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A NOTE ON GENERALIZED DERIVATIONS ON
PRIME IDEALS

N. REHMAN∗, H. M. ALNOGHASHI AND M. HONGAN

Abstract. The main goal of this paper is to investigate the struc-
ture of quotient A/T, where A is any ring with involution ∗ and
T is a prime ideal of A. We shall find the relation between the
structure of this type of ring with involution and the behaviour
of generalized derivations satisfying algebraic identities involving
prime ideals. Consequently, some recent results in this line of in-
vestigation have been extended.

1. Introduction

Throughout this article, R will represent an associative ring. Recall
that a proper ideal P of R is said to be prime if ∀ a, b ∈ R, aRb ⊆ P

implies that a ∈ P or b ∈ P. Therefore, R is called a prime ring if and
only if (0) is the prime ideal of R. R is called a semiprime ring if ∀
a ∈ R, aRa = (0) implies that a = 0. ∀ a, b ∈ R, the symbol [a, b] will
denote the commutator ab − ba, while the symbol a ◦ b will stand for
the anticommutator ab+ ba. A map ξ : R→ R is a derivation of a ring
R if ξ is additive and satisfies ξ(ab) = ξ(a)b+ aξ(b) ∀ a, b ∈ R. A map
F : R→ R is a generalized derivation of a ring R with a derivation ξ if
F is additive and satisfies F(ab) = F(a)b+ aξ(b) ∀ a, b ∈ R.

Over the last few decades, several researchers have investigated the
commutativity of prime and semiprime rings admitting suitably re-
stricted additive mappings such as automorphisms, derivations, skew
derivations, and generalized derivations acting on suitable subsets of
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the rings. Furthermore, many of the findings are based on previous
observations explicitly made to apply the ring’s proposed mapping.
Several recent findings on commutativity in prime and semiprime rings
allow for sufficient restricted and generalized derivations, point in this
direction see[1], [2], [4], [5], [6], [7], [8], [10], and [11].

This paper will take a different approach by looking at algebraic iden-
tities involving prime ideals without making any assumptions about the
ring’s primeness.

2. The Main Result

Lemma 2.1. [10, Proposition 1.3] Let R be a ring and P a prime ideal
of R. If R admits a generalized derivation F with associated deriva-
tion ξ satisfying [x,F(x)] ∈ P for all x ∈ R, then either R/P is a
commutative integral domain or ξ(R) ⊆ P.

Corollary 2.2. Let R be a ring, P a prime ideal, and let ξ be a deriva-
tion of R. If [x, ξ(x)] ∈ P for all x ∈ R, then either R/P is a commu-
tative integral domain or ξ(R) ⊆ P.

Proof. In Lemma 2.1, this is the case F = ξ. �

Lemma 2.3. [10, Lemma 1.3] Let R be a ring and P a prime ideal of
R. If one of the following conditions is satisfied, then R/P is a com-
mutative integral domain,

(i) [x, y] ∈ P for all x, y ∈ R

(ii) x ◦ y ∈ P for all x, y ∈ R.

Theorem 2.4. Let R be a ring, and P a prime ideal of R and let (F, ξ),
(G, ψ) and (H, φ) be generalized derivations. If F(x)G(y)±H(xy) ∈ P

for all x, y ∈ R, then ξ(R) ⊆ P; or R/P is a commutative integral
domain; or φ(R) ⊆ P.

Proof. Assume that

F(x)G(y)±H(xy) ∈ P (2.1)

for all x, y ∈ R. Replacing y by yr in (2.1) and using it, where r ∈ R,
we have

F(x)yψ(r)± xyφ(r) ∈ P (2.2)

for all x, y, r ∈ R. Writing xy instead of y in (2.2), we get

F(x)xyψ(r)± x2yφ(r) ∈ P (2.3)

for all x, y, r ∈ R. Left multiplying (2.2) by x, we obtain

xF(x)yψ(r)± x2yφ(r) ∈ P (2.4)
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for all x, y, r ∈ R. Subtracting (2.4) from (2.3), this gives [F(x), x]yψ(r)
∈ P that is [F(x), x]Rψ(r) ⊆ P. Then [F(x), x] ∈ P or ψ(r) ∈ P. If
ψ(r) ∈ P, then

