graph
G(A).

1. Introduction and preliminaries

The notion of an S-act over a monoid S is a fundamental concept
in algebra, theoretical computer science and a variety of applications
like automata theory and mathematical linguistics. Assigning graphs
to algebraic structures is an approach to study algebraic properties via
graph-theoretic properties. We investigate the relationship between
the algebraic properties of an S-act A and the properties of the graph
G(A). The studing a classe of graphs associated with subacts of an
S-act has been extensively investigated by Rasouli et. al. [1, 3, 2, 8],
where extended the intersection graph to acts over semigroupes. The
Zero divisor graphs for S-act studied by Estaji and Haghdadi in [4].
Recently co-intersection graph of submodules of a module interoduced
by L. A. Mahdavi and Y. Talebi in [6, 7]. Motivated by these ideas,
in this paper we define co-intersection graph of subacts of an act. We
associate a graph G(A) to an S-act A, called the co-intersection graph
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of A, whose vertices are non-trivial subacts of A in such a way that
two distinct vertices B1, B2 are adjacent if B1 ∪B2 6= A.

In the following, we give some basic definitions on the S-acts and
associated graphs which are used in the main results.

Let S be a semigroup. A non-empty set A is said to be a (left) S-act
if there is a mapping λ : S ×A→ A, denoting λ(s, a) by sa, satisfying
(st)a = s(ta) and, if S is a monoid with 1, 1a = a, for all a ∈ A,
s, t ∈ S. An element θ ∈ A is said to be a fixed element if sθ = θ for all
s ∈ S. A non-empty subset B of A is called a subact of A if it is closed
under the action, that is sb ∈ B, for every s ∈ S, b ∈ B. A non-trivial
subact of an S-act A is a (non-empty) proper subact of A. The set
of all non-trivial subacts of A is denoted by Sub(A). Clearly, S is an
S-act with its operation as the action and so subacts of S are exactly
the left ideals of S, the non-empty subsets I of S satisfying SI ⊆ I.

A non-trivial subact M of an S-act A is called a minimal subact if
it properly contains no subact of A. We denote the set of all minimal
subacts of A by Min(A). A maximal subact of A is a non-trivial subact
N for which there is no subact of A properly contained between N and
A. The set of all maximal subacts of A by Max(A). The coproduct of a
family {Ai | i ∈ I} of S-acts, denoted by

∐
i∈I Ai, is the disjoint union⋃

i∈I(Ai × {i}) with the action s(a, i) = (sa, i) for every s ∈ S and
a ∈ Ai, i ∈ I. The reader is referred to [5] for more details on S-acts.

Let G be a simple and undirected graph with a vertex set V (G). For
distinct elements x and y of V (G), the length of the shortest (x, y)-
path is denoted by d(x, y). If G has no such a path, then d(x, y)=∞.
The number of vertices which are adjacent to x is called the degree of
x and denoted by deg(x). The girth(G) of a graph G is the length of
its shortest cycle and denoted by girth(G). A graph with no cycle has
infinite girth. A graph G is connected if there is a path between every
two distinct vertices. A complete graph with n vertices, denoted by
Kn, is a graph in which every pair of distinct vertices are adjacent. A
cycle graph with n vertices denoted by Cn is a graph that consists of a
single cycle. A path graph denoted by Pn where n refers to the number
of vertices of the path graph. A graph is said to be null, if it has no
edge. The reader is referred to [9] for more details on graph.

2. Basic notations

In this section, we proceed with the study of some facts about the
co-intersection graphs of S-acts.Throughout S stands for a semigroup
unless otherwise stated.
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Definition 2.1. Let A be an S-act. The co-intersection graph of A,
G(A), is a graph whose vertices are all non-trivial subacts of A such that
two distinct vertices B1 and B2 are adjacent if and only if B1∪B2 6= A
.

