Journal of Algebra and Related Topics

Vol. 10, No 2, (2022), pp 1-12

CO-INTERSECTION GRAPH OF SUBACTS OF AN ACT

A. DELFAN*, H. RASOULI, K. MORADIPOR

Abstract

In this paper, we define the co-intersection graph $G(A)$ of an S-act A which is a graph whose vertices are non-trivial subacts of A and two distinct vertices B_{1} and B_{2} are adjacent if $B_{1} \cup B_{2} \neq A$. We investigate the relationship between the algebraic properties of an S-act A and the properties of the graph $G(A)$.

1. Introduction and preliminaries

The notion of an S-act over a monoid S is a fundamental concept in algebra, theoretical computer science and a variety of applications like automata theory and mathematical linguistics. Assigning graphs to algebraic structures is an approach to study algebraic properties via graph-theoretic properties. We investigate the relationship between the algebraic properties of an S-act A and the properties of the graph $G(A)$. The studing a classe of graphs associated with subacts of an S-act has been extensively investigated by Rasouli et. al. [1, 3, 2, 8], where extended the intersection graph to acts over semigroupes. The Zero divisor graphs for S-act studied by Estaji and Haghdadi in [4]. Recently co-intersection graph of submodules of a module interoduced by L. A. Mahdavi and Y. Talebi in [6, 7]. Motivated by these ideas, in this paper we define co-intersection graph of subacts of an act. We associate a graph $G(A)$ to an S-act A, called the co-intersection graph

MSC(2010): Primary: 20M30, 05C10; Secondary: 05C25, 16w22
Keywords: S-Act, co-intersection graph.
Received: 2 August 2021, Accepted: 29 June 2022.
$*$ Corresponding author .
of A, whose vertices are non-trivial subacts of A in such a way that two distinct vertices B_{1}, B_{2} are adjacent if $B_{1} \cup B_{2} \neq A$.

In the following, we give some basic definitions on the S-acts and associated graphs which are used in the main results.

Let S be a semigroup. A non-empty set A is said to be a (left) S-act if there is a mapping $\lambda: S \times A \rightarrow A$, denoting $\lambda(s, a)$ by sa, satisfying $(s t) a=s(t a)$ and, if S is a monoid with $1,1 a=a$, for all $a \in A$, $s, t \in S$. An element $\theta \in A$ is said to be a fixed element if $s \theta=\theta$ for all $s \in S$. A non-empty subset B of A is called a subact of A if it is closed under the action, that is $s b \in B$, for every $s \in S, b \in B$. A non-trivial subact of an S-act A is a (non-empty) proper subact of A. The set of all non-trivial subacts of A is denoted by $\operatorname{Sub}(A)$. Clearly, S is an S-act with its operation as the action and so subacts of S are exactly the left ideals of S, the non-empty subsets I of S satisfying $S I \subseteq I$.

A non-trivial subact M of an S-act A is called a minimal subact if it properly contains no subact of A. We denote the set of all minimal subacts of A by $\operatorname{Min}(A)$. A maximal subact of A is a non-trivial subact N for which there is no subact of A properly contained between N and A. The set of all maximal subacts of A by $\operatorname{Max}(A)$. The coproduct of a family $\left\{A_{i} \mid i \in I\right\}$ of S-acts, denoted by $\coprod_{i \in I} A_{i}$, is the disjoint union $\bigcup_{i \in I}\left(A_{i} \times\{i\}\right)$ with the action $s(a, i)=(s a, i)$ for every $s \in S$ and $a \in A_{i}, i \in I$. The reader is referred to [5] for more details on S-acts.