ψ(R) ⊆ P. (2.5)

By using (2.5) in (2.2), we have xyφ(r) ∈ P that is xRφ(r) ⊆ P and
since P 6= R, then φ(r) ∈ P that is φ(R) ⊆ P. In case [F(x), x] ∈ P and
by Lemma 2.1, then either ξ(R) ⊆ P or R/P is a commutative integral
domain. �

Corollary 2.5. Let R be a ring, P a prime ideal of R and let ξ, ψ and
φ be derivations. If ξ(x)ψ(y)± φ(xy) ∈ P for all x, y ∈ R, then

(i) ξ(R) ⊆ P, or
(ii) R/P is a commutative integral domain; or

(iii) φ(R) ⊆ P.

Theorem 2.6. Let R be a ring, P a prime ideal of R and let (F, ξ),
(G, ψ) and (H, φ) be generalized derivations. If F(x)G(y)±H(yx) ∈ P

for all x, y ∈ R, then

(i) ξ(R) ⊆ P; or
(ii) R/P is a commutative integral domain; or

(iii) φ(R) ⊆ P.

Proof. Assume that

F(x)G(y)±H(yx) ∈ P (2.6)

for all x, y ∈ R. Replacing y by yx in (2.6) and using it, we have

F(x)yψ(x)± yxφ(x) ∈ P (2.7)

for all x, y ∈ R. Writing ty instead of y in (2.7), where t ∈ R, we get

F(x)tyψ(x)± tyxφ(x) ∈ P (2.8)

for all x, y, t ∈ R. Left multiplying (2.7) by t, where t ∈ R, we obtain

tF(x)yψ(x)± tyxφ(x) ∈ P (2.9)

for all x, y, t ∈ R. Subtracting (2.9) from (2.8), this gives [F(x), t]yψ(x) ∈
P that is [F(x), t]Rψ(x) ⊆ P. Since P is a prime ideal of R, then
[F(x), t] ∈ P or ψ(x) ∈ P, which implies that I1 = {x ∈ R | [F(x), t] ∈
P} and J1 = {x ∈ R | ψ(x) ∈ P}. Since a group cannot be union of its
subgroups. If I1 = R, and by Lemma 2.1, then ξ(R) ⊆ P or R/P is a
commutative integral domain. If J1 = R, then

ψ(R) ⊆ P. (2.10)
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By using (2.10) in (2.7), we have yxφ(x) ∈ P that is Rxφ(x) ⊆ P and
since P 6= R, then

xφ(x) ∈ P (2.11)

for all x ∈ R. By linearizing (2.11), we get

xφ(y) + yφ(x) ∈ P (2.12)

for all x, y ∈ R. Putting ry instead of y in (2.12), where r ∈ R, we
obtain

xφ(r)y + xrφ(y) + ryφ(x) ∈ P (2.13)

for all x, y, r ∈ R. Left multiplying (2.12) by r, where r ∈ R, we have

rxφ(y) + ryφ(x) ∈ P (2.14)

for all x, y, r ∈ R. Subtracting (2.14) from (2.13), we get xφ(r)y +
[x, r]φ(y) ∈ P. Replacing x by xr in last relation and using (2.11), this
gives [x, r]rφ(y) ∈ P. Again, replacing x by xs in last relation and using
it, where s ∈ R, we obtain [x, r]srφ(y) ∈ P, that is [x, r]Rrφ(y) ⊆ P.
Since P is a prime ideal of R, then [x, r] ∈ P or rφ(y) ∈ P, which
implies that I2 = {r ∈ R | [x, r] ∈ P} and J2 = {r ∈ R | rφ(y) ∈ P}.
Since a group cannot be union of its subgroups. In case I2 = R,
and by Lemma 2.3, then R/P is a commutative integral domain. In
case J2 = R then Rφ(y) ⊆ P. Since P 6= R, then φ(y) ∈ P, that is
φ(R) ⊆ P. �

Corollary 2.7. Let R be a ring, P a prime ideal of R and let ξ, ψ and
φ be derivations. If ξ(x)ψ(y)± φ(yx) ∈ P for all x, y ∈ R, then

(i) ξ(R) ⊆ P, or
(ii) R/P is a commutative integral domain; or

(iii) φ(R) ⊆ P.