Example 2.2. Take the monoid S = {1, s}, where s2 = s. Consider
the S-act A = {a, b, c} given by the following action table:

a b c
1 a b c
s a b a

The non-trivial subacts of A are:

A1 = {a}, A2 = {b}, A3 = {a, b}, A4 = {a, c}

Thus G(A) is the following graph:

A1

A2

A3

A4

G(A)

Example 2.3. Let S = {0, 1}. The S-act A = {a, b, c} with the action
0x = a for every x ∈ A has three non-trivial subacts A1 = {a}, A2 =
{a, b} and A3 = {a, c}. Thus G(A) is the following graph:

A2 A1 A3

G(A)

Example 2.4. Let S be a non-trivial monoid. Take the S-act A =
{a, b, c, d} where a, b, c are fixed elements and sd = a for all 1 6= s ∈ S.
Then A1 = {a}, A2 = {b}, A3 = {c}, A4 = {a, d}, A5 = {a, b}, A6 =
{a, b, d}, A7 = {a, b, c}, A8 = {a, c, d}, A9 = {a, c}, and A10 = {b, c} are
all of non-trivial subacts of A.
Thus G(A) is the following graph:
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A1

A2A3

A4

A5

A6

A7

A8

A9

A10

G(A)

In the following, we show that, for some graphs G, there is no S-act
A for which G(A) = G. A bipartite graph is one whose vertex-set
is partitioned into two (not necessarily non-empty) disjoint subsets
in such a way that the two end vertices for each edge lie in disjoint
partitions.

Theorem 2.5. Let G be a non-null bipartite graph. Then G is a co-
intersection graph of an S-act if and only if G = Pi, where i ∈ {2, 3}.

Proof. Let A be an S-act and G = G(A) and W1 = {B1, B2, . . . }, W2 =
{C1, C2, . . . } be two components of G. Suppose that B1 is adjacent to
C1 and B1 ∪ C1 ∈ W1. Then it follows that B1 ∪ C1 = B1, because if
B1 ∪C1 = Bi, i 6= 1, then B1 ⊂ Bi and B1 is adjacent to Bi, which is a
contradiction. Thus B1 ∪ C1 = B1 that is C1 ⊂ B1. If B1 ∪ C1 ∈ W2,
then B1 ∪ C1 = C1, because if B1 ∪ C1 = Ci, i 6= 1, then C1 ⊂ Ci,
a contradiction. Thus B1 ∪ C1 = C1 that is B1 ⊂ C1. Hence, either
B1 ⊂ C1 or C1 ⊂ B1. Without loss of generality assume that C1 ⊂ B1.
Now, we show that B1 is an endpoint vertex. Suppose that B1 is
adjacent to C2 ∈ W2, then B1 ∪ C2 6= A and C1 ∪ C2 6= A. Therefore,
C1 and C2 are adjacent which is a contradiction. Hence, B1 is not
adjacent to another element of W2, so B1 is an endpoint.

If C1 is not adjacent to any element of W1, then G = P2. If C1 is
adjacent to another element, say B2, then C1 ⊂ B2, because otherwise
B2 ∪ C1 ∈ V (G) = W1 ∪W2, if B2 ∪ C1 = Bi ∈ W1, then B2 ⊂ Bi

and if B2 ∪ C1 = Ci ∈ W2, then C1 ⊂ Ci, a contradiction in both
cases. Now, we show that B2 is an endpoint vertex and G is the path
B1−C1−B2. Assume on the contrary that B2 is adjacent to C2 ∈ W2,
then B2 ∪C2 ∈ V (G) = W1 ∪W2. If B2 ∪C2 = Bi ∈ W1, then B2 ⊂ Bi
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and if B2 ∪ C2 = Ci ∈ W2, then C2 ⊂ Ci, which are contradictions in
both cases. For converesly see 2.3 and 2.6 when n = 2 �

Theorem 2.6. The cycle graph Cn is a co-intersection graph of an
S-act if and only if n = 3.

Proof. Let n > 3 and suppose that there exists an S-act A with non-
trivial subacts B1, B2, B3, . . . , Bn such that the co-intersection graph
G(A) is the following cycle graph Cn:

B1

B2

B3

B4

Bn

.
.
.