Let G be a simple and undirected graph with a vertex set $V(G)$. For distinct elements x and y of $V(G)$, the length of the shortest (x, y) path is denoted by $d(x, y)$. If G has no such a path, then $d(x, y)=\infty$. The number of vertices which are adjacent to x is called the degree of x and denoted by $\operatorname{deg}(x)$. The $\operatorname{girth}(G)$ of a graph G is the length of its shortest cycle and denoted by girth(G). A graph with no cycle has infinite girth. A graph G is connected if there is a path between every two distinct vertices. A complete graph with n vertices, denoted by K_{n}, is a graph in which every pair of distinct vertices are adjacent. A cycle graph with n vertices denoted by C_{n} is a graph that consists of a single cycle. A path graph denoted by P_{n} where n refers to the number of vertices of the path graph. A graph is said to be null, if it has no edge. The reader is referred to [9] for more details on graph.

2. Basic notations

In this section, we proceed with the study of some facts about the co-intersection graphs of S-acts.Throughout S stands for a semigroup unless otherwise stated.

Definition 2.1. Let A be an S-act. The co-intersection graph of A, $G(A)$, is a graph whose vertices are all non-trivial subacts of A such that two distinct vertices B_{1} and B_{2} are adjacent if and only if $B_{1} \cup B_{2} \neq A$

Example 2.2. Take the monoid $S=\{1, s\}$, where $s^{2}=s$. Consider the S-act $A=\{a, b, c\}$ given by the following action table:

$$
\begin{array}{c|ccc}
& a & b & c \\
\hline 1 & a & b & c \\
s & a & b & a
\end{array}
$$

The non-trivial subacts of A are:

$$
A_{1}=\{a\}, A_{2}=\{b\}, A_{3}=\{a, b\}, A_{4}=\{a, c\}
$$

Thus $G(A)$ is the following graph:

Example 2.3. Let $S=\{0,1\}$. The S-act $A=\{a, b, c\}$ with the action $0 x=a$ for every $x \in A$ has three non-trivial subacts $A_{1}=\{a\}, A_{2}=$ $\{a, b\}$ and $A_{3}=\{a, c\}$. Thus $G(A)$ is the following graph:

Example 2.4. Let S be a non-trivial monoid. Take the S-act $A=$ $\{a, b, c, d\}$ where a, b, c are fixed elements and $s d=a$ for all $1 \neq s \in S$. Then $A_{1}=\{a\}, A_{2}=\{b\}, A_{3}=\{c\}, A_{4}=\{a, d\}, A_{5}=\{a, b\}, A_{6}=$ $\{a, b, d\}, A_{7}=\{a, b, c\}, A_{8}=\{a, c, d\}, A_{9}=\{a, c\}$, and $A_{10}=\{b, c\}$ are all of non-trivial subacts of A.
Thus $G(A)$ is the following graph:

In the following, we show that, for some graphs G, there is no S-act A for which $G(A)=G$. A bipartite graph is one whose vertex-set is partitioned into two (not necessarily non-empty) disjoint subsets in such a way that the two end vertices for each edge lie in disjoint partitions.

Theorem 2.5. Let G be a non-null bipartite graph. Then G is a cointersection graph of an S-act if and only if $G=P_{i}$, where $i \in\{2,3\}$.

Proof. Let A be an S-act and $G=G(A)$ and $W_{1}=\left\{B_{1}, B_{2}, \ldots\right\}, W_{2}=$ $\left\{C_{1}, C_{2}, \ldots\right\}$ be two components of G. Suppose that B_{1} is adjacent to C_{1} and $B_{1} \cup C_{1} \in W_{1}$. Then it follows that $B_{1} \cup C_{1}=B_{1}$, because if $B_{1} \cup C_{1}=B_{i}, i \neq 1$, then $B_{1} \subset B_{i}$ and B_{1} is adjacent to B_{i}, which is a contradiction. Thus $B_{1} \cup C_{1}=B_{1}$ that is $C_{1} \subset B_{1}$. If $B_{1} \cup C_{1} \in W_{2}$, then $B_{1} \cup C_{1}=C_{1}$, because if $B_{1} \cup C_{1}=C_{i}, i \neq 1$, then $C_{1} \subset C_{i}$, a contradiction. Thus $B_{1} \cup C_{1}=C_{1}$ that is $B_{1} \subset C_{1}$. Hence, either $B_{1} \subset C_{1}$ or $C_{1} \subset B_{1}$. Without loss of generality assume that $C_{1} \subset B_{1}$. Now, we show that B_{1} is an endpoint vertex. Suppose that B_{1} is adjacent to $C_{2} \in W_{2}$, then $B_{1} \cup C_{2} \neq A$ and $C_{1} \cup C_{2} \neq A$. Therefore, C_{1} and C_{2} are adjacent which is a contradiction. Hence, B_{1} is not adjacent to another element of W_{2}, so B_{1} is an endpoint.

