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S-SMALL AND S-ESSENTIAL SUBMODULES
S. RAJAEE *

ABSTRACT. This paper is concerned with S-comultiplication mod-
ules which are a generalization of comultiplication modules. In
section 2, we introduce the S-small and S-essential submodules of
a unitary R-module M over a commutative ring R with 1 # 0
such that S is a multiplicatively closed subset of R. We prove
that if M is a faithful S-strong comultiplication R-module and
N <% M, then there exist an ideal I <5 R and an ¢ € S such that
t(0:p I) < N < (0:p I). The converse is true if S C U(R) such
that U(R) is the set of all units of R. Also, we prove that if M is
a torsion-free S-strong comultiplication module, then N <% M if
and only if there exist an ideal I <° R and an s € S such that
$(0:p I) < N < (0:p7 I). In section 3, we introduce the concept
of S-quasi-copure submodule N of an R-module M and investigate
some results related to this class of submodules.

1. INTRODUCTION

Throughout this article, R is a commutative ring with 1 # 0 and
M is a nonzero unital R-module. We denote the set of all units in
R by U(R) and the set of all submodules of M by L(M), and also
L*(M) =L(M)\{0,M}. A nonempty subset S of R is called a mul-
tiplicatively closed subset (briefly, m.c.s.) of Rif 0 ¢ S, 1 € 5, and
ss’ € S for all s,s € S. Note that Sp = R — P is a m.c.s. of R for ev-
ery P € Spec(R). Recently, in [6], Sevim et al. introduced the notion
of S-prime submodule which is a generalization of prime submodule
and used them to characterize certain class of rings/modules such as
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prime submodules, simple modules, torsion free modules, S-Noetherian
modules and etc. In [1], Anderson et al. defined the concept of S-
multiplication modules and S-cyclic modules which are S-versions of
multiplication and cyclic modules and extended many results on multi-
plication and cyclic modules to S-multiplication and S-cyclic modules.
An R-module M is said to be an S-multiplication module if for each
submodule N of M there exist an s € S and an ideal I of R such
that sN C IM C N. It is easy to see that an R-module M is S-
multiplication if and only if for each submodule N of M, there exists
an s € S such that sN C (N : M)M C N. If we take S = {1}, this
definition coincides with the multiplication module definition.

According to [I, Example 1], if Ann(M) NS # 0, then M is an S-

multiplication module. This implies that if 0 € S, then M is trivially
S-multiplication module. Clearly, every multiplication module is an
S-multiplication module and the converse is true if S C U(R), see [,
Example 2. Also, M is called an S-cyclic R-module if there exist s € S
and m € M with sM C Rm C M. Every S-cyclic module is an S-
multiplication module, see, |1, Proposition 5]. For a prime ideal P of
R, M is called P-cyclic if M is (R — P)-cyclic.
According to [1, Proposition 8], M is m-cyclic for each m € Max(R) if
and only if M is a finitely generated multiplication module. We recall
that a m.c.s. S of R is said to satisfy maximal multiple condition if
there exists an s € S such that t divides s for each t € S.

In [2], Anderson and Dumitrescu defined the concept of S-Noetherian
rings which is a generalization of Noetherian rings and they extended
many properties of Noetherian rings to S-Noetherian rings. A submod-
ule N of M is said to be an S-finite submodule if there exists a finitely
generated submodule K of M such that sN C K C N. Also, M is
said to be an S-Noetherian module if its each submodule is S-finite. In
particular, R is said to be an S-Noetherian ring if it is an S-Noetherian
R-module.

In [7], Eda Yildiz et al. introduced and studied S-comultiplication
modules which are the dual notion of S-multiplication modules. They
characterize certain class of rings/modules such as comultiplication
modules, S-second submodules, S-prime ideals, S-cyclic modules in
terms of S-comultiplication modules. Let M be an R-module and
S C R be a m.c.s of R. M is called an S-comultiplication module
if for each submodule N of M, there exist an s € S and an ideal I of R
such that s(0 :pr 1) € N C (0 :pr I). In particular, a ring R is called an
S-comultiplication ring if it is an S-comultiplication R-module. Every
R-module M with Ann(M) NS = @ is trivially an S-comultiplication
module. Every comultiplication module is also an S-comultiplication
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module. Also the converse is true provided that S C U(R), see |7,
Example 3].

