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δ-n-IDEALS OF COMMUTATIVE RINGS

E. YETKIN CELIKEL AND G. ULUCAK ∗

Abstract. Let R be a commutative ring with non-zero identity,
and δ : I(R) → I(R) be an ideal expansion where I(R) is the
set of all ideals of R. In this paper, we introduce the concept of
δ-n-ideals which is an extension of n-ideals in commutative rings.
We call a proper ideal I of R a δ-n-ideal if whenever a, b ∈ R
with ab ∈ I and a /∈

√
0, then b ∈ δ(I). For example, an ideal

expansion δ1 is defined by δ1(I) =
√
I. In this case, a δ1-n-ideal

I is said to be a quasi n-ideal or equivalently, I is quasi n-ideal if√
I is an n-ideal. A number of characterizations and results with

many supporting examples concerning this new class of ideals are
given. In particular, we present some results regarding quasi n-
ideals. Furthermore, we use δ-n-ideals to characterize fields and
UN-rings.

1. Introduction

Throughout this paper, we assume that all rings are commutative
with non-zero identity. Since prime ideals have a vital place in com-
mutative algebra, various generalizations of prime ideals have studied
by many authors for years. (see for example, [2]-[8], [9], [13], [18]-[21],
[15]-[20]). In 1947, the concept of quasi-primary ideals were defined
by Fuchs in [9]. Recall that an ideal I of a ring R is called quasi-

primary if
√
I is a prime ideal. Many years later, in 2007, a different

generalization of prime ideals were introduced. According to Badawi’s
celebrated paper [3], a proper ideal I of a ring R is called a 2-absorbing
ideal if whenever a, b, c ∈ R with abc ∈ I, then ab ∈ I or ac ∈ I or
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bc ∈ I. Afterwards, in [6], Badawi, Tekir and Yetkin Celikel general-
ized 2-absorbing ideals to 2-absorbing primary ideals by the following
definition. A proper ideal I of a ring R is called a 2-absorbing pri-
mary if whenever a, b, c ∈ R with abc ∈ I, then ab ∈ I or ac ∈

√
I

or bc ∈
√
I. Later, in [16], Tekir et. al. defined a proper ideal I of a

ring R to be 2-absorbing quasi primary if
√
I is a 2-absorbing ideal of

R. On the other hand, in 2001, D. Zhao [21] introduced the concept of
expansions of ideals and δ-primary ideals of commutative rings. Let R
be a ring. By I(R), we denote the set of all ideals of R. A function
δ : I(R) → I(R) is an ideal expansion if it assigns to each ideal I of
R to another ideal δ(I) of the same ring with the following properties:
(i) I ⊆ δ(I) and (ii) if I ⊆ J for some ideals I, J of R, then δ(I) ⊆
δ(J). For example, δ0 is the identity function where δ0(I) = I, and δ1 is

defined by δ1(I) =
√
I for all ideal I of R, also δ+(I) = I + J for some

J ∈ I(R) and δ∗(I) = (I : P ) for some P ∈ I(R) for all I ∈ I(R).
For more examples of expansion functions, the reader may refer to [5].
Recall also from [21] that a proper ideal I of R is said to be a δ-primary
if ab ∈ I and a /∈ I for some a, b ∈ R, then b ∈ δ(I). The notion of
δ-primary ideals and its generalizations have drawn considerable inter-
est and have been studied in many studies. See, for example, [4], [5],
[8], [13], [18], [19]. Afterwards, in 2015, R. Mohamadian [14] defined
the concept of r-ideals in commutative rings. He called a proper ideal
I of a ring R an r-ideal if whenever ab ∈ I and Ann(a) = 0 for some
a, b ∈ R, then b ∈ I. As a recent study, [17], Tekir, Koc and Oral intro-
duced n-ideals which is a subclass of r-ideals as follows: A proper ideal
I of R is called n-ideal if whenever a, b ∈ R with ab ∈ I and a /∈

√
0,

then b ∈ I.
Motivated from these studies mentioned above, in this paper, we

call a proper ideal I of a ring R a quasi n-ideal if
√
I is an n-ideal, or

equivalently if whenever a, b ∈ R with ab ∈ I, then either a ∈
√

0 or
b ∈
√
I. Generalizing this idea by using an ideal expansion δ, we call a

proper ideal I of a ring R a δ-n-ideal if whenever a, b ∈ R with ab ∈ I
and a /∈

√
0, then b ∈ δ(I). If δ(I) is an n-ideal of R, then I is a δ-n-

ideal of R. Unlike quasi n-ideals which is a particular case δ = δ1, the
converse of this inclusion may not hold in general. (see Example 2.6).

