تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,246,417 |
تعداد دریافت فایل اصل مقاله | 6,900,008 |
Numerical methods based on spline quasi-interpolation operators for integro-differential equations | ||
Journal of Mathematical Modeling | ||
مقاله 1، دوره 10، شماره 4، اسفند 2022، صفحه 387-401 اصل مقاله (230.64 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2022.20181.1756 | ||
نویسندگان | ||
Chafik Allouch1؛ Domingo Barrera2؛ Mounaim Saou3؛ Driss Sbibih4؛ Mohamed Tahrichi* 3 | ||
1University Mohammed I. FPN. MSC Team, LAMAO Laboratory, Nador, Morocco | ||
2Department of Applied Mathematics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain | ||
3Team ANAA, ANO Laboratory , Faculty of Sciences, University Mohammed First, Oujda, Morocco | ||
4ANO Laboratory , Faculty of Sciences, University Mohammed First, Oujda, Morocco | ||
چکیده | ||
In this paper, we propose collocation and Kantorovich methods based on spline quasi-interpolants defined on a bounded interval to solve numerically a class of Fredholm integro-differential equations. We describe the computational aspects for calculating the approximate solutions and give theoretical results corresponding to the convergence order of each method in terms of the degree of the considered spline quasi-interpolant. Finally, we provide some numerical tests that confirm the theoretical results and prove the efficiency of the proposed methods. | ||
کلیدواژهها | ||
Integro-differential equations؛ quasi-interpolants؛ collocation method؛ Kantorovich method | ||
آمار تعداد مشاهده مقاله: 873 تعداد دریافت فایل اصل مقاله: 584 |