تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,247,267 |
تعداد دریافت فایل اصل مقاله | 6,900,537 |
Existence, uniqueness and stability results of an iterative survival model of red blood cells with a delayed nonlinear harvesting term | ||
Journal of Mathematical Modeling | ||
دوره 10، شماره 3، آذر 2022، صفحه 515-528 اصل مقاله (174.87 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2022.21577.1892 | ||
نویسندگان | ||
Marwa Khemis؛ Ahleme Bouakkaz* ؛ Rabah Khemis | ||
Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS), University of 20 August 1955, Skikda, Algeria | ||
چکیده | ||
In this article, a first-order iterative Lasota-Wazewska model with a nonlinear delayed harvesting term is discussed. Some sufficient conditions are derived for proving the existence, uniqueness and continuous dependence on parameters of positive periodic solutions with the help of Krasnoselskii's and Banach fixed point theorems along with the Green's functions method. Besides, at the end of this work, three examples are provided to show the accuracy of the conditions of our theoretical findings which are completely innovative and complementary to some earlier publications in the literature. | ||
کلیدواژهها | ||
Fixed point theorem؛ Green's function؛ iterative differential equation؛ Lasota-Wazewska model | ||
آمار تعداد مشاهده مقاله: 851 تعداد دریافت فایل اصل مقاله: 651 |