If C_{1} is not adjacent to any element of W_{1}, then $G=P_{2}$. If C_{1} is adjacent to another element, say B_{2}, then $C_{1} \subset B_{2}$, because otherwise $B_{2} \cup C_{1} \in V(G)=W_{1} \cup W_{2}$, if $B_{2} \cup C_{1}=B_{i} \in W_{1}$, then $B_{2} \subset B_{i}$ and if $B_{2} \cup C_{1}=C_{i} \in W_{2}$, then $C_{1} \subset C_{i}$, a contradiction in both cases. Now, we show that B_{2} is an endpoint vertex and G is the path $B_{1}-C_{1}-B_{2}$. Assume on the contrary that B_{2} is adjacent to $C_{2} \in W_{2}$, then $B_{2} \cup C_{2} \in V(G)=W_{1} \cup W_{2}$. If $B_{2} \cup C_{2}=B_{i} \in W_{1}$, then $B_{2} \subset B_{i}$
and if $B_{2} \cup C_{2}=C_{i} \in W_{2}$, then $C_{2} \subset C_{i}$, which are contradictions in both cases. For converesly see 2.3 and 2.6 when $n=2$

Theorem 2.6. The cycle graph C_{n} is a co-intersection graph of an S-act if and only if $n=3$.

Proof. Let $n>3$ and suppose that there exists an S-act A with nontrivial subacts $B_{1}, B_{2}, B_{3}, \ldots, B_{n}$ such that the co-intersection graph $G(A)$ is the following cycle graph C_{n} :

Since $B_{1} \cup B_{2} \neq A, B_{1} \cup B_{2}=B_{i}$ for some $1 \leq i \leq n$. If $B_{1} \cup B_{2}=B_{1}$, then $B_{2} \subset B_{1}$. Thus $B_{2} \cup B_{n} \subset B_{1} \cup B_{n} \neq A$. If $B_{1} \cup B_{2}=B_{2}$, then $B_{1} \subset B_{2}$ so that $B_{1} \cup B_{3} \subset B_{2} \cup B_{3} \neq A$. If $B_{1} \cup B_{2}=B_{i}$, then $B_{1} \subset B_{i}$ and $B_{2} \subset B_{i}$. Hence, $B_{1}-B_{3}-B_{2}-B_{1}$ is a cycle. In each case, we have a contradiction.

It is clear that if A and B are isomorphic S-acts, then the graphs $G(A)$ and $G(B)$ are isomorphic. The converse is not true in general. This result is illustrated in the following example.

Example 2.7. Take the monoid $S=\{1, s\}$, where $s^{2}=1$. Consider two S-acts $A=\{a, b, c\}$ with trivial action and $B=\{a, b, c, d\}$ presented by the following action table:

$$
\begin{array}{l|llll}
& a & b & c & d \\
\hline 1 & a & b & c & d \\
s & a & b & d & c
\end{array}
$$

The non-trivial subacts of A and B are:

$$
A_{1}=\{a\}, A_{2}=\{a, b\}, A_{3}=\{b\}, A_{4}=\{b, c\}, A_{5}=\{c\}, A_{6}=\{a, c\}
$$

and
$B_{1}=\{a\}, B_{2}=\{a, b\}, B_{3}=\{b\}, B_{4}=\{b, c, d\}, B_{5}=\{c, d\}, B_{6}=\{a, c, d\}$,
respectively. Then $G(A)$ and $G(B)$ are isomorphic which are given in the following:

In the following, we give some conditions on two S-acts A, B under which A and B are isomorphic S-acts when $G(A) \cong G(B)$.