Since B1∪B2 6= A, B1∪B2 = Bi for some 1 ≤ i ≤ n. If B1∪B2 = B1,
then B2 ⊂ B1. Thus B2 ∪ Bn ⊂ B1 ∪ Bn 6= A. If B1 ∪ B2 = B2, then
B1 ⊂ B2 so that B1∪B3 ⊂ B2∪B3 6= A. If B1∪B2 = Bi, then B1 ⊂ Bi

and B2 ⊂ Bi. Hence, B1 − B3 − B2 − B1 is a cycle. In each case, we
have a contradiction. �

It is clear that if A and B are isomorphic S-acts, then the graphs
G(A) and G(B) are isomorphic. The converse is not true in general.
This result is illustrated in the following example.

Example 2.7. Take the monoid S = {1, s}, where s2 = 1. Consider
two S-acts A = {a, b, c} with trivial action and B = {a, b, c, d} pre-
sented by the following action table:

a b c d
1 a b c d
s a b d c

The non-trivial subacts of A and B are:

A1 = {a}, A2 = {a, b}, A3 = {b}, A4 = {b, c}, A5 = {c}, A6 = {a, c}
and

B1 = {a}, B2 = {a, b}, B3 = {b}, B4 = {b, c, d}, B5 = {c, d}, B6 = {a, c, d},
respectively. Then G(A) and G(B) are isomorphic which are given in
the following:
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A1 A2

A3

A4

A5 A6

B1 B3

B2

B5

B6 B4

G(A) ∼= G(B) whereas A and B are not isomorphic S-acts.

In the following, we give some conditions on two S-acts A,B under
which A and B are isomorphic S-acts when G(A) ∼= G(B).

Recall that an S-act A is free if A has a basis and in this case,
A ∼= S × X where X is a non-empty set and S × X is a right S-act
with the action (s, x)t = (st, x) for all (s, x) ∈ S ×X, t ∈ S.

Lemma 2.8. Let A be a free S-act with a basis X where S is a group.
Then G(A) ∼= G(X) in which X is considered as an S-act with trivial
action.

Proof. Using the assumption, A is isomorphic to the S-act S×X. Since
S is a group, non-trivial subacts of A (if exist) are of the forms S × Y
where Y ⊂ X. Consider the set X as an S-act with trivial action. We
prove that the graphs G(A) and G(X) are isomorphic. For this, we
define the map f : G(A) → G(X) by f(S × Y ) = Y , for any Y ⊂ X.
Now, it is easy to see that f is a graph isomorphism. �

Theorem 2.9. Let A and B be two free S-acts and G(A) ∼= G(B).
Then A ∼= B under each of the following conditions:

(i) S is a group.
(ii) S has only finitely many left ideals, and A and B have finite

bases.

Proof. (i) Assume that X and Y are bases of free S-acts A and B,
respectively. Using Lemma 2.8, G(A) ∼= G(X) and G(B) ∼= G(Y ),
where X and Y are considered as S-acts with trivial actions. From
the assumption we have G(X) ∼= G(Y ). Thus 2|X| − 2 = |Sub(X)| =
|Sub(Y )| = 2|Y | − 2. This implies that |X| = |Y | and hence A ∼= B.

(ii) This is trivial. �

The following example shows that for any complete graph Kn, there
exists an S-act A whose co-intersection graph G(A) is isomorphic to
Kn.

Example 2.10. Let S be a cyclic (monogenic) semigroup of order
n + 1, that is, S = {s, s2, s3, ..., sn+1}, with sn+2 = sn+1. It can be
easily shown that, all distinct non-trivial ideals of S form the chain:
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〈sn〉 ⊂ 〈sn−1〉 ⊂ · · · ⊂ 〈s2〉 ⊂ 〈s〉
where 〈sk〉 = {si | k + 1 ≤ i ≤ n + 1}, for every 1 ≤ k ≤ n. Since
〈sk〉 ∪ 〈sl〉 = 〈sl〉 for l < k, the graph G(S) is complete with n distinct
vertices. Clearly this graph is isomorphic to the complete graph Kn.