An R-module M satisfies the S-double annihilator condition (S-DAC
for short) if for each ideal I of R there exists an s € S such that
sAnng((0 :pr 1)) C I, [3, Definition 2.14]. Also, M is called an S-
strong comultiplication module if M is an S-comultiplication R-module
which satisfies the S-DAC, | see [3, Definition 2.15]. A submodule N of
M is called an S-direct summand of M if there exist a submodule K of
M and an s € S such that sM = N + K, [3, Definition 2.8]. M is said
to be an S-semisimple module if every submodule of M is an S-direct
summand of M, see [3, Definition 2.9].

2. S-SMALL AND S-ESSENTIAL SUBMODULES

In this section we generalize the concepts of small submodules and
essential submodules of an R-module M to the S-small submodules and
S-essential submodules of M such that S C R is a m.c.s. We provide
some useful theorems concerning this new class of submodules.

Definition 2.1. Let M be an R-module and S C R be a m.c.s of R.
M is called an S-comultiplication module if for each submodule N of
M, there exist an s € S and an ideal I of R such that s(0:y, [) C N C
(0 :pr I), see [7, Definition 1].

Example 2.2. Let p be a prime number and consider the Z-module
E(p):{&zl%—l—Z :m € Z,n € NU{0}}.
Then every submodule of E(p) is of the form

m
Gt:{a:E—FZ:mEZ},

for some fixed ¢t > 0. It is showed that E(p) is an S-comultiplication
module, since for ¢ > 0, we have

(0 :pg) Ann(Gy)) = (0 5 p'Z) = G
Therefore F(p) is an S-comultiplication module, see [7, Example 2].
Definition 2.3. Let S be a m.c.s. of R and let M be an R-module
with N < M.

(i) We say that N is an S-small (S-superfluous) submodule of M
and denote by N <® M, if for every submodule L of M and
s €8, sM < N+ L implies that there exists an t € S such that
tM < L.



4 RAJAEE

(ii)) We say that N is an S-essential (S-large) submodule of M and
denote by N <% M if for every submodule L of M the equality
N N L =0 implies that there exists an s € S such that sL = 0.

(iii) The S-socle of M, denoted by Soc® (M) which is the intersection
of all S-essential submodules of M.

(iv) The S-radical of M, denoted by Rad®(M) which is the sum of
all S-small submodules of M.

If we take S = {1p}, this definitions coincide with the small and es-
sential submodule definitions.

Theorem 2.4. Let M be an R-module with submodules K < N < M
and S C R be a m.c.s. Then the following assertions hold.
(i) If K <5 M, then K <5 N and N <5 M.
(ii) If K <5 N and M is a faithful prime R-module, then K <5 M.
(iii) Assume that H < M. If HNK <3 M, then H <% M and
K <5 M.
(iv) If N <5 M, then K < M and N/K <° M/K.

Proof. i) Clearly, K <5 N because assume that L < N and KNL = 0.
Since K Sf M there exists an s € S such that sL =0. Now if L < M
and NNL=0,then KNL=KN(NNL)=0. Since K <3 M there
exists an s € S such that sL = 0 and hence N <5 M.

ii) Suppose that K <9 N and L < M such that K N L = 0. Then
KN(NNL)=0since K <3 N there exists an s € S such that
s(NN L) =0. This implies that s € Anng(N N L) = Anng(M) =0
and therefore sL = 0.

iii) The proof is straightforward by (i).

iv) Suppose that sM < K + L for some L < M and s € S. This
implies that sM < N + L since N <° M hence there exists an t € S
such that tM < L this conclude that K < M. Now let s(M/K) <
N/K + L/K for some s € S and L/K < M/K. Then s(M/K) =
(sM+K)/K < (N+ L)/K and hence sM < sM + K < N + L. Since
N <5 M there exists an t € S such that tM < L. It conclude that
tM + K < L+ K = L and hence t(M/K) = (tM + K)/K < L/K.
This implies that N/K <° M/K. O

Proposition 2.5. Let M be a faithful S-strong comultiplication R-
module.