Recall that an S-act A is free if A has a basis and in this case, $A \cong S \times X$ where X is a non-empty set and $S \times X$ is a right S-act with the action $(s, x) t=(s t, x)$ for all $(s, x) \in S \times X, t \in S$.
Lemma 2.8. Let A be a free S-act with a basis X where S is a group. Then $G(A) \cong G(X)$ in which X is considered as an S-act with trivial action.
Proof. Using the assumption, A is isomorphic to the S-act $S \times X$. Since S is a group, non-trivial subacts of A (if exist) are of the forms $S \times Y$ where $Y \subset X$. Consider the set X as an S-act with trivial action. We prove that the graphs $G(A)$ and $G(X)$ are isomorphic. For this, we define the map $f: G(A) \rightarrow G(X)$ by $f(S \times Y)=Y$, for any $Y \subset X$. Now, it is easy to see that f is a graph isomorphism.
Theorem 2.9. Let A and B be two free S-acts and $G(A) \cong G(B)$. Then $A \cong B$ under each of the following conditions:
(i) S is a group.
(ii) S has only finitely many left ideals, and A and B have finite bases.

Proof. (i) Assume that X and Y are bases of free S-acts A and B, respectively. Using Lemma 2.8, $G(A) \cong G(X)$ and $G(B) \cong G(Y)$, where X and Y are considered as S-acts with trivial actions. From the assumption we have $G(X) \cong G(Y)$. Thus $2^{|X|}-2=|\operatorname{Sub}(X)|=$ $|\operatorname{Sub}(Y)|=2^{|Y|}-2$. This implies that $|X|=|Y|$ and hence $A \cong B$.
(ii) This is trivial.

The following example shows that for any complete graph K_{n}, there exists an S-act A whose co-intersection graph $G(A)$ is isomorphic to K_{n}.
Example 2.10. Let S be a cyclic (monogenic) semigroup of order $n+1$, that is, $S=\left\{s, s^{2}, s^{3}, \ldots, s^{n+1}\right\}$, with $s^{n+2}=s^{n+1}$. It can be easily shown that, all distinct non-trivial ideals of S form the chain:

$$
\left\langle s^{n}\right\rangle \subset\left\langle s^{n-1}\right\rangle \subset \cdots \subset\left\langle s^{2}\right\rangle \subset\langle s\rangle
$$

where $\left\langle s^{k}\right\rangle=\left\{s^{i} \mid k+1 \leq i \leq n+1\right\}$, for every $1 \leq k \leq n$. Since $\left\langle s^{k}\right\rangle \cup\left\langle s^{l}\right\rangle=\left\langle s^{l}\right\rangle$ for $l<k$, the graph $G(S)$ is complete with n distinct vertices. Clearly this graph is isomorphic to the complete graph K_{n}.