Example 2.11. The bicyclic monoid S = 〈u, v | uv = 1〉 = {vmun :
m,n ≥ 0} has a complete co-intersection graph. To see this, let I and J
be two non-trivial left ideals of S such that vmun /∈ I and vkul /∈ J for
some non-negative integersm, n, k and l. First, suppose that n ≥ l. We
show that vmul /∈ I∪J . Assume on the contrary that vmul ∈ I∪J , then
either vmul ∈ I or vmul ∈ J . If vmul ∈ I, then (vmum+n−l)(vmul) =
vmun ∈ I and if vmul ∈ J , then (vkum)(vmul) = vkul ∈ J , which
are contradictions. Therefore, vmul /∈ I ∪ J and I ∪ J 6= S. Now
suppose that n < l. We show that vkun /∈ I ∪ J . Let vkun ∈ I ∪ J ,
then either vkun ∈ I or vkun ∈ J . If vkun ∈ I, then (vmuk)(vkun) =
vmun ∈ I and if vkun ∈ J , then (vkul+k−n)(vkun) = vkul ∈ J , which
are contradictions in both cases. Therefore, vkun /∈ I∪J and I∪J 6= S.
Hence, the graph G(S) is complete.

In the following, we give a necessary and sufficient condition for an
S-act A to have a co-intersection complete graph. Recall that an S-
act A is Artinian (Noetherian) if every descending (ascending) chain of
subacts of A terminates.

Theorem 2.12. Let A be a Noetherian S-act. Then G(A) is complete
if and only if A contains a unique maximal subact.

Proof. Since A is a Noetherian S-act, then A has at least one maximal
subact and every non-empty subact of A is contained in a maximal
subact. First assume that A contains a unique maximal subact, say
M , and B1, B2 are two non-trivial subacts of A. Since B1, B2 ⊂M , B1∪
B2 ⊂M and so the graph G(A) is complete. Conversely, suppose that
G(A) is complete. If M1 and M2 are two maximal subacts of A, then
M1∪M2 = A and so these vertices are not adjacent, a contradiction. �

3. Connectivity, diameter and girth

In this section, we characterize all S-acts A for which the associated
co-intersection graphs are connected. Using these results, the diameter
and the girth of co-intersection graphs of S-acts are obtained.

Theorem 3.1. Let A be an S-act. Then the graph G(A) is disconnected
if and only if A is a coproduct of two simple subacts.

Proof. Let G(A) be disconnected. Then there exist two vertices B and
C with no path between them in G(A). We show that A = B t C. It
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is clear that A = B ∪ C. If B ∩ C 6= ∅, then B ∩ C is a non-trivial
subact of A since B ∩C ⊂ B and B ∩C ⊂ C. Thus B −B ∩C −C is
a path between B and C, which is a contradiction. Hence, B ∩C = ∅.

Now, we show that B and C are simple subacts of A. If D ⊂ B,
since B ∩C = ∅, D∪C ⊂ B ∪C = A and so D and C are adjacent, so
B −D−C is a path between B and C, a contradiction. Hence, B is a
simple subact. A similar way can be applied to show that C is also a
simple subact.

Conversely, suppose that there exists a subact D of A such that
B ∪ D 6= A, that is, B and D are adjacent in G(A). Since B is
simple, B ∩D = ∅, so D ⊆ C. But C is simple, then, D = C and so
B ∪ C = B ∪ D 6= A which is a contradiction. Thus B is an isolated
vertex, similarly it is shown that C is also an isolated vertex and hence
A is disconnected. �

Corollary 3.2. Let A be an S-act and G(A) be connected. Then B ∩
C 6= ∅ for any two maximal subacts B and C of A.