(i) If N <5 M, then there exist an ideal I <5 R and ant € S
such that t(0 :py 1) < N < (0 :pp I). The converse is true if
S CU(R).

(ii) If M is an S-semisimple R-module, then the assertion (i) sat-
isfies.
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Proof. i) Assume that N < M. Since M is an S-comultiplication
module there exist an ideal I of R and an ¢ € S such that ¢(0:p, ) <
N < (0:p I). Suppose that INJ = 0 for some ideal J of R. By virtue
of [3, Lemma 2.16 (b)] there exists an s € S such that

> st(0:y INJ) = stM.

Take s’ = st € S. Since N <° M hence s’M < N + (0 :p; J) implies
that there exists an §” € S such that s"M < (0 :p; J). This conclude
that s”J C Anng(M) = 0 and therefore I <5 R.

Conversely, let N € L(M) such that ¢(0 :p; 1) < N < (0 :p 1) for
ant € S and an ideal I < R. Suppose that there exists an s € S such
that sM < N + K for some K < M. We must show that there exists
an x € S such that M < K. Since M is an S-comultiplication module
there exist an t € S and an ideal J of R such that ¢(0 :j; J) < K <
(0 :ps J). By virtue of [3, Lemma 2.16 (b)], there exists an ¢ € S such
that t(0:3 I NJ) < (0:pr 1)+ (0:p7 J). Since S € U(R) this implies
that (0 :p INJ) <710 i 1)+ (0237 J)) < (0 a7 I) + (0 :pp J).
It conclude that (0 :p INJ) = (0:p I)+(0:ps J) > N+ K > sM.
Therefore I N'J C Anng(sM) = Anng(M) = 0. Since I <5 R, there
exists an s’ € S such that s'J = 0 hence s'M < (0 :pr J). Take z = §'t/,
then M = s't! M < (0 :p; J) < K and the proof is complete.

ii) Since M is an S-semisimple module hence every submodule of M is
an S-direct summand of M. Therefore for every submodule N of M
there exist a submodule K of M and s € S such that sM = N + K.
This implies the assertion (i). O

Theorem 2.6. Let M be a torsion-free S-strong comultiplication mod-
ule and let N < M. Then N <5 M if and only if there exist | <° R
and an s € S such that s(0 :pr 1) < N < (0:p I).

Proof. (=) Suppose that N <% M. Since M is an S-comultiplication
module, there exist an ideal I of R and an s € S such that s(0:p I) <
N < (0:p I). Assume that tR < I + J for some ideal J of R and an
t €S, then

Nﬂ(OMJ)S(OM[)H(OMJ):(OMI—FJ)S(OMtR):O

Since N <5 M there exists an ¢ € S such that #(0 :3; J) = 0 and
therefore t’ € Anng((0 :pr J)). Since M satisfies the S-DAC there exists
an t” € S such that ¢t € t"Anng((0 :py J)) C J. Take x = t't" € S,
then xR C J and the proof is complete.

(<) Assume that there exists an ideal I < R such that s(0 :p; I) <
N < (0 :p I) for some s € S. Let L < M and NN L =0. We must
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show that there exists an y € S such that yLL = 0. Since M is an
S-comultiplication R-module there exist an ideal J of R and ant € S
such that ¢(0 :py J) < L < (0:p J). This implies that

0=NNL>s(0: I)Nt(0:ps J) > st((0:3 1) N (057 J))
— 5t(0 s T+ ).

Therefore st € Anng(0 :pr I + J). Since M satisfies S-DAC hence
there exists an ¢ € S such that ¢Anng(0 :py [ +J) C I + J. Take
x = stt’ € S. This conclude that x € I +J and then 2R < I+ J. Since
I < R then there exists an y € S such that yR C .J. This implies
that y € J and hence yL < y(0:p, J) = 0. OJ

Corollary 2.7. Let M be a torsion-free S-strong comultiplication R-
module and let N < M. Then Soc® (M) < (0 :3; Rad®(R)).