Example 2.11. The bicyclic monoid $S=\langle u, v \mid u v=1\rangle=\left\{v^{m} u^{n}\right.$: $m, n \geq 0\}$ has a complete co-intersection graph. To see this, let I and J be two non-trivial left ideals of S such that $v^{m} u^{n} \notin I$ and $v^{k} u^{l} \notin J$ for some non-negative integers m, n, k and l. First, suppose that $n \geq l$. We show that $v^{m} u^{l} \notin I \cup J$. Assume on the contrary that $v^{m} u^{l} \in I \cup J$, then either $v^{m} u^{l} \in I$ or $v^{m} u^{l} \in J$. If $v^{m} u^{l} \in I$, then $\left(v^{m} u^{m+n-l}\right)\left(v^{m} u^{l}\right)=$ $v^{m} u^{n} \in I$ and if $v^{m} u^{l} \in J$, then $\left(v^{k} u^{m}\right)\left(v^{m} u^{l}\right)=v^{k} u^{l} \in J$, which are contradictions. Therefore, $v^{m} u^{l} \notin I \cup J$ and $I \cup J \neq S$. Now suppose that $n<l$. We show that $v^{k} u^{n} \notin I \cup J$. Let $v^{k} u^{n} \in I \cup J$, then either $v^{k} u^{n} \in I$ or $v^{k} u^{n} \in J$. If $v^{k} u^{n} \in I$, then $\left(v^{m} u^{k}\right)\left(v^{k} u^{n}\right)=$ $v^{m} u^{n} \in I$ and if $v^{k} u^{n} \in J$, then $\left(v^{k} u^{l+k-n}\right)\left(v^{k} u^{n}\right)=v^{k} u^{l} \in J$, which are contradictions in both cases. Therefore, $v^{k} u^{n} \notin I \cup J$ and $I \cup J \neq S$. Hence, the graph $G(S)$ is complete.

In the following, we give a necessary and sufficient condition for an S-act A to have a co-intersection complete graph. Recall that an S act A is Artinian (Noetherian) if every descending (ascending) chain of subacts of A terminates.

Theorem 2.12. Let A be a Noetherian S-act. Then $G(A)$ is complete if and only if A contains a unique maximal subact.

Proof. Since A is a Noetherian S-act, then A has at least one maximal subact and every non-empty subact of A is contained in a maximal subact. First assume that A contains a unique maximal subact, say M, and B_{1}, B_{2} are two non-trivial subacts of A. Since $B_{1}, B_{2} \subset M, B_{1} \cup$ $B_{2} \subset M$ and so the graph $G(A)$ is complete. Conversely, suppose that $G(A)$ is complete. If M_{1} and M_{2} are two maximal subacts of A, then $M_{1} \cup M_{2}=A$ and so these vertices are not adjacent, a contradiction.

3. Connectivity, DiAmeter And girth

In this section, we characterize all S-acts A for which the associated co-intersection graphs are connected. Using these results, the diameter and the girth of co-intersection graphs of S-acts are obtained.
Theorem 3.1. Let A be an S-act. Then the graph $G(A)$ is disconnected if and only if A is a coproduct of two simple subacts.

Proof. Let $G(A)$ be disconnected. Then there exist two vertices B and C with no path between them in $G(A)$. We show that $A=B \sqcup C$. It
is clear that $A=B \cup C$. If $B \cap C \neq \emptyset$, then $B \cap C$ is a non-trivial subact of A since $B \cap C \subset B$ and $B \cap C \subset C$. Thus $B-B \cap C-C$ is a path between B and C, which is a contradiction. Hence, $B \cap C=\emptyset$.

Now, we show that B and C are simple subacts of A. If $D \subset B$, since $B \cap C=\emptyset, D \cup C \subset B \cup C=A$ and so D and C are adjacent, so $B-D-C$ is a path between B and C, a contradiction. Hence, B is a simple subact. A similar way can be applied to show that C is also a simple subact.

