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∗-α-DERIVATION ON PRIME ∗-RINGS

K. KUMAR

Abstract. Let < be an associative ring with involution ∗. An
additive map λ → λ∗ of < into itself is called an involution if
the following conditions are satisfied (i)(λµ)∗ = µ∗λ∗, (ii)(λ∗)∗ =
λ for all λ, µ ∈ <. A ring equipped with an involution is called an
∗-ring or ring with involution. The aim of the present paper is to
establish some results on ∗-α-derivations in ∗-rings and investigate
the commutativity of prime ∗-rings admitting ∗-α-derivations on
< satisfying certain identities also prove that if < admits a reverse
∗-α-derivation δ of <, then α ∈ Z(<) and some related results have
also been discussed.

1. Preliminaries

Last few decades, several authors have investigated the relationship
between the commutativity of the ring < and certain specific types of
derivations of <. The first result in this direction is due to Posner [3]
who proved that if a ring < admits a nonzero derivation δ such that
[δ(λ), λ] ∈ Z(<) for all λ ∈ <, then < is commutative. This result was
subsequently, refined and extended by a number of authors. In [9], Bre-
sar and Vukman showed that a prime ring must be commutative if <
admits a nonzero left derivation. Furthermore, Bresar and Vukman [9]
studied the notions of a ∗-derivation and a Jordan ∗-derivations of <.
In [2], Asma et al. generalized some identities on additive maps with
∗-rings. Recently, many authors have obtained commutativity theo-
rems for prime and semiprime rings admitting derivation, generalized
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derivation. The aim of the present paper is to establish some results
involving ∗-α-derivations in ∗-rings and investigate the commutativity
of prime ∗-rings admitting ∗-α-derivations of < satisfying certain iden-
tities and some related results have also been discussed.

2. Introduction

Throughout the paper < will denote the associative ring and Z(<)
be the centre of <. For any λ, µ ∈ <, a ring < is said to be a prime
if whenever λ<µ = {0} implies λ = 0 or µ = 0 and is semiprime if
for any λ ∈ <, λ<λ = {0} implies λ = 0. For all λ, µ ∈ <, as usual
commutator, we shall write [λ, µ] = λµ−µλ and λ◦µ = λµ+µλ. Also,
we shall frequently use the following identities and several well known
fact about the prime ring without specific mention.

[λµ, ν] = λ[µ, ν] + [λ, ν]µ

[λ, µν] = µ[λ, ν] + [λ, µ]ν

λ ◦ µν = (λ ◦ µ)ν − µ[λ, ν] = µ(λ ◦ ν) + [λ, µ]ν

(λµ) ◦ ν = λ(µ ◦ ν)− [λ, ν]µ = (λ ◦ ν)µ+ λ[µ, ν]

By derivation δ on <, we mean an additive mapping on < satisfying
δ(λµ) = δ(λ)µ + λδ(µ) for all λ, µ ∈ <. An additive map λ → λ∗ of
< into itself is called an involution if the following conditions are sat-
isfied (i)(λµ)∗ = µ∗λ∗, (ii)(λ∗)∗ = λ for all λ, µ ∈ <. A ring equipped
with an involution is called an ∗-ring or ring with involution. Let <
be a ∗-ring. An additive mapping δ on < is said to be ∗-derivation if
δ(λµ) = δ(λ)µ∗ + λδ(µ) for all λ, µ ∈ <. An additive mapping δ on
R is said to be reverse ∗-derivation if δ(λµ) = δ(µ)λ∗ + µδ(λ) for all
λ, µ ∈ <. An additive mapping δ on R is said to be ∗-α-derivation if
δ(λµ) = δ(λ)µ∗ + α(λ)δ(µ) for all λ, µ ∈ <. An additive mapping δ
on < is said to be reverse ∗-α-derivation if δ(λµ) = δ(µ)λ∗ + α(µ)δ(λ)
for all λ, µ ∈ <. An additive mapping z on < is said to be a general-
ized derivation if there exists a derivation δ on < such that z(λµ) =
z(λ)µ+λδ(µ) for all λ, µ ∈ <. An additive mapping z on < is said to
be a generalized ∗-derivation if there exists a ∗-derivation δ on < such
that z(λµ) = z(λ)µ∗ + λδ(µ) for all λ, µ ∈ <.
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3. Main results

Theorem 3.1. Let < be a prime ∗-ring. If < admits a nonzero ∗-α-
derivation δ of < such that δ(λµ) = δ(λ)δ(µ) for all λ, µ ∈ <, then
α = δ.