Proof. The proof is clear by Theorem 2.6, since

Socf(M)= (| N< ()0 I)=(0: > I)=(0:x Rad®(R)).

N<SM I<SR ISR

O

3. S-QUASI COPURE SUBMODULES

In this section we define the concept of S-quasi copure submodules
of an R-module M and provide some results concerning this new class
of submodules. Let S be a m.c.s. of R and P a submodule of M with
(P :g M)NS = 0, then P is called an S-prime submodule if there
exists an s € S, and whenever am € P, then sa € (P :g M) or sm € P
for each a € R and m € M. Particularly, an ideal I of R is called
an S-prime ideal if I is an S-prime submodule of R-module R. We
denote the sets of all prime submodules and all S-prime submodules
of M by Spec(M) and Specg(M), respectively. Note that for every
P € Spec(M) such that (P :zg M)NS = @, then P € Specg(M)
since 1 € S. Also, if we take S C U(R), then the notions of S-prime
submodules and prime submodules are equal. A submodule N of M is
said to be S-pure if there exists an s € S such that s(NNIM) C IN
for every ideal I of R. Also, M is said to be fully S-pure if every
submodule of M is S-pure, see [/, Definitions 2-1, 2-2].

Remark 3.1. For any submodule N of an R-module M, we define
V(N) to be the set of all S-prime submodules of M containing N.
Also the S-radical of a submodule N of M is the intersection of all S-
prime submodules of M containing N, denoted by rad®(N) therefore
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rad®(N) = NV¥(N). If N is not contained in any S-prime submod-
ule of M, then we set rad®(N) = M. A submodule L of M is called
S-copure if there exists an s € S such that s(L :py I) € L+ (0 :p 1)
for every ideal I of R, see [3, Definition 2.1]. We will denote the set
of all S-copure submodules of M by C(M). An R-module M is fully
S-copure if every submodule of M is S-copure, i.e., L(M) = C°(M).
For a submodule N of an R-module M, we will denote the set of all
S-copure S-prime submodules of M containing N by CV®(N). Equiv-
alently, CV3(N) = V¥(N) N C%(M). If N is not contained in any
S-prime S-copure submodule of M, then we put CV(N) = M.

Definition 3.2. Let S be a m.c.s. of R and let M be an R-module
and N < M.

(i) We say that N is a weak S-copure submodule if every prime
submodule P of M containing N is an S-copure submodule of
M, ie., V(N) C C%(M). We will denote the set of all this
submodules of M by C2(M).

(ii) We say that N is an S-quasi-copure submodule if every S-prime
submodule P of M containing N is an S-copure submodule of
M. Equivalently, if V¥(N) C C%(M) hence V5(N) = CVS(N).
We will denote the set of all S-quasi-copure submodules of M
by CZ(M).

Theorem 3.3. Let S C R be a m.c.s. and let M be an S-comultiplication
module on R. Then the following assertions hold.

(i) If N € C¥(M), then M/N s an S-comultiplication R-module.
(ii) If N € C5(M), then for every s € S, M/sN is an S-comultiplication
R-module.

Proof. i) Let K/N < M/N. Since M is an S-comultiplication R-
module, there exist an ideal I of R and an s € S such that s(0:p I) <
K < (0:p I). Then

S((OZM])):S(O:M])+N<K+N

K
=—<
N~ N

N N - N
Hence, M/N is an S-comultiplication R-module.
ii) This follows by part (i) and [3, Proposition 2.7 (c)]. O]
Theorem 3.4. Let M be an R-module. If S C T are m.c.s. of R and
N, K € L(M) such that N C K. Then the following statements hold.
(i) If N € C3(M), then K € C5(M).
(ii) If N € C5(M), then K/N € C5(M/N).
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(iii) Assume that M is a distributive module. If N, K € C®(M),
then NN K € C5(M). Moreover, if V(N) is a finite set and
N € C5(M), then rad(N) € C5(M).

(iv) Suppose that M is a multiplication module, and N, K € L(M).
If P € V(NK) such that (P : M) NS =0, then there exists a
s € S such that sN C P or sk C P.

(v) C3(M) C CT(M).

(vi) If N € C(M), then for every p € Spec(R), N, € C’(}g"(Mp).

