*-α-DERIVATION ON PRIME *-RINGS

K. KUMAR

ABSTRACT. Let \Re be an associative ring with involution *. An additive map $\lambda \to \lambda^*$ of \Re into itself is called an involution if the following conditions are satisfied $(i)(\lambda\mu)^* = \mu^*\lambda^*$, $(ii)(\lambda^*)^* = \lambda$ for all $\lambda, \mu \in \Re$. A ring equipped with an involution is called an *-ring or ring with involution. The aim of the present paper is to establish some results on *- α -derivations in *-rings and investigate the commutativity of prime *-rings admitting *- α -derivations on \Re satisfying certain identities also prove that if \Re admits a reverse *- α -derivation δ of \Re , then $\alpha \in Z(\Re)$ and some related results have also been discussed.

1. Preliminaries

Last few decades, several authors have investigated the relationship between the commutativity of the ring \Re and certain specific types of derivations of \Re . The first result in this direction is due to Posner [3] who proved that if a ring \Re admits a nonzero derivation δ such that $[\delta(\lambda), \lambda] \in Z(\Re)$ for all $\lambda \in \Re$, then \Re is commutative. This result was subsequently, refined and extended by a number of authors. In [9], Bresar and Vukman showed that a prime ring must be commutative if \Re admits a nonzero left derivation. Furthermore, Bresar and Vukman [9] studied the notions of a *-derivation and a Jordan *-derivations of \Re . In [2], Asma et al. generalized some identities on additive maps with *-rings. Recently, many authors have obtained commutativity theorems for prime and semiprime rings admitting derivation, generalized

MSC(2010): 16W25, 16R50, 16N60

Keywords: Prime *-ring, *- α -derivation, reverse *- α -derivation.

Received: 3 August 2021, Accepted: 31 December 2021.

64 KUMAR

derivation. The aim of the present paper is to establish some results involving *- α -derivations in *-rings and investigate the commutativity of prime *-rings admitting *- α -derivations of \Re satisfying certain identities and some related results have also been discussed.

2. Introduction

Throughout the paper \Re will denote the associative ring and $Z(\Re)$ be the centre of \Re . For any $\lambda, \mu \in \Re$, a ring \Re is said to be a prime if whenever $\lambda \Re \mu = \{0\}$ implies $\lambda = 0$ or $\mu = 0$ and is semiprime if for any $\lambda \in \Re$, $\lambda \Re \lambda = \{0\}$ implies $\lambda = 0$. For all $\lambda, \mu \in \Re$, as usual commutator, we shall write $[\lambda, \mu] = \lambda \mu - \mu \lambda$ and $\lambda \circ \mu = \lambda \mu + \mu \lambda$. Also, we shall frequently use the following identities and several well known fact about the prime ring without specific mention.

$$[\lambda\mu,\nu] = \lambda[\mu,\nu] + [\lambda,\nu]\mu$$
$$[\lambda,\mu\nu] = \mu[\lambda,\nu] + [\lambda,\mu]\nu$$
$$\lambda \circ \mu\nu = (\lambda \circ \mu)\nu - \mu[\lambda,\nu] = \mu(\lambda \circ \nu) + [\lambda,\mu]\nu$$
$$(\lambda\mu) \circ \nu = \lambda(\mu \circ \nu) - [\lambda,\nu]\mu = (\lambda \circ \nu)\mu + \lambda[\mu,\nu]$$