Proof. By hypothesis, we have

δ(λµ) = δ(λ)µ∗ + λδ(µ) = δ(λ)δ(µ) for all λ, µ ∈ <. (3.1)

Replacing λ by λν in (3.1), we get

δ(λ)δ(ν)µ∗ + α(λν)δ(µ) = δ(λ)δ(ν)δ(µ) (3.2)

= δ(λ)δ(νµ) = δ(λ)(δ(ν)µ∗ + α(ν)δ(µ)). (3.3)

This implies that

α(λν)δ(µ) = δ(λ)α(ν)δ(µ) for all λ, µ, ν ∈ <. (3.4)

Since α is an automorphism on <, we obtain

(α(λ)− δ(λ))α(ν)δ(µ) = 0 for all λ, µ, ν ∈ <.
This gives that

(λ− α−1(δ(λ))<α−1(δ(µ)) = {0} for all λ, µ ∈ <. (3.5)

Since < is prime, implies that either (λ−α−1(δ(λ)) = 0 or α−1(δ(µ)) =
0. In the second case, δ = 0 but in our hypothesis δ 6= 0. In first case
δ = α.

�

Theorem 3.2. Let < be a prime ∗-ring. If < admits a nonzero ∗-α-
derivation δ of < such that δ(λµ) = δ(µ)δ(λ) for all λ, µ ∈ <, then
δ(λ) = λ∗.

Proof. Suppose that

δ(λµ) = δ(λ)µ∗ + α(λ)δ(µ) = δ(µ)δ(λ) for all λ, µ ∈ <. (3.6)

Replacing µλ instead of µ in (3.6), we get

δ(λµλ) = δ(λ)µ∗λ∗ + α(λ)δ(λµ) for all λ, µ ∈ <.
This implies that

δ(λµλ) = δ(λ)µ∗λ∗ + α(λ)δ(λ)δ(µ) for all λ, µ ∈ <. (3.7)

Again, we apply hypothesis

δ(λµλ) = δ(λµ)δ(λ) for all λ, µ ∈ <.
This implies that

δ(λµλ) = δ(λ)µ∗δ(λ) + α(λ)δ(µ)δ(λ) for all λ, µ ∈ <. (3.8)
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Using equation (3.7) and (3.8), we get

δ(λ)µ∗λ∗ = δ(λ)µ∗δ(λ) for all λ, µ ∈ <.
This gives that

δ(λ)<(λ∗ − δ(λ)) = {0} for all λ, µ ∈ <.
Using primeness of <, we find that either δ = 0 or δ(λ) = λ∗. In our
hypothesis δ 6= 0 this implies that δ(λ) = λ∗.

�

Theorem 3.3. Let < be a prime ∗-ring and a ∈ <. If < admits an ∗-
α-derivation δ of < and [δ(λ), a] = 0, then either δ(a) = 0 or a ∈ Z(<).

Proof. We have

[δ(λ), a] = 0 for all λ ∈ <. (3.9)

Replacing λµ instead of λ in (3.9), we find

δ(λ)[µ∗, a] + [α(λ), a]δ(µ) = 0 for all λ, µ ∈ <. (3.10)

Since α is an automorphism, we put α(λ) = λ, we find that

δ(λ)[µ∗, a] + [λ, a]δ(µ) = 0 for all λ, µ ∈ <. (3.11)

Substituting λ by a, we get

δ(a)[µ∗, a] = 0 for all a, µ ∈ <.
Using hypothesis, we find that δ(a)[µ∗, a] = 0 for all µ ∈ <. Substitut-
ing µ∗ in place of µ in that relation, we have δ(a)[µ, a] = 0 for all µ ∈ <.
Again, replacing νλ instead of µ in the last relation, we obtain

δ(a)µ[λ, a] = 0 for all λ, µ ∈ <. (3.12)

This implies that δ(a)<[λ, a] = {0} for all λ ∈ R. Since R is prime, we
have δ(a) = 0 or a ∈ Z(R).

�

Theorem 3.4. Let < be a semiprime ∗-ring. If < admits a reverse
∗-α-derivation δ of <, then α ∈ Z(<).

Proof. By hypothesis, we have

δ(λµ) = δ(µ)λ∗ + α(µ)δ(λ) for all λ, µ ∈ <. (3.13)

Replacing λµ instead of λ in (3.13), we find

δ((λν)µ) = δ(µ)ν∗λ∗ + α(µ)δ(λν) for all λ, µ, ν ∈ <.
Simplifying the above relation, we find that

δ((λν)µ) = δ(µ)ν∗λ∗ + α(µ)δ(ν)λ∗ + α(µ)α(ν)δ(λ). (3.14)
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On the other hand, we have

δ(λ(νµ)) = δ(νµ)λ∗ + α(νµ)δ(λ) for all λ, µ, ν ∈ <.