Proof. 1) Tt is clear.

ii) Suppose that P € Specg(M) and N < K < P, then by [0, Corollary
2.8 (ii)], P/N € Specg(M/N). By virtue of [3, Theorem 2.6 (c)], since
P is an S-copure submodule of M hence P/N is an S-copure submodule
of M/N such that K/N < P/N.

iii) Since N, K € C®(M) hence there exist s;,s, € S such that for
every ideal I of R, s1(N 3y I) < N + (0 :p I) and also so(K :pp I) <
K+ (0:p I). Take s = s159 € S, then for every a € R,

S(INNK :pra) = s515((N 1y a) N (K iy a))
< $1(N 1pra) N sy(K iy a)
<(N4+(0: Ma))N(K+(0:pa))
=(NNK)+(0:p a)

Therefore by [3, Theorem 2.12], we conclude that NN K € C®¥(M).The
second part is clear by induction on |V(N)| < oco.

iv) Suppose that P € V(NK) and (P :p M)NS =pNS = ) where
p = (P : M) € Spec(R). By [0, Proposition 2.2], P € V5(NK).
Assume that N = IM and K = JM for some ideals I and J of R. By
virtue of [0, Lemma 2.5], since P is an S-prime submodule of M and
P O NK = IJM hence there exists an s € S such that sIJ C (P :g
M) or sM C P. If sM C P, then s € (P :g M) which is impossible.
This implies that sIJ C (P :gp M) for some s € S. By [0, Proposition
2.9], since M is a multiplication module therefore P € Specg(M) if
and only if p = (P :g M) € Specg(R). Since sIJ C p, then by
[0, Corollary 2.6], there exists an ¢t € S such that t(s) = tsI C p
or tsJ C tJ C p. Therefore either ts(IM) = tsN C pM = P or
tsJM =tsK C pM = P. Take s’ = ts then the proof is complete.

v) Since M is an S-multiplication module, then by [!, Proposition 1],
M is also a T-multiplication module. Assume that P is an S-prime
submodule of M containing N, then by [0, Proposition 2.2 (ii)] P is an
T-prime submodule of M containing N in the case (P :g M)NT = 0.
If N € CJ(M), then P is an S-copure submodule of M and by |3,
Proposition 2.7 (a)], P is an T-copure submodule of M containing N.
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This implies that N e CJ (M).
vi) Suppose that @, € V®(N,) is an S,-prime submodule of M, as
an Ry,-module containing N,. Since N € C¥(M) hence every S-prime

submodule @ of M containing N is S-copure, then by [3, Proposition
2.13], Qy 2 N, is an Sy-copure submodule of M. O

We recall that the saturation S* of S is defined as S* = {z € R :
2 € U(S7'R)}. Obviously, S* is a m.c.s. of R containing S, see [].

Theorem 3.5. Let S be a m.c.s. of R. The following assertions hold.

(i) CS(M) C 5 (M).

(ii) Assume that M is a finitely generated faithful multiplication
module, then N = IM € C5(M) if and only if I € CS(R) such
that N = IM for some ideal I of R. Furthermore, for every
P € Specg(M) such that (P : M)NS = (), then rad®(M) =
rad”(R)M.

Proof. 1) 1t is clear.

ii) Assume that p € Specg(R) such that p O I. We must show that
p is an S-copure ideal of R. Since M is a multiplication module by
[0, Proposition 2.9 (ii)], P = pM € Specg(M). By hypothesis since
N =1IM € CJ(M) and P = pM > N = IM this conclude that P is
an S-copure submodule of M. Therefore there exists an s € S such
that s(P :py a) < P+ (0 :p a) for each ideal a of R. We prove that
s(p:ra) Cp+(0:g a) for each ideal a of R. We note that

s(Piya)=s(pM :pya)=s(p:ga)M < P+ (0:p a)
:}JM+(<O M Cl) ‘R M)M

Since M is a cancellation module therefore s(p :gp a) C p + (0 :g a).
The converse is similar. By [0, Theorem 2.11], we have

rad*(M) = N IM = rad®(R)M.
Ann(M)CI€eSpecg(R)
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