Conversely, suppose that there exists a subact D of A such that $B \cup D \neq A$, that is, B and D are adjacent in $G(A)$. Since B is simple, $B \cap D=\emptyset$, so $D \subseteq C$. But C is simple, then, $D=C$ and so $B \cup C=B \cup D \neq A$ which is a contradiction. Thus B is an isolated vertex, similarly it is shown that C is also an isolated vertex and hence A is disconnected.
Corollary 3.2. Let A be an S-act and $G(A)$ be connected. Then $B \cap$ $C \neq \emptyset$ for any two maximal subacts B and C of A.
Proof. Let $B \cap C=\emptyset$. It is clear that $B \cup C=A$. Now we show that B and C are simple. Let $D \subset B$, then $C \subset C \cup D$ and since C is a maximal subact of A so $C \cup D=A$ and $B=D$. Hence, B is simple. Similarly, C is also simple. Using Theorem 3.1, the graph $G(A)$ is disconnected, which is a contradiction. Hence, $B \cap C \neq \emptyset$.
Corollary 3.3. Let A be an S-act and $G(A)$ have at least one edge. Then $G(A)$ is connected.
Proof. It is straightforward.
Theorem 3.4. Let A be an S-act. Then the following assertions hold:
(i) If $G(A)$ is connected, then diam $(G(A)) \leq 3$.
(ii) If $G(A)$ contains a cycle, then girth $(G(A))=3$.

Proof. (i) Suppose that B and C are two non-trivial subacts of A. If B and C are adjacent vertices of $G(A)$, then $d(B, C)=1$. Now, let B and C be non-adjacent, then $B \cup C=A$. There are two cases:

Case (1). One of the subacts B or C is not maximal. We suppose that B is not maximal and $B \subset D$, where D is a non-trivial subact of A. If $C \cup D \neq A$, then $B-D-C$ is a path and so $d(B, C)=2$. If $C \cup D=A$, then $C \cap D \neq \emptyset$, otherwise $B \cap C \subset D \cap C$ implies that $B \cap C=\emptyset$ and since $A=B \cup C=D \cup C$ and $\emptyset=B \cap C=D \cap C$, $B=D$, which is a contradiction. Therefore, $C \cap D \neq \emptyset$ and the path $B-D-D \cap C-C$ implies that $d(B, C)=3$.

Case (2). If both of B and C are maximal, then by Theorem 3.1 we have $B \cap C \neq \emptyset$ and since $B \cap C \neq B$ and $B \cap C \neq C, B-B \cap C-C$ is a path between B and C. Hence, $d(B, C)=2$.
(ii) Let $n \geq 4$ and $B_{1}-B_{2}-\cdots-B_{n}$ be a cycle in $G(A)$. If $B_{1} \cap B_{2}=B_{1}$, then $B_{1} \subset B_{2}$ and $B_{1} \cup B_{3} \subset B_{2} \cup B_{3} \neq A$, where B_{1} and B_{3} are adjacent, and $B_{1}-B_{2}-B_{3}-B_{1}$ is a cycle. Thus $\operatorname{girth}(G(A))=3$.

Now, suppose that $B_{1} \cap B_{2}=B_{2}$, then $B_{2} \subset B_{1}, B_{2} \cup B_{n} \subset B_{1} \cup B_{n} \neq$ A and B_{2}, B_{n} are adjacent, and $B_{1}-B_{2}-B_{n}-B_{1}$ is a cycle and so $\operatorname{girth}(G(A))=3$.

Finally let $B_{1} \cap B_{2} \neq B_{1}, B_{2}$. Then we have the cycle $B_{1}-B_{1} \cup$ $B_{2}-B_{2}-B_{1}$ so that $\operatorname{girth}(G(A))=3$.

4. Finiteness conditions

In this section, we study finiteness conditions of some parameters of co-intersection graphs of S -acts such as clique number, chromatic number, independence number and domination number. It is useful to recall the following definitions from graph theory before we describe the results that are proved in this section. A clique of G is a complete subgraph of G and the number of vertices in the largest clique of G, denoted by $\omega(G)$, is called the clique number of G. For a graph G let $\chi(G)$ denote the chromatic number of G, i.e. the minimum number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors.

Theorem 4.1. Let A be an S-act. Then the following are equivalent:
(i) $\operatorname{deg}(B)<\infty$ for each vertex B in $G(A)$.
(ii) $\operatorname{deg}(B)<\infty$ for some vertex B in $G(A)$.
(iii) $|G(A)|<\infty$.
(iv) $\chi(G(A))<\infty$.
(v) $\omega(G(A))<\infty$.