By derivation δ on \Re , we mean an additive mapping on \Re satisfying $\delta(\lambda\mu) = \delta(\lambda)\mu + \lambda\delta(\mu)$ for all $\lambda, \mu \in \Re$. An additive map $\lambda \to \lambda^*$ of R into itself is called an involution if the following conditions are satis field $(i)(\lambda\mu)^* = \mu^*\lambda^*$, $(ii)(\lambda^*)^* = \lambda$ for all $\lambda, \mu \in \Re$. A ring equipped with an involution is called an *-ring or ring with involution. Let \Re be a *-ring. An additive mapping δ on \Re is said to be *-derivation if $\delta(\lambda\mu) = \delta(\lambda)\mu^* + \lambda\delta(\mu)$ for all $\lambda, \mu \in \Re$. An additive mapping δ on R is said to be reverse *-derivation if $\delta(\lambda\mu) = \delta(\mu)\lambda^* + \mu\delta(\lambda)$ for all $\lambda, \mu \in \Re$. An additive mapping δ on R is said to be *- α -derivation if $\delta(\lambda\mu) = \delta(\lambda)\mu^* + \alpha(\lambda)\delta(\mu)$ for all $\lambda, \mu \in \Re$. An additive mapping δ on \Re is said to be reverse *- α -derivation if $\delta(\lambda\mu) = \delta(\mu)\lambda^* + \alpha(\mu)\delta(\lambda)$ for all $\lambda, \mu \in \Re$. An additive mapping \digamma on \Re is said to be a generalized derivation if there exists a derivation δ on \Re such that $\digamma(\lambda\mu) =$ $F(\lambda)\mu + \lambda\delta(\mu)$ for all $\lambda, \mu \in \Re$. An additive mapping F on \Re is said to be a generalized *-derivation if there exists a *-derivation δ on \Re such that $F(\lambda \mu) = F(\lambda)\mu^* + \lambda \delta(\mu)$ for all $\lambda, \mu \in \Re$.

3. Main results

Theorem 3.1. Let \Re be a prime *-ring. If \Re admits a nonzero *- α -derivation δ of \Re such that $\delta(\lambda\mu) = \delta(\lambda)\delta(\mu)$ for all $\lambda, \mu \in \Re$, then $\alpha = \delta$.

Proof. By hypothesis, we have

$$\delta(\lambda \mu) = \delta(\lambda)\mu^* + \lambda \delta(\mu) = \delta(\lambda)\delta(\mu) \text{ for all } \lambda, \mu \in \Re.$$
 (3.1)

Replacing λ by $\lambda \nu$ in (3.1), we get

$$\delta(\lambda)\delta(\nu)\mu^* + \alpha(\lambda\nu)\delta(\mu) = \delta(\lambda)\delta(\nu)\delta(\mu) \tag{3.2}$$

$$= \delta(\lambda)\delta(\nu\mu) = \delta(\lambda)(\delta(\nu)\mu^* + \alpha(\nu)\delta(\mu)). \tag{3.3}$$

This implies that

$$\alpha(\lambda \nu)\delta(\mu) = \delta(\lambda)\alpha(\nu)\delta(\mu) \text{ for all } \lambda, \mu, \nu \in \Re.$$
 (3.4)

Since α is an automorphism on \Re , we obtain

$$(\alpha(\lambda) - \delta(\lambda))\alpha(\nu)\delta(\mu) = 0$$
 for all $\lambda, \mu, \nu \in \Re$.

This gives that

$$(\lambda - \alpha^{-1}(\delta(\lambda))\Re \alpha^{-1}(\delta(\mu)) = \{0\} \text{ for all } \lambda, \mu \in \Re.$$
 (3.5)

Since \Re is prime, implies that either $(\lambda - \alpha^{-1}(\delta(\lambda))) = 0$ or $\alpha^{-1}(\delta(\mu)) = 0$. In the second case, $\delta = 0$ but in our hypothesis $\delta \neq 0$. In first case $\delta = \alpha$.

Theorem 3.2. Let \Re be a prime *-ring. If \Re admits a nonzero *- α -derivation δ of \Re such that $\delta(\lambda\mu) = \delta(\mu)\delta(\lambda)$ for all $\lambda, \mu \in \Re$, then $\delta(\lambda) = \lambda^*$.

Proof. Suppose that

$$\delta(\lambda\mu) = \delta(\lambda)\mu^* + \alpha(\lambda)\delta(\mu) = \delta(\mu)\delta(\lambda) \text{ for all } \lambda, \mu \in \Re.$$
 (3.6)

Replacing $\mu\lambda$ instead of μ in (3.6), we get

$$\delta(\lambda\mu\lambda) = \delta(\lambda)\mu^*\lambda^* + \alpha(\lambda)\delta(\lambda\mu)$$
 for all $\lambda, \mu \in \Re$.