The aim of this article is to introduce and characterize δ-n-ideals
which is an extension of n-ideals of commutative rings and to investi-
gate relationships among some classical ideals in the literature such as
prime, δ-primary, n-ideal and this new class of ideals. It is clear from
the definition that every n-ideal is a δ-n-ideal for all ideal expansions δ.
We start with Example 2.2 to show that this generalization is proper.
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Also, Example 2.6 is given to show that a prime ideal needs not to be
a δ-n-ideal. Among many results in this paper, in Proposition 2.4, we
obtain some certain conditions for a prime ideal is to be a δ-n-ideal.
In Theorem 2.8, we conclude some equivalent characterizations for δ-
n-ideals. In Theorem 2.9, we determine all rings of which every proper
ideal is a δ-n-ideal. We show in Proposition 2.15 that a maximal quasi
n-ideal of R is a prime ideal of R. In Proposition 2.10, we show that
an integral domain has no non-zero δ-n-ideal for expansion of ideals
δ of R provided δ(I) is proper for all I ∈ I(R). Also, it is shown in
Theorem 2.11 that if δ(0) = 0, then R is a field if and only if R is
a von Neumann regular ring and {0} is a δ-n-ideal. Furthermore, we
investigate δ-n-ideals under various contexts of constructions such as
homomorphic images, direct products, localizations and in idealization
rings. (See Propositions 2.20, 2.26, 2.28 and Remark 2.27).

For the sake of completeness, we state some notations and definitions
which we will need throughout. For a proper ideal I a ring R,

√
I

denotes the radical of I defined by {r ∈ R : there exists n ∈ N with
rn ∈ I} and for x ∈ R, by (I : x), we denote the set of {r ∈ R :
rx ∈ I}. We used standard definitions and terminologies in this paper.
For the other notations, terminologies and applications not mentioned
in the paper, the readers are referred to [11].

2. Properties of δ-n-ideals

The aim of this section is to study the δ-n-ideals in commutative
rings. We begin with our main definition.

Definition 2.1. Let R be a ring and δ : I(R) → I(R) an ideal
expansion. A proper ideal I of R is called a δ-n-ideal if whenever
a, b ∈ R with ab ∈ I and a /∈

√
0, then b ∈ δ(I). In particular, if δ = δ1

defined by δ1(I) =
√
I for all I ∈ I(R), then I is called a quasi n-ideal.

It is clear that any n-ideal is a δ-n-ideal (in particular, a quasi n-
ideal). However, the following examples show that the converse of this
implication is not true in general.

Example 2.2. (A δ-n-ideal which is not an n-ideal) Consider
the ideal I = (x3)R1 of R1 = Z4[X]. Let R = R1/I. Define the

expansion function of I(R) with δ(K) = K + (2,x)R1

I
and let J =

(x+ 1)R1/I. We show that J is a δ-n-ideal that is not a n-ideal of R.

Since ((x + 1) + I)(1 + I) ∈ J but ((x + 1) + I) /∈
√

0R = (2,x)R1

I
and

(1+I) /∈ J, J is not an n-ideal of R. Note that δ(J) = (x+1)R1

I
+ (2,x)R1

I
.

Thus 1 + I ∈ δ(J), that is, δ(J) = R. Thus J is a δ-n-ideal.
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Example 2.3. (A quasi n-ideal which is not an n-ideal) Let R be
the idealization ring Z(+)Z and I = 0(+)pZ where p is a prime integer.

Note that
√
I =
√

0(+)Z = 0(+)Z. Since 0 is an n-ideal of Z, from [17,

Proposition 2.27], δ1(I) =
√
I = 0(+)Z is an n-ideal of R. Hence I =

0(+)pZ is a quasi n-ideal of R by Proposition 2.4 (5). However, I is not
an n-ideal of R as (0, 1), (p, 0) ∈ R with (p, 0) · (0, 1) = (0, p) ∈ 0(+)pZ
but neither (p, 0) ∈

√
0R =

√
0Z(+)Z = 0(+)Z nor (0, 1) ∈ 0(+)pZ.

We justify some relationships among δ-n-ideal and the other class of
ideals in the literature such as prime, δ-primary, n-ideal.

Proposition 2.4. Let δ be an expansion of ideals of R and I a proper
ideal of R with δ(I) 6= R.

(1) If I is a δ-n-ideal of R, then I ⊆
√

0.
(2) A prime ideal I is a δ-n-ideal if and only if I =

√
0.

(3) If δ(I) is an n-ideal of R, then I is a δ-n-ideal of R.

(4) If I is a δ-n-ideal of R provided
√
δ(I) = δ(

√
I), then so is

√
I.

(5) I is a quasi n-ideal of R if and only if
√
I is a n-ideal of R.

(6) Let I ⊆
√

0. If I is a δ-primary ideal of R, then I is a δ-n-ideal
of R. The converse is also true if I =

√
0.

Proof. (1) Assume that I *
√

0. Then there is an element a ∈ R with

a ∈ I\
√

0. Since a = a · 1 ∈ I and a /∈
√

0, we conclude 1 ∈ δ(I), a
contradiction. Thus I ⊆

√
0.

(2) If I is a prime ideal of R, then
√

0 ⊆ I. Since the converse
inclusion hold by (1), we have the required equality. Conversely, let
I =
√

0. Then I is an n-ideal of R by [17, Proposition 2.8], and thus,
I is a δ-n-ideal of R.

(3) Suppose that ab ∈ I and a /∈
√

0 for some a, b ∈ R. Since
I ⊆ δ(I) and δ(I) is an n-ideal, we conclude b ∈ δ(I). Thus I is a
δ-n-ideal of R.