Theorem 2.8. Let R be a ring, P a prime ideal of R and let (F, ξ) and
(G, ψ) be generalized derivations. If [F(x),G(y)] ∈ P for all x, y ∈ R,
then we have one of the following assertions:

(i) char(R/P) = 3
(ii) ξ(R) ⊆ P

(iii) ψ(R) ⊆ P

(iv) ψ(ψ(R)ψ(R)) ⊆ P

(v) R/P is a commutative integral domain.

Proof. Assume that

[F(x),G(y)] ∈ P (2.15)
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for all x, y ∈ R. Replacing y by yr in (2.15), where r ∈ R, we have

G(y)[F(x), r] + [F(x), y]ψ(r) + y[F(x), ψ(r)] ∈ P (2.16)

for all x, y, r ∈ R. Writing ty instead of y in (2.16), where t ∈ R, we
get

(G(t)y + tψ(y))[F(x), r] + t[F(x), y]ψ(r)+

[F(x), t]yψ(r) + ty[F(x), ψ(r)] ∈ P (2.17)

for all x, y, r, t ∈ R. Left multiplying (2.16) by t, where t ∈ R, we obtain

tG(y)[F(x), r] + t[F(x), y]ψ(r) + ty[F(x), ψ(r)] ∈ P (2.18)

for all x, y, r, t ∈ R. Subtracting (2.18) from (2.17), this gives

(G(t)y + tψ(y)− tG(y))[F(x), r] + [F(x), t]yψ(r) ∈ P (2.19)

for all x, y, r, t ∈ R. Putting r = G(s), in (2.19) and using (2.15) where
s ∈ R, we have [F(x), t]yψ(G(s)) ∈ P that is [F(x), t]Rψ(G(s)) ⊆ P.
Then [F(x), t] ∈ P or ψ(G(s)) ∈ P. If [F(x), t] ∈ P and by Lemma 2.1,
then either ξ(R) ⊆ P or R/P is a commutative integral domain. Oth-
erwise, we have ψ(G(R)) ⊆ P. Now, we have

ψ(G(x)) ∈ P (2.20)

for all x ∈ R. Taking x by xy in (2.20) and using it, we get

G(x)ψ(y) + ψ(x)ψ(y) + xψ2(y) ∈ P (2.21)

for all x, y ∈ R. Putting x by G(x) in (2.21) and using (2.20), we obtain
G2(x)ψ(y) + G(x)ψ2(y) ∈ P that is

G(G(x)ψ(y)) ∈ P (2.22)

for all x, y ∈ R. Replacing y by yr in (2.21), we get G(G(x)ψ(yr)) ∈ P,
this implies G(G(x)ψ(y)r + G(x)yψ(r)) ∈ P, that is, G(G(x)ψ(y))r +
G(x)ψ(y)ψ(r) + G((x)yψ(r)) ∈ P and by using (2.22) in last relation,
then G(x)ψ(y)ψ(r)+G(G(x)yψ(r)) ∈ P.Writing ψ(y) instead of y in last
relation, we have G(x)ψ2(y)ψ(r) + G(G(x)ψ(y)ψ(r)) ∈ P this implies
that G(x)ψ2(y)ψ(r) + G(G(x)ψ(y))ψ(r) + G(x)ψ(y)ψ2(r) ∈ P and by
using (2.22) in last relation, then G(x)ψ2(y)ψ(r) + G(x)ψ(y)ψ2(r) ∈ P

implies that

G(x)(ψ2(y)ψ(r) + ψ(y)ψ2(r)) ∈ P (2.23)

for all x, y, r ∈ R. Replacing r by rs in (2.23) and using it, where s ∈ R,
we get

G(x)(ψ2(y)rψ(s) + 2ψ(y)ψ(r)ψ(s) + ψ(y)rψ2(s)) ∈ P (2.24)
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for all x, y, r, s ∈ R. Putting r by ψ(r) in (2.24) and using (2.23), we
have

G(x)ψ(y)(ψ2(r)ψ(s) + ψ(r)ψ2(s)) ∈ P (2.25)

for all x, y, r, s ∈ R. Replacing x by xψ(y) in (2.23) and using (2.25),
we obtain xψ2(y)(ψ2(r)ψ(s) + ψ(r)ψ2(s)) ∈ P and so