Simplifying the above relation, we find that

δ(λ(νµ) = δ(µ)ν∗λ∗ + α(µ)δ(ν)λ∗ + α(ν)α(µ)δ(λ). (3.15)

Comparing (3.14) and (3.15), we get [α(µ), α(ν)]δ(λ) = 0. Since α is an
automorphism, so we can put α(µ) = µ in the last relation, we obtain

[µ, α(ν)]δ(λ) = 0 for all λ, µ, ν ∈ <. (3.16)

Now replacing µ by µι in (3.16) and using (3.16), we get

[µ, α(ν)]ιδ(λ) = 0 for all ι, λ, µ, ν ∈ <. (3.17)

Multiplying the right side of (3.17) by α(ν)µ, we have

[µ, α(ν)]ιδ(λ)α(ν)µ = 0 for all ι, λ, µ, ν ∈ <. (3.18)

Multiplying the right side of (3.17) by µα(ν), we have

[µ, α(ν)]ιδ(λ)µα(ν) = 0 for all ιλ, µ, ν ∈ <. (3.19)

Subtracting (3.19) from (3.18), we have [µ, α(ν)]ιδ(λ)[µ, α(ν)] = 0
for all ι, λ, µ, ν ∈ <. This implies that [µ, α(ν)]<[µ, α(ν)] = {0} for all
µ, ν ∈ <. Since < is semiprime, we have [µ, α(ν)] = 0 for all µ, ν ∈ <
i.e., α ∈ Z(<).

�

Theorem 3.5. Let < be a prime ∗-ring. If < admits a nonzero ∗-α-
derivation δ of < such that δ([λ, µ]) = 0 for all λ, µ ∈ <, then < is
commutative.

Proof. By hypothesis, we have

δ([λ, µ]) = 0 for all λ, µ ∈ <. (3.20)

Replacing λµ instead of λ in (3.20), we have

δ([λ, µ]µ) = δ([λ, µ])µ∗ + α([λ, µ])δ(µ) for all λ, µ ∈ <.

By the above relation, we have

α([λ, µ])δ(µ) = 0 for all λ, µ ∈ <. (3.21)

Replacing λι instead of λ in (3.21) and using (3.21), where ι ∈ <, we
get

α([λ, µ])α(ι)δ(µ) = 0 for all λ, µ, ι ∈ <. (3.22)
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Since α is an automorphism on <, then we have

[λ, µ]ια−1(δ(µ)) = 0 for all λ, µ, ι ∈ <. (3.23)

This implies that

[λ, µ]<α−1(δ(µ)) = {0} for all λ, µ ∈ <. (3.24)

Using primeness of <, we obtain either [λ, µ] = 0 or α−1(δ(µ)) = 0
for all λ, µ ∈ <. Let K = {µ ∈ <|α−1(δ(µ)) = 0} and L = {µ ∈
<|[λ, µ] = 0, for all λ ∈ <}. ThenK and L are both additive subgroups
and K ∪ L = <, but (<,+) is not union of two its proper subgroups,
which implies that either K = < or L = <. In the former case, we
have α−1(δ(µ)) = 0 i.e., δ(µ) = 0, which is a contradiction and in the
second case, < is commutative.

�

Theorem 3.6. Let < be a prime ∗-ring. If < admits a nonzero ∗-α-
derivation δ of < such that δ(λ ◦ µ) = 0 for all λ, µ ∈ <, then < is
commutative.

Proof. By hypothesis, we have

δ(λ ◦ µ) = 0 for all λ, µ ∈ <. (3.25)

Replacing λµ instead of λ in (3.25), we have

δ((λ ◦ µ)µ) = δ(λ ◦ µ)µ∗ + α(λ ◦ µ)δ(µ) for all λ, µ ∈ <.
By the above relation, we have

α(λ ◦ µ)δ(µ) = 0 for all λ, µ ∈ R. (3.26)

Replacing λι instead of λ in (3.26) and using (3.26), where ι ∈ < , we
get

α([λ, µ])α(ι)δ(µ) = 0 for all λ, µ, ι ∈ <. (3.27)

Since α is an automorphism on <, then we have

[λ, µ]ια−1(δ(µ)) = 0 for all λ, µ, ι ∈ <. (3.28)

This implies that

[λ, µ]<α−1(δ(µ)) = {0} for all λ, µ ∈ <. (3.29)

Using primeness of <, we obtain either [λ, µ] = 0 or α−1(δ(µ)) = 0
for all λ, µ ∈ <. Let K = {µ ∈ <|α−1(δ(µ)) = 0} and L = {µ ∈
<|[λ, µ] = 0 for all λ ∈ <}. Then K and L are both additive subgroups
and K ∪ L = <, but (<,+) is not union of two its proper subgroups,
which implies that either K = < or L = <. In the former case, we
have α−1(δ(µ)) = 0 i.e., δ(µ) = 0, which is a contradiction and in the
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second case, < is commutative.
�
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