(4) Let a, b ∈ R with ab ∈
√
I and a /∈

√
0. Then (ab)n = anbn ∈ I

for some positive integer n. Since I is δ-n-ideal and an /∈
√

0, we have
bn ∈ δ(I). Hence b ∈

√
δ(I) = δ(

√
I). Thus

√
I is a δ-n-ideal of R.

(5) Follows from (4) as
√√

I =
√
I.

(6) Suppose a, b ∈ R with ab ∈ I and a /∈
√

0. Since I is a δ-primary
and clearly a /∈ I, we have a ∈ δ(I), as needed. In particular, it is clear
from the definitions that

√
0 is a δ-primary ideal if and only if

√
0 is a

δ-n-ideal. �

Note that the converse of Proposition 2.4 (1) is not satisfied in gen-
eral. See the following example.
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Example 2.5. Let R = Z15[X] and M(I) be the intersection of all
maximal ideals containing I of R. Note that M is an expansion of
ideals (See [21]). Consider the ideal I = {0} of R. Since 3 · 5 ∈ I but
neither 3 ∈

√
0 nor 5 ∈M(I), I is not an M -n-ideal of R.

We show in the next example that a prime ideal needs not to be a
δ-n-ideal of R in general which means that the condition I =

√
0 in

Proposition 2.4 (2) is crucial.

Example 2.6. Let δ+ : I(R) → I(R) be an expansion of ideals of
R = Z defined by δ+(J) = J + qZ where q is prime integer with
(p, q) = 1. Consider the ideal I = pZ where p is a prime integer of
R. Then I is a δ+-n-ideal of R that is neither δ0-n-ideal (n-ideal) nor
δ1-n-ideal (quasi n-ideal) of R. Indeed, p · 1 ∈ I but p /∈

√
0 and

1 /∈ δ0(I) = I and also 1 /∈ δ1(I) =
√
I.

Also, observe that the converse of Proposition 2.4 (3) may not be
true. Indeed, in Example 2.6, we show that I = pZ is a δ+-n-ideal of
Z where p is a prime integer. But δ+(I) is not an n-ideal of Z since it
is not proper.

In view of Proposition 2.4 and [17, Corollary 2.9], we have the fol-
lowing equivalent statements.

Corollary 2.7. For any ring R and an expansion of fuction δ, the
following are equivalent.

(1)
√

0 is a prime ideal of R.
(2)
√

0 is an n-ideal of R.
(3)
√

0 is an δ-n-ideal of R.
(4)
√

0 is an δ-primary ideal of R.

The next theorem gives a characterization for δ-n-ideal of R in terms
of the ideals of R.

Theorem 2.8. For a proper ideal I of R and an expansion of function
δ, the following statements are equivalent.

(1) I is a δ-n-ideal of R.
(2) (I : x) ⊆

√
0 for all x ∈ R− δ(I).

(3) Whenever a ∈ R and an ideal K of R with aK ⊆ I, then a ∈
√

0
or K ⊆ δ(I).

(4) Whenever J and K are ideals of R with JK ⊆ I, then J *
√

0
or K ⊆ δ(I).

Proof. (1) ⇒(2) Suppose that I is a δ-n-ideal of R. Let b ∈ (I : x).
Since I is δ-n-ideal, xb ∈ I and x /∈ δ(I), we have b ∈

√
0. Thus

(I : x) ⊆
√

0.
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(2)⇒(3) Suppose that aK ⊆ I but K 6⊆ δ(I). Then there exists an
element x of K with x 6∈ δ(I). Hence a ∈ (I : x) which implies that
a ∈
√

0 by (2).
(3)⇒(4) Suppose that JK ⊆ I and J *

√
0. Then there is some

a ∈ R such that a ∈ J ∩ (R −
√

0). Since aK ⊆ I and a /∈
√

0, we
conclude K ⊆ δ(I) by (3).

(4)⇒(1) Let a, b ∈ R with ab ∈ I and for some a /∈
√

0. Put J = (a)
and K = (b) in (4). So we have the result by our assumption. �

Next, we justify some equivalent characterizations for rings of which
every proper ideal is δ-n-ideal.

Theorem 2.9. For every expansion function δ of ideals of R, the fol-
lowing are equivalent.

(1) Every proper principal ideal is a δ-n-ideal of R.
(2) Every proper ideal is a δ-n-ideal of R.
(3)
√

0 is the unique prime ideal of R.
(4) R is a quasi local ring with maximal element M =

√
0. (i.e., R

is a UN-ring)

Proof. (1)⇒(2) Let I be a proper ideal of R and a, b ∈ R with ab ∈ I
and a /∈

√
0. Put J = (ab). Since J is a δ-n -ideal, we conclude that

b ∈ δ(J) ⊆ δ(I), as needed.
(2)⇒(3) Suppose that I is a prime ideal of R. Then it is δ-n-ideal

by our assumption, and thus I =
√

0 by Proposition 2.4 (2).
(3)⇒(4) Follows from [7, Proposition 2 (3)].
(4)⇒(1) Suppose that (R,

√
0) is a quasi local ring. Then every

element of R is either unit or nilpotent. Let I = (x) be a principal
ideal and let a, b ∈ R, ab ∈ (x) and a /∈

√
0. Then a is unit and so

b ∈ (x) = I ⊆ δ(I). Thus I is a δ-n-ideal. �

Proposition 2.10. Let δ be an expansion of I(R) such that δ(I) 6= R
for every I ∈ I(R).