ψ2(y)(ψ2(r)ψ(s) + ψ(r)ψ2(s)) ∈ P (2.26)

for all y, r, s ∈ R. Similarly above, replacing s by st in (2.26) and using
it, where t ∈ R, and then replacing s by ψ(s), and using (2.26), we
have

ψ2(y)ψ(r)(ψ2(s)ψ(t) + ψ(s)ψ2(t)) ∈ P (2.27)

for all y, r, s, t ∈ R. Replacing y by ψ(y)r in (2.26) and using (2.26)
and (2.27), we obtain

ψ3(y)r(ψ2(s)ψ(t) + ψ(s)ψ2(t)) ∈ P (2.28)

for all y, r, s, t ∈ R. Hence ψ3(y)R(ψ2(s)ψ(t) + ψ(s)ψ2(t)) ⊆ P. Then
ψ3(y) ∈ P or (ψ2(s)ψ(t) +ψ(s)ψ2(t)) ∈ P. If (ψ2(s)ψ(t) +ψ(s)ψ2(t)) ∈
P, then ψ(ψ(s)ψ(t)) ∈ P that is ψ(ψ(R)ψ(R)) ⊆ P. If

ψ3(y) ∈ P (2.29)

for all y ∈ R. Writing xy instead of y in (2.29), we get 3ψ(ψ(x)ψ(y)) ∈
P that is 3ψ(ψ(R)ψ(R)) ⊆ P. If char(R/P) 6= 3, then ψ(ψ(R)ψ(R)) ⊆
P. �

Theorem 2.9. Let R be a ring, P a prime ideal of R and let (F, ξ) and
(G, ψ) be generalized derivations. If F(x) ◦ G(y) ∈ P for all x, y ∈ R,
then we have one of the following assertions:

(i) char(R/P) = 3
(ii) ξ(R) ⊆ P

(iii) ψ(R) ⊆ P

(iv) ξ(ξ(R)ξ(R)) ⊆ P

(v) R/P is a commutative integral domain.

Proof. Assume that

F(x) ◦ G(y) ∈ P (2.30)

for all x, y ∈ R. Replacing y by yr in (2.30), where r ∈ R, we have

−G(y)[F(x), r] + y(F(x) ◦ ψ(r)) + [F(x), y]ψ(r) ∈ P (2.31)

for all x, y, r ∈ R. Writing ty instead of y in (2.31), where t ∈ R, we
get
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(−G(t)y − tψ(y))[F(x), r] + ty(F(x) ◦ ψ(r)) + t[F(x), y]ψ(r)

+[F(x), t]yψ(r) ∈ P (2.32)

for all x, y, r, t ∈ R. Left multiplying (2.31) by t, where t ∈ R, we obtain

−tG(y)[F(x), r] + ty(F(x) ◦ ψ(r)) + t[F(x), y]ψ(r) ∈ P (2.33)

for all x, y, r, t ∈ R. Subtracting (2.33) from (2.32), this gives

(−G(t)y − tψ(y) + tG(y))[F(x), r] + [F(x), t]yψ(r) ∈ P (2.34)

for all x, y, r, t ∈ R. Putting r = F(x), in (2.34), we have [F(x), t]yψ(F(x))
∈ P that is [F(x), t]Rψ(F(x)) ⊆ P. Since P is a prime ideal of R,
then [F(x), t] ∈ P or ψ(F(x)) ∈ P, which implies that I = {x ∈
R | [F(x), t] ∈ P} and J = {x ∈ R | ψ(F(x)) ∈ P}. Since a group
cannot be union of its subgroups. If I = R, and by Lemma 2.1, then
ξ(R) ⊆ P or R/P is a commutative integral domain. If J = R, then