This implies that

$$\delta(\lambda\mu\lambda) = \delta(\lambda)\mu^*\lambda^* + \alpha(\lambda)\delta(\lambda)\delta(\mu) \text{ for all } \lambda, \mu \in \Re.$$
 (3.7)

Again, we apply hypothesis

$$\delta(\lambda\mu\lambda) = \delta(\lambda\mu)\delta(\lambda)$$
 for all $\lambda, \mu \in \Re$.

This implies that

$$\delta(\lambda\mu\lambda) = \delta(\lambda)\mu^*\delta(\lambda) + \alpha(\lambda)\delta(\mu)\delta(\lambda) \text{ for all } \lambda, \mu \in \Re.$$
 (3.8)

66 KUMAR

Using equation (3.7) and (3.8), we get

$$\delta(\lambda)\mu^*\lambda^* = \delta(\lambda)\mu^*\delta(\lambda)$$
 for all $\lambda, \mu \in \Re$.

This gives that

$$\delta(\lambda)\Re(\lambda^* - \delta(\lambda)) = \{0\} \text{ for all } \lambda, \mu \in \Re.$$

Using primeness of \Re , we find that either $\delta = 0$ or $\delta(\lambda) = \lambda^*$. In our hypothesis $\delta \neq 0$ this implies that $\delta(\lambda) = \lambda^*$.

Theorem 3.3. Let \Re be a prime *-ring and $a \in \Re$. If \Re admits an *- α -derivation δ of \Re and $[\delta(\lambda), a] = 0$, then either $\delta(a) = 0$ or $a \in Z(\Re)$.

Proof. We have

$$[\delta(\lambda), a] = 0 \text{ for all } \lambda \in \Re.$$
 (3.9)

Replacing $\lambda \mu$ instead of λ in (3.9), we find

$$\delta(\lambda)[\mu^*, a] + [\alpha(\lambda), a]\delta(\mu) = 0 \text{ for all } \lambda, \mu \in \Re.$$
 (3.10)

Since α is an automorphism, we put $\alpha(\lambda) = \lambda$, we find that

$$\delta(\lambda)[\mu^*, a] + [\lambda, a]\delta(\mu) = 0 \text{ for all } \lambda, \mu \in \Re.$$
 (3.11)

Substituting λ by a, we get

$$\delta(a)[\mu^*, a] = 0$$
 for all $a, \mu \in \Re$.

Using hypothesis, we find that $\delta(a)[\mu^*, a] = 0$ for all $\mu \in \Re$. Substituting μ^* in place of μ in that relation, we have $\delta(a)[\mu, a] = 0$ for all $\mu \in \Re$. Again, replacing $\nu\lambda$ instead of μ in the last relation, we obtain

$$\delta(a)\mu[\lambda, a] = 0 \text{ for all } \lambda, \mu \in \Re.$$
 (3.12)

This implies that $\delta(a)\Re[\lambda,a]=\{0\}$ for all $\lambda\in R$. Since R is prime, we have $\delta(a)=0$ or $a\in Z(R)$.

Theorem 3.4. Let \Re be a semiprime *-ring. If \Re admits a reverse *- α -derivation δ of \Re , then $\alpha \in Z(\Re)$.

Proof. By hypothesis, we have

$$\delta(\lambda \mu) = \delta(\mu)\lambda^* + \alpha(\mu)\delta(\lambda) \text{ for all } \lambda, \mu \in \Re.$$
 (3.13)

Replacing $\lambda \mu$ instead of λ in (3.13), we find

$$\delta((\lambda \nu)\mu) = \delta(\mu)\nu^*\lambda^* + \alpha(\mu)\delta(\lambda \nu)$$
 for all $\lambda, \mu, \nu \in \Re$.

Simplifying the above relation, we find that

$$\delta((\lambda \nu)\mu) = \delta(\mu)\nu^*\lambda^* + \alpha(\mu)\delta(\nu)\lambda^* + \alpha(\mu)\alpha(\nu)\delta(\lambda). \tag{3.14}$$

On the other hand, we have

$$\delta(\lambda(\nu\mu)) = \delta(\nu\mu)\lambda^* + \alpha(\nu\mu)\delta(\lambda)$$
 for all $\lambda, \mu, \nu \in \Re$.