Proof. Let B ∩ C = ∅. It is clear that B ∪ C = A. Now we show
that B and C are simple. Let D ⊂ B, then C ⊂ C ∪ D and since
C is a maximal subact of A so C ∪ D = A and B = D. Hence, B
is simple. Similarly, C is also simple. Using Theorem 3.1, the graph
G(A) is disconnected, which is a contradiction. Hence, B ∩C 6= ∅. �

Corollary 3.3. Let A be an S-act and G(A) have at least one edge.
Then G(A) is connected.

Proof. It is straightforward. �

Theorem 3.4. Let A be an S-act. Then the following assertions hold:
(i) If G(A) is connected, then diam (G(A)) ≤ 3.
(ii) If G(A) contains a cycle, then girth (G(A)) = 3.

Proof. (i) Suppose that B and C are two non-trivial subacts of A. If
B and C are adjacent vertices of G(A), then d(B,C) = 1. Now, let B
and C be non-adjacent, then B ∪ C = A. There are two cases:

Case (1). One of the subacts B or C is not maximal. We suppose
that B is not maximal and B ⊂ D, where D is a non-trivial subact of
A. If C ∪ D 6= A, then B − D − C is a path and so d(B,C) = 2. If
C ∪ D = A, then C ∩ D 6= ∅, otherwise B ∩ C ⊂ D ∩ C implies that
B ∩ C = ∅ and since A = B ∪ C = D ∪ C and ∅ = B ∩ C = D ∩ C,
B = D, which is a contradiction. Therefore, C ∩D 6= ∅ and the path
B −D −D ∩ C − C implies that d(B,C) = 3.

Case (2). If both of B and C are maximal, then by Theorem 3.1 we
have B ∩C 6= ∅ and since B ∩C 6= B and B ∩C 6= C, B −B ∩C −C
is a path between B and C. Hence, d(B,C) = 2.
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(ii) Let n ≥ 4 and B1 − B2 − · · · − Bn be a cycle in G(A). If
B1 ∩ B2 = B1, then B1 ⊂ B2 and B1 ∪ B3 ⊂ B2 ∪ B3 6= A, where
B1 and B3 are adjacent, and B1 − B2 − B3 − B1 is a cycle. Thus
girth(G(A)) = 3.

Now, suppose that B1∩B2 = B2, then B2 ⊂ B1, B2∪Bn ⊂ B1∪Bn 6=
A and B2, Bn are adjacent, and B1 − B2 − Bn − B1 is a cycle and so
girth(G(A)) = 3.

Finally let B1 ∩ B2 6= B1, B2. Then we have the cycle B1 − B1 ∪
B2 −B2 −B1 so that girth(G(A)) = 3.

�

4. Finiteness conditions

In this section, we study finiteness conditions of some parameters
of co-intersection graphs of S-acts such as clique number, chromatic
number, independence number and domination number. It is useful to
recall the following definitions from graph theory before we describe
the results that are proved in this section. A clique of G is a complete
subgraph of G and the number of vertices in the largest clique of G,
denoted by ω(G), is called the clique number of G. For a graph G let
χ(G) denote the chromatic number of G, i.e. the minimum number of
colors which can be assigned to the vertices of G in such a way that
every two adjacent vertices have different colors.

Theorem 4.1. Let A be an S-act. Then the following are equivalent:
(i) deg(B) <∞ for each vertex B in G(A).
(ii) deg(B) <∞ for some vertex B in G(A).
(iii) |G(A)| <∞.
(iv) χ(G(A)) <∞.
(v) ω(G(A)) <∞.

Proof. (i)⇒ (ii), (iii)⇒ (iv) and (iv)⇒ (v) are straightforward.
(ii) ⇒ (iii). Suppose that |G(A)| is infinite and B be a vertex in

