تعداد نشریات | 31 |
تعداد شمارهها | 743 |
تعداد مقالات | 7,073 |
تعداد مشاهده مقاله | 10,149,569 |
تعداد دریافت فایل اصل مقاله | 6,857,542 |
Analytical Investigations of Vehicle Dynamic Behaviours under Influence of Magnetorheological Fluid Damper | ||
Computational Sciences and Engineering | ||
دوره 2، شماره 1، تیر 2022، صفحه 81-95 اصل مقاله (488.37 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22124/cse.2022.21991.1029 | ||
نویسندگان | ||
M. A. Waheed1؛ Adelani Ismail Adeleke1؛ S. I. Kuye1؛ B. I. Olajuwon1؛ Gbeminiyi Sobamowo* 2 | ||
1Department of Mechanical Engineering, Federal University of Agriculture, Ogun State, Nigeria. | ||
2Department of Mechanical Engineering, University of Lagos, Nigeria | ||
چکیده | ||
The present study focuses on the developments of analytical solutions for vehicle dynamic behaviour under the influence of magnetorheological fluid damper. Dynamic models of a quarter vehicle are considered. Also, the damping force of the magnetorheological fluid damper is modelled using Bouc-Wen and modified Bouc-Wen models. The developed vibration models for the study of the dynamic behaviour of the vehicle are solved using Laplace transform method. The parametric studies reveal that the oscillation of the displacement of the axle is more fluctuating compared to the displacement of the body due to the installation of the damper between the body and the axle in which the damper acts as a shock-absorber. Moreover, the variation between the two models of Bouc-Wen and modified Bouc-Wen models is established. It is analytically validated that the Bouc-Wen model cannot produce the experimentally observed roll-off in the yield region for velocities with a small absolute value and operational sign opposite to the sign of the acceleration. Therefore, the use of the modified Bouc-Wen model is recommended. It is hoped that the developed exact analytical models will serve as the basis for comparisons of any other method of analysis of the problem. | ||
کلیدواژهها | ||
: Magnetorheological fluid damper؛ Vehicle dynamics؛ Vehicle suspension system؛ Analytical Investigation | ||
مراجع | ||
[1] Gysen, B. L., Paulides, J. J., Janssen, J. L., & Lomonova, E. A. (2010). Active electromagnetic suspension system for improved vehicle dynamics.IEEE Transactions on Vehicular Technology, 59(3), 1156-1163.
[2] Dave, W. )2015). The other active suspension cars. leyton house," pp. 1{6, June 2015. [Online]. Available: https://www.f1technical.net/forum/viewtopic.php?t=21478start=45
[3] Hrishikesh B. Z. (2017). Nonlinear design, modeling and simulation of magneto Rheological suspension: a control system and systems Engineering approach. Master Thesis, Purdue University.
[4] Jolly, M. R., Bender, J. W., and Carlson, J. D. (1998). Properties and Applications of Commercial Magnetorheological Fluids, in SPIE 5th Annual Int Symposium on Smart Structures and Materials, San Diego, CA.
[5] Wereley, N. M., Kamath, G. M., & Madhavan, V. (1999). Hysteresis modeling of semi-active magnetorheological helicopter dampers. Journal of intelligent material systems and structures, 10(8), 624-633.
[6] Ikhouane, F., & Dyke, S. J. (2007). Modeling and identification of a shear mode magnetorheological damper. Smart Materials and Structures, 16(3), 605.
[7] Jimnez, R., & Alvarez, L. (2002, December). Real time identification of structures with magnetorheological dampers. In Decision and Control, 2002, Proceedings of the 41st IEEE Conference on (Vol. 1, pp. 1017-1022).
[8] Sakai, C., Ohmori, H., & Sano, A. (2003, December). Modeling of MR damper with hysteresis for adaptive vibration control. In Decision and Control, 2003. Proceedings. 42nd IEEE Conference on (Vol. 4, pp. 3840-3845).
[9] Terasawa, T., Sakai, C., Ohmori, H., & Sano, A. (2004, December). Adaptive identification of MR damper for vibration control. In Decision and Control, 2004. CDC. 43rd IEEE Conference on (Vol. 3, pp. 2297-2303).
[10] Kwok, N. M., Ha, Q. P., Nguyen, T. H., Li, J., & Samali, B. (2006). A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization. Sensors and Actuators A: Physical, 132(2), 441-451.
[11] Wang, E. R., Ma, X. Q., Rakhela, S., & Su, C. Y. (2003). Modelling the hysteretic characteristics of a magnetorheological fluid damper. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217(7), 537-550.