(1) If R is an integral domain, then {0} is the only δ-n-ideal of R.
(2) Let R be a reduced ring which is not an integral domain. Then

R has no δ-n -ideal.

Proof. (1) Suppose that R is an integral domain. Then
√

0 = {0} is
prime, so it is a δ-n-ideal of R by Proposition 2.4 (2). Now, assume
that I is a nonzero δ-n-ideal of R. Then I ⊆

√
0 = 0 by Proposition

2.4 (1) which is a contradiction.
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(2) Assume that I is a δ-n -ideal of R. Hence, I ⊆ δ(I) ⊆
√

0 = {0}
by Proposition 2.4 (1). Since {0} is not prime ideal of R, there exists
a, b ∈ R\{0} with ab ∈ {0}, a contradiction. �

Recall from [12] that a von Neumann regular ring is a ring such that
for all a ∈ R, there exists an x ∈ R satisfying a = a2x. In particular, R
is a Boolean ring if for all a ∈ R, a = a2. We have the following result.

Theorem 2.11. Let δ be an ideal expansion of ideals of R with δ(0) =
{0}. Then R is a field if and only if R is a von Neumann regular ring
and {0} is a δ-n-ideal.

Proof. Suppose that R is a von Neumann regular ring and {0} is a δ-
n-ideal. Then clearly

√
0 = {0}. We show that every nonzero element

a of R is unit. Since R is von Neumann regular, there exists x ∈ R
such that a = a2x. Hence a(1 − ax) = 0. Since a /∈

√
0, we conclude

that 1−ax ∈ δ(0) = 0. Thus ax = 1, as needed. Therefore R is a field.
The converse part is clear by [17, Theorem 2.15]. �

Proposition 2.12. Let δ be an expansion function of I(R) and I be
proper ideal of R with δ(δ(I)) = δ(I). Then the following hold.

(1) If I is δ-n-ideal and a ∈ R\
√

0, then δ(I : a) = δ(I).
(2) Let I, J are δ-n-ideals of R with δ(δ(I)) = δ(I) and δ(δ(J)) =

δ(J). If IK = JK where and K *
√

0 for some ideal K of R,
then δ(I) = δ(J).

(3) Let K be an ideal of R with K *
√

0. If IK is a δ-n-ideal with
δ(δ(IK)) = δ(IK), then δ(IK) = δ(I).

Proof. (1) Suppose that I is a δ-n-ideal and a /∈
√

0. Since I ⊆ (I : a),
clearly we have δ(I) ⊆ δ(I : a). Let x ∈ (I : a). Since xa ∈ I and
a /∈
√

0, we conclude x ∈ δ(I). Thus (I : a) ⊆ δ(I) and so δ(I : a) ⊆
δ(δ(I)) = δ(I). As the converse inclusion always holds, we conclude the
equality.

(2) Note that IK = JK ⊆ I, J . Since IK ⊆ I and K *
√

0, we

have J ⊆ δ(I) by Theorem 2.8. Since JK ⊆ J and K *
√

0, we have
I ⊆ δ(J) again by Theorem 2.8. Thus δ(I) = δ(J) as δ(δ(I)) = δ(I)
and δ(δ(J)) = δ(J).

(3) Since IK ⊆ I, we have δ(IK) ⊆ δ(I). Since IK ⊆ IK and
K *

√
0, we conclude I ⊆ δ(IK) by Theorem 2.8. It follows δ(I) ⊆

δ(δ(IK)) = δ(IK) ⊆ δ(I), and thus δ(IK) = δ(I). �

In view of Proposition 2.12, we conclude the following result for quasi
n-ideals.

Proposition 2.13. Let I be proper ideal of R. Then
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(1) If I is a quasi n-ideal, then
√

(I : x) = (
√
I : x) for all x ∈

R\
√
I.

(2) If I is a quasi n-ideal, then
√

(I : a) = (
√
I : a) =

√
I for all

a /∈
√

0.
(3) If I, J are quasi n-ideals of R and K is an ideal with K *

√
0

with IK = JK, then
√
I =
√
J .

(4) Let K be an ideal of R with K *
√

0. If IK is quasi n-ideal,

then
√
IK =

√
I.

Proof. (1) Let a ∈ (
√
I : x). Then ax ∈

√
I. Since clearly anxn ∈ I for

some positive integer n, I is a quasi-n-ideal and xn /∈ I, we conclude
an ∈

√
0, that is, a ∈

√
0 ⊆

√
(I : x). Since the inverse inclusion is

always satisfied, we get the equality.
(2) From Proposition 2.12 (1), we have

√
(I : a) =

√
I. Let b ∈

(
√
I : a). Hence ab ∈

√
I implies anbn ∈ I for some positive integer n.

Since an /∈
√

0, we conclude b ∈
√
I. Thus we have (

√
I : a) ⊆

√
I and

we conclude the required equality.

(3) and (4) are clear from Proposition 2.12 as
√√

I =
√
I. �

Lemma 2.14. Let δ be an expansion of I(R) and I be an ideal of R.
If I is a δ-n-ideal of R such that (δ(I) : x) ⊆ δ(I : x) 6= R for all
x ∈ R\δ(I), then (I : x) is a δ-n-ideal of R. In particular, if I is a

quasi n-ideal of R, then (I : x) is a quasi n-ideal of R for all x ∈ R\
√
I.