G(A) of finite degree. Let W = {B1, B2, . . . } be an infinite set of non-
trivial subacts of A such that B ∪ Bi = A, for all i ∈ {1, 2, 3, . . . }.
The set W1 = {Bi ∩ B|Bi ∈ W,Bi ∩ B 6= ∅} is finite, because all of
these vertices are adjacent to B. Thus there exists an infinite subset
W2 = {Bj1 , Bj2 , . . . } of W such that Bjm ∩ B = Bjn ∩ B for all Bjm ,
Bjn ∈ W2 which is a contradiction, because |W2| ≤ 1. Indeed let Bjn

andBjm be two distinct elements ofW2. Take any x ∈ Bjn and x /∈ Bjm ,
then x ∈ A = Bjm ∪ B and so x ∈ B. Hence, x ∈ B ∩ Bjn = B ∩ Bjm

whence x ∈ Bjm , which is a contradiction.
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(v) ⇒ (i). Suppose that there exists a vertex B and an infinite set
W = {Bi|i ∈ I} such that Bi is adjacent to B for all i ∈ I. By
using Infinite Ramsey’s Theorem, the subgraph of G(A) induced by W
contains either an infinite clique or an infinite set of pairwise disjoint
subacts. The latter case yields also an infinite clique in G(A), which
contradicts the assumption. �

The following corollary is direct consequence of the above theorem.

Corollary 4.2. Let A be an S-act and B be non-trivial subact of A
with deg(B) <∞. Then A is both Artinian and Noetherian.

Let G be a graph. The (open) neighborhood N(x) of a vertex x ∈
V (G) is the set of vertices adjacent to x. For a subset T of vertices, we
put N(T ) =

⋃
x∈T N(x) and N [T ] = N(T ) ∪ T . If N [T ] = V (G), then

T is said to be a dominating set. It is clear that every vertex not in a
dominating set T is adjacent to a vertex in T . The domination number
of G, γ(G), is the minimum cardinality of a dominating set of G. An
independent set in a graph is a set of pairwise non-adjacent vertices.
The independence number of G, denoted by α(G), is the maximum size
of an independent set.

Theorem 4.3. Let A be a Noetherian S-act. Then the following as-
sertions hold:

(i) Max(A) is both independent and dominating set in G(A).
(ii) α(G(A)) = |Max(A)|.
(iii) γ(G(A)) ≤ α(G(A)).

Proof. (i) Trivial.
(ii) Using (i), α(G(A)) ≥ |Max(A)|. Suppose that |Max(A)| = n.

Let α(G(A)) = m > n and W = {C1, C2, . . . , Cm} be an independent
set in G(A) of size m. It follows from the hypothesis that there are
distinct subacts Ci and Cj in W contained in a same maximal subact.
Thus Ci ∪ Cj 6= A which is a contradiction.

(iii) Follows from (i) and (ii).
�

Theorem 4.4. Let A be an Artinian S-act. Then γ(G(A)) = 1 or 2.

Proof. If A has only one minimal subact, say M , then {M} is a domi-
nating set and so γ(G(A)) = 1. If Min(A) = {Mi : i ∈ I} with |I| ≥ 2,
then the set {

⋃
i∈I,i 6=j Mi,Mj} forms a dominating set in the graph

G(A) and hence γ(G(A)) ≤ 2. �

Recall that a cut edge of a graph is a edge whose deletion (the end-
points stay in place ) from the graph increases the number of compo-
nents.
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Theorem 4.5. Let A be an S-act and e be a cut edge with end-point
B1 and B2. Then one end-point is a minimal subact and the other one
is a maximal subact .

Proof. It is clear that B1 ∪ B2 6= A. If B1 ∪ B2 6= B1, B2 , then
B1 − B1 ∪ B2 − B2 is a path, which is a contradiction. Thus either
B1 ∪ B2 = B1 or B1 ∪ B2 = B2. Suppose that B1 ∪ B2 = B2, then
B1 ⊂ B2. If B1 is not minimal and C ⊂ B1, then C ∪ B2 6= A whence
B1−C−B2 is a path, a contradiction. If B2 is not maximal and B2 ⊂ C,
then B2∪C = C 6= A, that is, C and B2 are adjacent. Moreover, since
B1 ⊂ B2, B1 and C are adjacent. Therefore, B1 − C − B2 is a path
which is a contradiction. �

Note that the 2.2 shows that the converse is not true.
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