Proof. (i) \Rightarrow (ii), (iii) \Rightarrow (iv) and (iv) \Rightarrow (v) are straightforward.
(ii) \Rightarrow (iii). Suppose that $|G(A)|$ is infinite and B be a vertex in $G(A)$ of finite degree. Let $W=\left\{B_{1}, B_{2}, \ldots\right\}$ be an infinite set of nontrivial subacts of A such that $B \cup B_{i}=A$, for all $i \in\{1,2,3, \ldots\}$. The set $W_{1}=\left\{B_{i} \cap B \mid B_{i} \in W, B_{i} \cap B \neq \emptyset\right\}$ is finite, because all of these vertices are adjacent to B. Thus there exists an infinite subset $W_{2}=\left\{B_{j_{1}}, B_{j_{2}}, \ldots\right\}$ of W such that $B_{j_{m}} \cap B=B_{j_{n}} \cap B$ for all $B_{j_{m}}$, $B_{j_{n}} \in W_{2}$ which is a contradiction, because $\left|W_{2}\right| \leq 1$. Indeed let $B_{j_{n}}$ and $B_{j_{m}}$ be two distinct elements of W_{2}. Take any $x \in B_{j_{n}}$ and $x \notin B_{j_{m}}$, then $x \in A=B_{j_{m}} \cup B$ and so $x \in B$. Hence, $x \in B \cap B_{j_{n}}=B \cap B_{j_{m}}$ whence $x \in B_{j_{m}}$, which is a contradiction.
$(\mathrm{v}) \Rightarrow(\mathrm{i})$. Suppose that there exists a vertex B and an infinite set $W=\left\{B_{i} \mid i \in I\right\}$ such that B_{i} is adjacent to B for all $i \in I$. By using Infinite Ramsey's Theorem, the subgraph of $G(A)$ induced by W contains either an infinite clique or an infinite set of pairwise disjoint subacts. The latter case yields also an infinite clique in $G(A)$, which contradicts the assumption.

The following corollary is direct consequence of the above theorem.
Corollary 4.2. Let A be an S-act and B be non-trivial subact of A with $\operatorname{deg}(B)<\infty$. Then A is both Artinian and Noetherian.

Let G be a graph. The (open) neighborhood $N(x)$ of a vertex $x \in$ $V(G)$ is the set of vertices adjacent to x. For a subset T of vertices, we put $N(T)=\bigcup_{x \in T} N(x)$ and $N[T]=N(T) \cup T$. If $N[T]=V(G)$, then T is said to be a dominating set. It is clear that every vertex not in a dominating set T is adjacent to a vertex in T. The domination number of $G, \gamma(G)$, is the minimum cardinality of a dominating set of G. An independent set in a graph is a set of pairwise non-adjacent vertices. The independence number of G, denoted by $\alpha(G)$, is the maximum size of an independent set.
Theorem 4.3. Let A be a Noetherian S-act. Then the following assertions hold:
(i) $\operatorname{Max}(A)$ is both independent and dominating set in $G(A)$.
(ii) $\alpha(G(A))=|\operatorname{Max}(A)|$.
(iii) $\gamma(G(A)) \leq \alpha(G(A))$.

Proof. (i) Trivial.
(ii) Using (i), $\alpha(G(A)) \geq|\operatorname{Max}(A)|$. Suppose that $|\operatorname{Max}(A)|=n$. Let $\alpha(G(A))=m>n$ and $W=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be an independent set in $G(A)$ of size m. It follows from the hypothesis that there are distinct subacts C_{i} and C_{j} in W contained in a same maximal subact. Thus $C_{i} \cup C_{j} \neq A$ which is a contradiction.
(iii) Follows from (i) and (ii).