Proof. Suppose that ab ∈ (I : x) and a /∈
√

0. Since abx ∈ I and I is a
δ-n-ideal, we conclude that bx ∈ δ(I). Thus b ∈ (δ(I) : x) ⊆ δ(I : x),
so we are done. For the ”in particular” case, observe that the inclusion
(δ1(I) : x) ⊆ δ1(I : x) is satisfied for all x ∈ R\δ1(I) by Proposition
2.13 (1). Therefore the claim follows from the general case. �

Theorem 2.15. Let I be a proper ideal of R.

(1) Let δ be an expansion function of I(R) with (δ(I) : x) ⊆ δ(I :
x) 6= R for all x ∈ R\δ(I). If I is a maximal δ-n-ideal of R
where x ∈ R\δ(I), then I =

√
0 is a prime ideal of R.

(2) If I is a maximal quasi n-ideal of R, then I =
√

0 is a prime
ideal of R.

Proof. (1) Suppose that I is a maximal δ-n-ideal of R. We show that
I is prime. Let ab ∈ I and a /∈ I. Hence (I : a) is a δ-n-ideal of R by
Lemma 2.14. Thus (I : a) = I from the maximality of I. It means
b ∈ I, and thus I is a prime ideal of R. From Proposition 2.4 (2), we
conclude that I =

√
0.
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(2) Let I be a a maximal quasi n-ideal of R. Then
√
I : x = (

√
I : x)

for all x ∈ R\
√
I by Proposition 2.13 (1). By Lemma 2.14, (I : a) is

a quasi n-ideal of R and the maximality of I implies that (I : a) = I
and similar to the general case, I is prime and I =

√
0 by Proposition

2.4 (2). �

Now, we are ready for the following result.

Theorem 2.16. For a ring R, the following statements hold.

(1) Let δ be an expansion function of I(R) with (δ(J) : x) ⊆ δ(J :
x) 6= R for all ideal J of R and x ∈ R\δ(J). Then R has a
δ-n-ideal if and only if

√
0 is a prime ideal of R.

(2) R has a quasi n-ideal of R if and only if
√

0 is a prime ideal of
R.

Proof. (1) Let I is a δ-n-ideal of R and W = {J : J is an n-ideal of R}.
Then W is a nonempty partially ordered set by the set inclusion. Take
a chain I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ . · · · of W . We show that I = ∪i∈ΛIi is
a δ-n-ideal of R. Suppose that ab ∈ I and a /∈ I for some a, b ∈ R.
Then ab ∈ Ik for some k ∈ Λ. Since a /∈ Ik and Ik is δ-n-ideal, we
conclude that b ∈

√
0. Thus I = ∪i∈ΛIi is an upper bound of the chain.

So, there exists a maximal element M of W by the Zorn’s Lemma. It
follows that M =

√
0 is a prime ideal by Theorem 2.15. The converse

part follows from Proposition 2.4 (2).
(2) From Proposition 2.13 (1), we have (δ1(J) : x) = δ1(J : x). Thus,

the result is clear from (1). �

Generalizing nilpotent elements in a ring, we call an element a ∈ R
a δ-nilpotent if a ∈ δ(0). Hence, we have the following result.

Proposition 2.17. Let δ be an expansion function of I(R). Then
√

0
is a δ-n-ideal of R if and only if every zero-divisor of the quotient ring
R/
√

0 is δq-nilpotent.

Proof. Suppose that a = a +
√

0 is a zero-divisor of R/
√

0. Then
ab = (a +

√
0)(b +

√
0) =

√
0 for some

√
0 6= b ∈ R/

√
0. It means

ab ∈
√

0 but b /∈
√

0. Since
√

0 is a δ-n-ideal, we conclude a ∈ δ(
√

0).
Hence a = a +

√
0 ∈ δ(

√
0)/
√

0. Now consider the natural epimor-
phism Π : R → R/

√
0. Note that Π is a δδq-epimorphism. We have

δ(
√

0)/
√

0 = δ(Π−1(0R/
√

0)) = Π−1(δq(0R/
√

0)). Since Π is epimorphism,

then δ(
√

0)/
√

0 = Π(δ(
√

0)) = δ(0R/
√

0). Thus a ∈ δq(0R/
√

0); so a is

δq-nilpotent. Conversely, Suppose that ab ∈
√

0 and a /∈
√

0 for some

a, b ∈ R. Then ab =
√

0 = 0R/
√

0 but a 6= 0R/
√

0. It means that b
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is a zero divisor of R/
√

0. Then b is a δq-nilpotent from our assump-

tion. Hence b ∈ δq(0R/√0) = δ(
√

0)/
√

0. So b +
√

0 = c +
√

0 for some

c ∈ δ(
√

0). It follows b−c ∈
√

0 ⊆ δ(
√

0). Thus b = (b−c)+c ∈ δ(
√

0);
so
√

0 is a δ-n-ideal of R. �

An ideal expansion δ is intersection preserving if it satisfies δ(I∩J) =
δ(I) ∩ δ(J) for any I, J ∈ I(R), [21].