ψ(F(x)) ∈ P (2.35)

for all x ∈ R. Replacing x by xy in (2.35) and using it, we get

F(x)ψ(y) + ψ(x)ξ(y) + xψ(ξ(y)) ∈ P (2.36)

for all x, y ∈ R. Writing tx instead of x in (2.36), where t ∈ R, we
obtain

(F(t)x+ tξ(x))ψ(y) + ψ(t)xξ(y) + tψ(x)ξ(y) + txψ(ξ(y)) ∈ P (2.37)

for all x, y, t ∈ R. Left multiplying (2.36) by t, where t ∈ R, we have

tF(x)ψ(y) + tψ(x)ξ(y) + txψ(ξ(y)) ∈ P (2.38)

for all x, y, t ∈ R. Subtracting (2.38) from (2.37), this gives

(F(t)x+ tξ(x)− tF(x))ψ(y) + ψ(t)xξ(y) ∈ P (2.39)

for all x, y, t ∈ R. Putting y by F(y) in (2.39), we get ψ(t)xξ(F(y)) ∈ P

that is ψ(t)Rξ(F(y)) ⊆ P. Then ψ(t) ∈ P or ξ(F(y)) ∈ P. If ψ(t) ∈ P,
and by using last relation in (2.34), then (G(t)y − tG(y))[F(x), r] ∈ P,
replacing r by sr in last relation and using it, we obtain (G(t)y −
tG(y))s[F(x), r] ∈ P that is (G(t)y−tG(y))R[F(x), r] ⊆ P. Then G(t)y−
tG(y) ∈ P or [F(x), r] ∈ P. If G(t)y− tG(y) ∈ P, then [G(y), y] ∈ P. And
so, R/P is a commutative integral domain or ψ(R) ⊆ P by Lemma 2.1.
If [F(x), r] ∈ P, then either ξ(R) ⊆ P or R/P is a commutative integral
domain. Now, if

ξ(F(y)) ∈ P (2.40)

for all y ∈ R. Now, in the same way as (2.20) in the proof of Theo-
rem 2.8, we will get ξ(ξ(R)ξ(R)) ⊆ P. �
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Theorem 2.10. Let R be a ring, P a prime ideal of R and let (F, ξ)
be a generalized derivation and ψ a derivation. If [F(x), ψ(y)] ∈ P for
all x, y ∈ R, then we have one of the following assertions:

(i) char(R/P) = 2
(ii) ξ(R) ⊆ P

(iii) ψ(R) ⊆ P

(iv) R/P is a commutative integral domain.

Proof. Assume that

[F(x), ψ(y)] ∈ P (2.41)

for all x, y ∈ R. Replacing y by yr in (2.41), where r ∈ R, we have

ψ(y)[F(x), r] + [F(x), y]ψ(r) ∈ P (2.42)

for all x, y, r ∈ R. Writing ty instead of y in (2.42), where t ∈ R, we
get

(ψ(t)y + tψ(y))[F(x), r] + t[F(x), y]ψ(r) + [F(x), t]yψ(r) ∈ P (2.43)

for all x, y, r, t ∈ R. Left multiplying (2.42) by t, where t ∈ R, we obtain

tψ(y)[F(x), r] + t[F(x), y]ψ(r) ∈ P (2.44)

for all x, y, r, t ∈ R. Subtracting (2.44) from (2.43), this gives

ψ(t)y[F(x), r] + [F(x), t]yψ(r) ∈ P (2.45)

for all x, y, r, t ∈ R. Putting r = ψ(s), in (2.45) and using (2.41) where
s ∈ R, we have [F(x), t]yψ(ψ(s)) ∈ P that is [F(x), t]Rψ(ψ(s)) ⊆ P.
Then [F(x), t] ∈ P or ψ(ψ(s)) ∈ P. If [F(x), t] ∈ P and by Lemma 2.1,
then either ξ(R) ⊆ P or R/P is a commutative integral domain. Oth-
erwise, we have ψ(ψ(R)) ⊆ P. Now, we have

ψ(ψ(x)) ∈ P (2.46)

for all x ∈ R. Taking x by xy in (2.46) and using it, we get 2ψ(x)ψ(y) ∈
P. If char(R/P) 6= 2, then ψ(x)ψ(y) ∈ P. Replacing y by ry in last
relation and using it, where r ∈ R, we obtain ψ(x)rψ(y) ∈ P, that is
ψ(x)Rψ(y) ⊆ P. Then ψ(x) ∈ P or ψ(y) ∈ P, and so ψ(R) ⊆ P. �

Theorem 2.11. Let R be a ring, P a prime ideal of R and let (F, ξ)
be a generalized derivation and ψ a derivation. If F(x) ◦ ψ(y) ∈ P for
all x, y ∈ R, then we have one of the following assertions:

(i) char(R/P) = 2
(ii) ξ(R) ⊆ P

(iii) ψ(R) ⊆ P

(iv) R/P is a commutative integral domain.
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Proof. Assume that

F(x) ◦ ψ(y) ∈ P (2.47)

for all x, y ∈ R. Replacing x by xt in (2.47) and using it, where t ∈ R,
we have

F(x)[t, ψ(y)] + x(ξ(t) ◦ ψ(y))− [x, ψ(y)]ξ(t) ∈ P (2.48)

for all x, y, t ∈ R. Writing rx instead of x in (2.48), where r ∈ R, we
get

(F(r)x+ rξ(x))[t, ψ(y)] + rx(ξ(t) ◦ ψ(y)) (2.49)

−r[x, ψ(y)]ξ(t)− [r, ψ(y)]xξ(t) ∈ P (2.50)

for all x, y, t, r ∈ R. Left multiplying (2.48) by r, this gives

rF(x)[t, ψ(y)] + rx(ξ(t) ◦ ψ(y))− r[x, ψ(y)]ξ(t) ∈ P (2.51)

for all x, y, t, r ∈ R. Comparing (2.49) and (2.51), we obtain

(F(r)x+ rξ(x)− rF(x))[t, ψ(y)]− [r, ψ(y)]xξ(t) ∈ P (2.52)

for all x, y, t, r ∈ R. Putting t = ψ(y) in (2.52), we have [r, ψ(y)]xξ(ψ(y))
∈ P, that is, [r, ψ(y)]Rξ(ψ(y)) ⊆ P, hence [r, ψ(y)] ∈ P, or ξ(ψ(y)) ∈ P.
If

[r, ψ(y)] ∈ P (2.53)

for all y, r ∈ R. Then R/P is a commutative integral domain or ψ(R) ⊆
P by Corollary 2.2. Now, if ξ(ψ(y)) ∈ P, then

ξ(ψ(R)) ⊆ P. (2.54)

Taking t = ψ(t) in (2.52) and using (2.54), we have

(F(r)x+ rξ(x)− rF(x))[ψ(t), ψ(y)] ∈ P.

Replacing x by xs in last relation, we get

(F(r)x+ rξ(x)− rF(x))s[ψ(t), ψ(y)] ∈ P,

that is,
(F(r)x+ rξ(x)− rF(x))R[ψ(t), ψ(y)] ⊆ P,

hence F(r)x + rξ(x) − rF(x) ∈ P or [ψ(t), ψ(y)] ∈ P. In case F(r)x +
rξ(x)−rF(x) ∈ P and using last relation in (2.52), we obtain [r, ψ(y)]xξ(t)
∈ P, that is, [r, ψ(y)]Rξ(t) ⊆ P and so [r, ψ(y)] ∈ P or ξ(t) ∈ P. In case
[r, ψ(y)] ∈ P as in (2.53). In case ξ(t) ∈ P, then ξ(R) ⊆ P. Now, if

[ψ(t), ψ(y)] ∈ P (2.55)

for all y, t ∈ R. Writing xy instead of y in (2.55) and using it, we see
that

ψ(x)[ψ(t), y] + [ψ(t), x]ψ(y) ∈ P.
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Putting x = ψ(x) in last relation and using (2.55), we have ψ2(x)[ψ(t), y]
∈ P. Replacing y by sy in last relation and using it, we get ψ2(x)s[ψ(t), y]
∈ P, that is, ψ2(x)R[ψ(t), y] ⊆ P, hence ψ2(x) ∈ P or [ψ(t), y] ∈ P.
In case [ψ(t), y] ∈ P as in (2.53). Now, in case ψ2(x) ∈ P. Writing xy
instead of x in last relation and using it, we obtain 2ψ(x)ψ(y) ∈ P.
In case char(R/P) 6= 2 then ψ(x)ψ(y) ∈ P. Replacing x by xr in last
relation and using it, we get ψ(x)rψ(y) ∈ P, that is, ψ(x)Rψ(y) ⊆ P,
hence ψ(x) ⊆ P or ψ(y) ⊆ P, in two cases ψ(R) ⊆ P. �
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