Theorem 4.4. Let A be an Artinian S-act. Then $\gamma(G(A))=1$ or 2 .
Proof. If A has only one minimal subact, say M, then $\{M\}$ is a dominating set and so $\gamma(G(A))=1$. If $\operatorname{Min}(A)=\left\{M_{i}: i \in I\right\}$ with $|I| \geq 2$, then the set $\left\{\bigcup_{i \in I, i \neq j} M_{i}, M_{j}\right\}$ forms a dominating set in the graph $G(A)$ and hence $\gamma(G(A)) \leq 2$.

Recall that a cut edge of a graph is a edge whose deletion (the endpoints stay in place) from the graph increases the number of components.

Theorem 4.5. Let A be an S-act and e be a cut edge with end-point B_{1} and B_{2}. Then one end-point is a minimal subact and the other one is a maximal subact.

Proof. It is clear that $B_{1} \cup B_{2} \neq A$. If $B_{1} \cup B_{2} \neq B_{1}, B_{2}$, then $B_{1}-B_{1} \cup B_{2}-B_{2}$ is a path, which is a contradiction. Thus either $B_{1} \cup B_{2}=B_{1}$ or $B_{1} \cup B_{2}=B_{2}$. Suppose that $B_{1} \cup B_{2}=B_{2}$, then $B_{1} \subset B_{2}$. If B_{1} is not minimal and $C \subset B_{1}$, then $C \cup B_{2} \neq A$ whence $B_{1}-C-B_{2}$ is a path, a contradiction. If B_{2} is not maximal and $B_{2} \subset C$, then $B_{2} \cup C=C \neq A$, that is, C and B_{2} are adjacent. Moreover, since $B_{1} \subset B_{2}, B_{1}$ and C are adjacent. Therefore, $B_{1}-C-B_{2}$ is a path which is a contradiction.

Note that the 2.2 shows that the converse is not true.

Acknowledgments

The authors gratefully acknowledge the referee for helpful comments and suggestions on the manuscript.

References

1. A. Delfan, H. Rasouli and A. Tehranian, A new class of weakly perfect graphs attached to S-acts, JP J. Algebra, Number Theory Appl. (5) 40 (2018), 775-785.
2. A. Delfan, H. Rasouli and A. Tehranian, On the inclusion graphs of S-acts, J. Math. Computer Sci. (4) 18 (2018), 357-363.
3. A. Delfan, H. Rasouli and A. Tehranian, Intersection graphs associated with semigroup acts, Categ. Gen. Algebr. Struct. Appl. 11 (2019), 131-148.
4. A.A. Estaji and A. Haghdadi, Zero divisor graphs for S-act, Lobachevskii J. Math. (1) 36 (2015), 1-8.
5. M. Kilp, U. Knauer and A.V. Mikhalev, Monoids, Acts and Categories. de Gruyter Expositions in Mathematics, 29. de Gruyter, Berlin, 2000.
6. L. A. Mahdavi and Y. Talebi, Co-intersection graph of submodules of module, Algebra Discrete Math, (1) 21 (2016), 128-143.
7. L. A. Mahdavi and Y. Talebi, Properties of Co-intersection graph of submodules of a module, J. Prime Res. Math. 13 (2017), 16-29.
8. H. Rasouli and A. Tehranian, Intersection graphs of S-acts, Bull. Malays. Math. Sci. Soc. (4) 38 (2015), 1575-1587.
9. D. B. West, Introduction to Graph Theory. Prentice Hall, 2001.
[^0]
Hamid Rasouli

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
Email: hrasouli@srbiau.ac.ir

Kayvan Moradipor

Department of Mathematics, Faculty of Khorram abad, Lorestan Branch, Technical and Vocational University (TVU), Iran
Email: kayvan.mrp@gmail.com

[^0]: Abdolhossein Delfan
 Department of Mathematics, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
 Email: abdolhoseindelfan@yahoo.com