Proposition 2.18. Let δ be an ideal expansion which preserves inter-
section. Then the following statements hold.

(1) If I1, I2, ..., In are δ-n-ideals of R, then I =
n⋂
i=1

Ii is a δ-n-ideal

of R.
(2) Let I1, I2, ..., In be proper ideals of R such that δ(Ii)’s are non-

comparable prime ideals of R. If
n⋂
i=1

Ii is a δ-n-ideal of R, then

Ii is a δ-n-ideal of R for all i = 1, 2, ..., n.

Proof. (1) Let ab ∈ I and b /∈ δ(I) for some a, b ∈ R. Since δ(I) =
∩ni=1δ(Ii), b /∈ δ(Ik) for some k ∈ {1, ..., n}. It follows a ∈

√
0, and thus

I is a δ-n-ideal of R.
(2) Suppose that ab ∈ Ik and a /∈

√
0 for some k ∈ {1, 2, ..., n}.

Choose an element x ∈

 n∏
i=1
i 6=k

Ii

 \δ(Ik). Hence, abx ∈
n⋂
i=1

Ii. Since
n⋂
i=1

Ii

is a δ-n-ideal, we have bx ∈ δ

(
n⋂
i=1

Ii

)
=

n⋂
i=1

δ(Ii) ⊆ δ(Ik) which implies

b ∈ δ(Ik) as δ(Ik) is prime, so we are done. �

Consequently, we have the following result for quasi n-ideals.

Corollary 2.19. Let R be a ring and I1, I2, ..., In be proper ideals of
R. Then we have:

(1) If Ii ’s are quasi n-ideals of R for all i = 1, ..., n, then so are

I =
n⋂
i=1

Ii and
n∏
i=1

Ii.

(2) Let Ii be quasi primary ideals of R for all i = 1, ..., n in which
their radicals are not comparable.

(i): If
n⋂
i=1

Ii is a quasi n-ideal of R, then so is Ii for each

i = 1, 2, ..., n.
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(ii): If
n∏
i=1

Ii is a quasi J-ideal of R, then so is Ii for each

i = 1, 2, ..., n.

Proof. Similar to the proof of Proposition 2.18. �

Let R and S be commutative rings and δ, γ be expansion functions of
I(R) and I(S), respectively. Then a ring homomorphism f : R → S
is called a δγ-homomorphism if δ(f−1(J)) = f−1(γ(J)) for all ideal
J of S. Let γ1 be a radical operation on ideals of S and δ1 be a radical
operation on ideals of R. A homomorphism from R to S is an example
of δ1γ1-homomorphism. Additionaly, if f is a δγ-epimorphism and I is
an ideal of R containing ker(f), then γ(f(I)) = f(δ(I)).

Proposition 2.20. Let f : R → S be a δγ-homomorphism, where δ
and γ are expansion functions of I(R) and I(S), respectively. Then
the following hold:

(1) Let f be a monomorphism. If J is a γ-n-ideal of S, then f−1 (J)
is a δ-n-ideal of R.

(2) Suppose that f is an epimorphism and I is a proper ideal of R
with ker(f) ⊆ I. If I is a δ-n-ideal of R, then f (I) is a γ-n-ideal
of S.

Proof. (1) Let ab ∈ f−1(J) for a, b ∈ R. Then f(ab) = f(a)f(b) ∈
J , which implies f(a) ∈

√
0S or f(b) ∈ γ(J). If f(a) ∈

√
0S,

then a ∈
√

0R as ker(f) = {0}. If f(b) ∈ γ(J), then we have
b ∈ f−1(γ(J)) = δ(f−1(J)) since f is δγ-homomorphism. Thus
f−1(J) is a δ-n-ideal of R.

(2) Suppose that a, b ∈ S with ab ∈ f(I) and a /∈
√

0S. Since f is
an epimorphism, there exist x, y ∈ R such that a = f(x) and
b = f(y). Then clearly we have x /∈

√
0R as a /∈

√
0S. Since

ker(f) ⊆ I, ab = f(xy) ∈ f(I) implies that xy ∈ I. Thus
y ∈ δ(I); and so b = f(y) ∈ f(δ(I)). On the other hand, since
γ(f(I)) = f(δ(I)), we have b ∈ γ(f(I)). Thus f(I) is a γ-n-ideal
of S.

�

Let δ be an expansion function of I(R) and I be an ideal of R.
Then the function δq : R/I → R/I is defined by δq(J/I) = δ(J)/I for
all ideals I ⊆ J, becomes an expansion function of I(R/I).

Corollary 2.21. Let δ be an expansion function of I(R) and J ⊆ I
proper ideals of R. Then the followings hold.

(1) If I is a δ-n-ideal of R, then I/J is a δq-n-ideal of R/J.
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(2) I/J is a δq-n-ideal of R/J and J ⊆
√

0R, then I is a δ-n-ideal
of R.

(3) I/J is a δq-n-ideal of R/J and J is a δ-n-ideal of R where
δ(J) 6= R, then I is a δ-n-ideal of R.

(4) Let K be a subring of R with S * I. If I is a δ-n-ideal of R,
then S ∩ I is a δ-n-ideal of R.