Simplifying the above relation, we find that

$$\delta(\lambda(\nu\mu) = \delta(\mu)\nu^*\lambda^* + \alpha(\mu)\delta(\nu)\lambda^* + \alpha(\nu)\alpha(\mu)\delta(\lambda). \tag{3.15}$$

Comparing (3.14) and (3.15), we get $[\alpha(\mu), \alpha(\nu)]\delta(\lambda) = 0$. Since α is an automorphism, so we can put $\alpha(\mu) = \mu$ in the last relation, we obtain

$$[\mu, \alpha(\nu)]\delta(\lambda) = 0 \text{ for all } \lambda, \mu, \nu \in \Re.$$
 (3.16)

Now replacing μ by $\mu \iota$ in (3.16) and using (3.16), we get

$$[\mu, \alpha(\nu)]\iota\delta(\lambda) = 0 \text{ for all } \iota, \lambda, \mu, \nu \in \Re.$$
 (3.17)

Multiplying the right side of (3.17) by $\alpha(\nu)\mu$, we have

$$[\mu, \alpha(\nu)]\iota\delta(\lambda)\alpha(\nu)\mu = 0 \text{ for all } \iota, \lambda, \mu, \nu \in \Re.$$
 (3.18)

Multiplying the right side of (3.17) by $\mu\alpha(\nu)$, we have

$$[\mu, \alpha(\nu)]\iota\delta(\lambda)\mu\alpha(\nu) = 0 \text{ for all } \iota\lambda, \mu, \nu \in \Re.$$
 (3.19)

Subtracting (3.19) from (3.18), we have $[\mu, \alpha(\nu)]\iota\delta(\lambda)[\mu, \alpha(\nu)] = 0$ for all $\iota, \lambda, \mu, \nu \in \Re$. This implies that $[\mu, \alpha(\nu)]\Re[\mu, \alpha(\nu)] = \{0\}$ for all $\mu, \nu \in \Re$. Since \Re is semiprime, we have $[\mu, \alpha(\nu)] = 0$ for all $\mu, \nu \in \Re$ i.e., $\alpha \in Z(\Re)$.

Theorem 3.5. Let \Re be a prime *-ring. If \Re admits a nonzero *- α -derivation δ of \Re such that $\delta([\lambda, \mu]) = 0$ for all $\lambda, \mu \in \Re$, then \Re is commutative.

Proof. By hypothesis, we have

$$\delta([\lambda, \mu]) = 0 \text{ for all } \lambda, \mu \in \Re.$$
 (3.20)

Replacing $\lambda \mu$ instead of λ in (3.20), we have

$$\delta([\lambda,\mu]\mu) = \delta([\lambda,\mu])\mu^* + \alpha([\lambda,\mu])\delta(\mu) \text{ for all } \lambda,\mu \in \Re.$$

By the above relation, we have

$$\alpha([\lambda, \mu])\delta(\mu) = 0 \text{ for all } \lambda, \mu \in \Re.$$
 (3.21)

Replacing $\lambda \iota$ instead of λ in (3.21) and using (3.21), where $\iota \in \Re$, we get

$$\alpha([\lambda, \mu])\alpha(\iota)\delta(\mu) = 0 \text{ for all } \lambda, \mu, \iota \in \Re.$$
 (3.22)

68 KUMAR

Since α is an automorphism on \Re , then we have

$$[\lambda, \mu]\iota\alpha^{-1}(\delta(\mu)) = 0 \text{ for all } \lambda, \mu, \iota \in \Re.$$
 (3.23)

This implies that

$$[\lambda, \mu] \Re \alpha^{-1}(\delta(\mu)) = \{0\} \text{ for all } \lambda, \mu \in \Re.$$
 (3.24)

Using primeness of \Re , we obtain either $[\lambda, \mu] = 0$ or $\alpha^{-1}(\delta(\mu)) = 0$ for all $\lambda, \mu \in \Re$. Let $K = \{\mu \in \Re | \alpha^{-1}(\delta(\mu)) = 0\}$ and $L = \{\mu \in \Re | [\lambda, \mu] = 0$, for all $\lambda \in \Re$. Then K and L are both additive subgroups and $K \cup L = \Re$, but $(\Re, +)$ is not union of two its proper subgroups, which implies that either $K = \Re$ or $L = \Re$. In the former case, we have $\alpha^{-1}(\delta(\mu)) = 0$ i.e., $\delta(\mu) = 0$, which is a contradiction and in the second case, \Re is commutative.