Proof. (1) Consider the natural homomorphism π : R → R/J . By
Proposition 2.20 (2), we have I/J is a δq-n-ideal of R/J since
ker(π) ⊆ I.

(2) Let I/J be a δq-n-ideal of R/J and J ⊆
√

0R. Assume that

ab ∈ I and a /∈
√

0 for some a, b ∈ R. Then ab + J = (a +
J)(b + J) ∈ I/J and a + J /∈

√
0R/J . By our assumption,

b+ J ∈ δq(I/J) = δ(I)/J , that is, b ∈ δ(I).
(3) It is clear by (2) and Proposition 2.4.
(4) Let the injection i : S → R be defined with i(a) = a for every

a ∈ S. Then the proof is clear by Proposition 2.20(1).

�

Proposition 2.22. Let f : R→ S be an epimorphism.

(1) If I is a quasi n-ideal of R with K erf ⊆ I, then f(I) is a quasi
n-ideal of S.

(2) If J is a quasi n-ideal of S and K erf ⊆
√

0R, then f−1(J) is a
quasi n-ideal of R.

Proof. (1) Suppose that I is a quasi n-ideal of R. Since
√
I is a n-

ideal of R and K erf ⊆ I ⊆
√
I, then f(

√
I) is a n-ideal of R by [17,

Theorem 2.17. (1)]. Let a, b ∈ R such that ab ∈
√
f(I) and a /∈

√
0S,

then anbn ∈ f(I) ⊆ f(
√
I) for some positive integer n. Since clearly

an /∈
√

0S, then bn ∈ f(
√
I) ⊆

√
f(I). Thus b ∈

√
f(I) and

√
f(I) is

an n-ideal of S. It follows that f(I) is a quasi n-ideal of S.

(2) Let J be a quasi n-ideal of S. Then
√
J is an n-ideal of S. First,

we show that f−1(
√
J) is an n-ideal of R. Let a, b ∈ R with ab ∈

f−1(
√
J) and a /∈

√
0R. Then f(an)f(bn) ∈ J for some positive integer

n. If f(an) ∈
√

0S, then an ∈ K erf ⊆
√

0R, a contradiction. Thus

f(an) /∈
√

0S. Hence, it implies that f(b)n = f(bn) ∈
√
J , which follows

b ∈ f−1(
√
J) and f−1(

√
J) is a n-ideal of R. Now, let c, d ∈ R such

that c, d ∈
√
f−1(J) and c /∈

√
0R. Then cmdm ∈ f−1(J) ⊆ f−1(

√
J)

for some positive integer m. Since cm /∈
√

0R and f−1(
√
J) is n-ideal,

we conclude dm ∈ f−1(
√
J) ⊆

√
f−1(J). This yields d ∈

√
f−1(J) and√

f−1(J) is an n-ideal of R. �
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Corollary 2.23. Let I and J be proper ideals of R with J ⊆ I.

(1) If I is a quasi n-ideal of R, then I/J is a quasi n-ideal of R/J .
(2) I/J is a quasi n-ideal of R/J and J is a quasi n-ideal of R,

then I is a quasi n-ideal of R.
(3) Let K be a subring of R with S * I. If I is a quasi n-ideal of

R, then S ∩ I is a quasi n-ideal of R.

Proof. (1) Take the natural epimorphism π : R→ R/J with Ker(π) =
J ⊆ I .From Proposition 2.22 (1), π(I) = I/J is a quasi n-ideal of
R/J .

(2) Again, consider the natural epimorphism π : R→ R/J . Since J
is a δ-n-ideal of R, we have Ker(π) = J ⊆

√
0 by Proposition 2.4 (1).

Thus π−1(I/J) = I is a quasi n-ideal of R by Proposition 2.22 (2).
(3) Consider the injection i : S → R be defined with i(a) = a for

every a ∈ S. Then i−1(I) = I ∩S is a quasi n-ideal of R by Proposition
2.22 (2). �

Let I be a proper ideal of a ring R. Recall that I is said to be
superfluous if there is no proper ideal J of R such that I + J = R. In
the following, by J(R), we denote the Jacobson radical of R.

Lemma 2.24. Let δ be an expansion function of I(R). Any δ-n-ideal
a ring R with δ(I) 6= R is superfluous.

Proof. Let I be a δ-n-ideal of R with δ(I) 6= R. Assume that there
exists a proper ideal J of R with I + J = R. Then 1 = a+ b for some
a ∈ I and b ∈ J and so 1 − b ∈ I ⊆

√
0 ⊆ J(R) by Proposition 2.4.

Thus b ∈ J is a unit and so, we get J = R, a contradiction. �

Proposition 2.25. Let δ be an expansion function of I(R), I and J
be δ-n-ideals of a ring R where δ(I) and δ(J) are proper. Then I + J
is a δ-n-ideal of R.