Theorem 3.6. Let \Re be a prime *-ring. If \Re admits a nonzero *- α -derivation δ of \Re such that $\delta(\lambda \circ \mu) = 0$ for all $\lambda, \mu \in \Re$, then \Re is commutative.

Proof. By hypothesis, we have

$$\delta(\lambda \circ \mu) = 0 \text{ for all } \lambda, \mu \in \Re.$$
 (3.25)

Replacing $\lambda \mu$ instead of λ in (3.25), we have

$$\delta((\lambda \circ \mu)\mu) = \delta(\lambda \circ \mu)\mu^* + \alpha(\lambda \circ \mu)\delta(\mu) \text{ for all } \lambda, \mu \in \Re.$$

By the above relation, we have

$$\alpha(\lambda \circ \mu)\delta(\mu) = 0 \text{ for all } \lambda, \mu \in R.$$
 (3.26)

Replacing $\lambda \iota$ instead of λ in (3.26) and using (3.26), where $\iota \in \Re$, we get

$$\alpha([\lambda, \mu])\alpha(\iota)\delta(\mu) = 0 \text{ for all } \lambda, \mu, \iota \in \Re.$$
 (3.27)

Since α is an automorphism on \Re , then we have

$$[\lambda, \mu]\iota\alpha^{-1}(\delta(\mu)) = 0 \text{ for all } \lambda, \mu, \iota \in \Re.$$
 (3.28)

This implies that

$$[\lambda, \mu] \Re \alpha^{-1}(\delta(\mu)) = \{0\} \text{ for all } \lambda, \mu \in \Re.$$
 (3.29)

Using primeness of \Re , we obtain either $[\lambda, \mu] = 0$ or $\alpha^{-1}(\delta(\mu)) = 0$ for all $\lambda, \mu \in \Re$. Let $K = \{\mu \in \Re | \alpha^{-1}(\delta(\mu)) = 0\}$ and $L = \{\mu \in \Re | [\lambda, \mu] = 0 \text{ for all } \lambda \in \Re \}$. Then K and L are both additive subgroups and $K \cup L = \Re$, but $(\Re, +)$ is not union of two its proper subgroups, which implies that either $K = \Re$ or $L = \Re$. In the former case, we have $\alpha^{-1}(\delta(\mu)) = 0$ i.e., $\delta(\mu) = 0$, which is a contradiction and in the

second case, \Re is commutative.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- 1. A. Ali and K. Kumar, Traces of permuting n-additive mappings in *-prime rimgs, J. Algebra Relat. Topics, (8) 2 (2020), 9-21.
- 2. A. Ali, F. Shujat and K. Kumar, Some functional identities with generalized skew derivation on *-prime rings, Palest. J. Math., (7) 1 (2018), 88-98.
- E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. (8) 6 (1957), 1093-1100.
- 4. Gy. Maksa, A remark on symmetric biadditive functions having non-negative diagonalization, Glasnik. Mat. (15) **35** (1980), 279-282.
- 5. J. H. Mayne, *Ideals and centralizing mappings of prime rings*, Proc. Amer. Math. Soc. **86** (1982), 211-212.
- 6. K. I. Beidar, W. S. Martindale and A. V. Milkhalev, *Rings with generalized identities*, CRC Press, 1995.
- 7. M. Bresar and J. Vukman, On some additive mappings in rings with involution, Aequationes Mathematicae, 38 (1989), 178-185.
- 8. M. Bresar, Functional identities of degree two, J. Algebra, 172 (1995), 690-720.
- 9. M. Bresar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. (110) 1 (1990).
- 10. N. Argac, Generalized derivations of prime rings, Algebra Colloq. (11) 3 (2004), 399-400.
- 11. N. Argac, On prime and semiprime rings with derivations, Algebra colloq. (13) **35** (2006), 371-380.

Kapil Kumar

Department of Mathematics, Swami Vivekanand Subharti University, Meerut-250005, INDIA.

Email: 01kapilmathsamu@gmail.com