Proof. Let I and J be δ-n-ideals of a ring R such that δ(I) 6= R and
δ(J) 6= R. Since they are superfluous by Lemma 2.24, I + J 6= R.
Hence, I ∩ J is a δ-n-ideal by Proposition 2.18. Also, I/(I ∩ J) is a
δq-n-ideal of R/(I∩J) by Corollary 2.21 (1). Now, by the isomorphism
I/(I ∩ J) ∼= (I + J)/J , (I + J)/J is a δq-n-ideal of R/J . Therefore,
Corollary 2.21 (3) implies that I + J is a δ-n-ideal of R. �

Let S be a multiplicatively closed subset of R. Note that δS is
an expansion function of I(S−1R) such that δS(S−1I) = S−1(δ(I))
where δ is an expansion function of R. By ZI(R), we denote the set of
{r ∈ R|rs ∈ I for some s ∈ R\I} where I is a proper ideal of R.
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Proposition 2.26. Let S be a multiplicatively closed subset of R and
δ be an expansion function of I(R).

(1) If I is a δ-n-ideal of R with I ∩S = ∅, then S−1I is a δS-n-ideal
of S−1R.

(2) Let S ∩ Z(R) = S ∩ Zδ(I)(R) = ∅. If S−1I is a δS-n-ideal of
S−1R, then I is a δ-n-ideal of R.

Proof. (1) Suppose that a
s
b
t
∈ S−1I and a

s
/∈
√

0S−1R for some a, b ∈ R
and s, t ∈ S. Then there is u ∈ S with abu ∈ I. Thus bu ∈ δ(I) since
a /∈
√

0. Hence b
t

= bu
tu
∈ S−1(δ(I)) = δS(S−1I). Consequently, S−1I is

a δS-n-ideal of S−1R.
(2) Let a, b ∈ R with ab ∈ I. Then a

1
b
1
∈ S−1I implies that either

a
1
∈
√

0S−1R or b
1
∈ δS(S−1I). If a

1
∈
√

0S−1R, then uan = 0 for some
u ∈ S and a positive integer n. Since S ∩ Z(R) = ∅, we conclude
an = 0 and a ∈

√
0. If b

1
∈ δS(S−1I) = S−1(δ(I)), then vb ∈ δ(I) for

some v ∈ S. Our assumption S ∩Zδ(I)(R) = ∅ implies that b ∈ δ(I), as
needed. �

An element a ∈ R is called regular if ann(a) = 0. Let r(R) be the
set of all regular elements of R. Note that r(R) is a multiplicatively
closed subset of R. From [17, Proposition 2.20], we obtain that if I is
a δr(R)-n-ideal of Rr(R), then Ic is δ-n-ideal of R.

Remark 2.27. Let R = R1 × R2 be a commutative ring where Ri is
a commutative ring with nonzero identity for each i ∈ {1, 2}. Every
ideal I of R is of the form of I = I1 × I2 where Ii is an ideal of
Ri for all i ∈ {1, 2}. Let δi be an expansion function of I(Ri) for
each i ∈ {1, 2}. Let δ× be a function of I(R), which is defined by
δ×(I1×I2) = δ1(I1)×δ2(I2) . Then δ× is an expansion function of I(R).
If δi(Ii) 6= Ri for some i ∈ {1, 2}, then R has no a δ×-n-ideal.Indeed,
suppose that I = I1 × I2 is a δ×-n-ideal of R where Ii is an ideal of
Ri for i ∈ {1, 2}. As (1, 0)(0, 1) ∈ I and (1, 0), (0, 1) /∈

√
0R, then we

have (1, 0), (0, 1) ∈ δ×(I). Thus δ×(I) = δ1(I1) × δ2(I2) = R1 × R2, a
contradiction.

Let R be a ring and M be a unitary R-module. Recall that the
idealization R(+)M = {(r,m) : r ∈ R, m ∈ M} is a commutative
ring with the addition (r1,m1) + (r2,m2) = (r1 + r2,m1 + m2) and
multiplication (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1) for all r1, r2 ∈
R; m1,m2 ∈M . For an ideal I of R and a submoduleN ofM , it is well-
known that I(+)N is an ideal of R(+)M if and only if IM ⊆ N, [1] and
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[11]. We recall also from [1] that
√
I(+)N =

√
I(+)M . Let R(+)M

be the idealization where M is an R-module. For an expansion function
δ of R, define δ(+) as δ(+)(I(+)N) = δ(I)(+)M for some ideal I(+)N of
R(+)M . It is clear that δ(+) is an expansion function of R(+)M. Next,
we characterize δ-n-ideals in any idealization ring R(+)M .

Proposition 2.28. Let I be an ideal of a ring R and N be a submodule
of an R-module M . Then I is a δ-n-ideal of R if and only if I(+)N is
a δ(+)-n-ideal of R(+)M.

Proof. Let I be a δ-n-ideal of R. Assume that (r,m)(s,m′) ∈ I(+)N
and (s,m′) /∈

√
0(+)M for some (r,m)(s,m′) ∈ R(+)M. Then s ∈ δ(I)

since rs ∈ I and s /∈
√

0. Thus (s,m′) ∈ δ(I)(+)M = δ(+)(I(+)M).
Conversely, suppose that I(+)N is a δ(+)-n-ideal of R(+)M. Let r, s ∈
R with rs ∈ I and s /∈

√
0. Hence, we get (r,m)(s,m′) ∈ I(+)N

and clearly (s,m′) /∈
√

0(+)M which follows (r,m) ∈ δ(+)(I(+)M) and
r ∈ δ(I). Thus I is a δ-n-ideal of R. �
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