[12] Ma, X. Q., Rakheja, S., & Su, C. Y. (2006). Relative assessments of current dependent models for magneto-rheological fluid dampers. In 2006 IEEE International Conference on Networking, Sensing and Control (pp. 510-515).
[13] Oh, H. U. (2004). Experimental demonstration of an improved magneto-rheological fluid damper for suppression of vibration of a space flexible structure. Smart materials and structures, 13(5), 12-38.
[14] Wang, L. X., & Kamath, H. (2006). Modelling hysteretic behaviour in magnetorheological fluids and dampers using phase-transition theory. Smart materials and structures, 15(6), 17-25.
[15] Spencer Jr., B. F., Dyke, S. J., Sain, and M. K. & Carlson, J. D. (1997). “Phenomenological model of a magnetorheological damper,” ASCE Journal of Engineering Mechanics, Vol. 123(3), 230-238.
[16] Yang, G., Spencer, B. F., Carlson, J. D., & Sain, M. K. (2002). Large-scale MR fluid dampers: modeling and dynamic performance considerations. Engineering structures, 24(3), 309-323.
[17] Wereley, N. M., Pang, L., & Kamath, G. M. (1998). Idealized hysteresis modeling of electrorheological and magnetorheological dampers. Journal of Intelligent Material Systems and Structures, 9(8), 642-649.
[18] Pang, L., Kamath, G. M., & Wereley, N. M. (1998, April). Analysis and testing of a linear stroke magnetorheological damper. In Proc. 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit and AIAA/ASME/AHS Adaptive Structures Forum (pp. 2841-2856).
[19] Snyder, R. A., Kamath, G. M., & Wereley, N. M. (2001). Characterization and analysis of magnetorheological damper behaviour under sinusoidal loading. AIAA journal, 39(7), 1240-1253.
[20] Spencer Jr., B. F., Dyke, S. J., Sain, and M. K. & Carlson, J. D. (1996). Carlson, Modelling and Control of Magnetorheological Dampers for Seismic Response Reduction. Smart materials and structures, 5(5), 565.
[21] Ma, X. Q., Rakheja, S., & Su, C. Y. (2007). Development and relative assessments of models for characterizing the current dependent hysteresis properties of magnetorheological fluid dampers. Journal of intelligent material systems and structures, 18(5), 487-502.
[22] Li, W. H., Yao, G. Z., Chen, G., Yeo, S. H., & Yap, F. F. (2000). Testing and steady state modeling of a linear MR damper under sinusoidal loading. Smart Materials and Structures, 9(1), 95.
[23] Choi, S. B., Lee, S. K., & Park, Y. P. (2001). A hysteresis model for the field-dependent damping force of a magnetorheological damper. Journal of Sound and Vibration, 245(2), 375-383.
[24] Song, X., Ahmadian, M., & Southward, S. C. (2005). Modeling magnetorheological dampers with application of nonparametric approach. Journal of Intelligent Material Systems and Structures, 16(5), 421-432.
[25] Huang, Y., Liu, X., & Chen, B. (2006, October). Autoregressive trispectral characteristics of magnetorheological damping device. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5878-5882).
[26] Koga, K., & Sano, A. (2006, June). Query-based approach to prediction of MR damper force with application to vibration control. In 2006 American Control Conference (pp. 7-pp).
[27] Choi. S. B., Lee, B. K., Nam, M. H. and Cheong, C. C. (2000). Vibration control of a MR seat damper for commercial vehicles,” Proceedings of SPIE Conference on Smart Structures and Materials: Smart Structures and Integrated Systems, SPIE 3985, 491-496.
[28] Li, W. H., Du, H., Chen, G., Yeo, S. H., & Guo, N. (2003). Nonlinear viscoelastic properties of MR fluids under large-amplitude-oscillatory-shear. Rheologica Acta, 42(3), 280-286.
[29] Lai, C. Y. and Liao, W. H. "Vibration control of a suspension system via a magnetorheological fluid damper," Proceedings of the 5th European Conference on Smart Structures and Materials, SPIE, Vol. 4073, pp. 240-251, 2000.
[30] Patel, C. B., Gohil, P. P. and Borhade, B. (2010). Modelling and Vibration Analysis of a Road Profile Measuring System. International Journal of Automotive and Mechanical Engineering. 1, 13-28.
[31] Hiu Fung Lam, Wei-Hsin Liao, "Semi-active control of automotive suspension systems with magnetorheological dampers," Proc. SPIE 4327, Smart Structures and Materials 2001: Smart Structures and Integrated Systems, (16 August 2001); doi: 10.1117/12.436523
[32] Simon, R. M., Stroot, M. T., Weiss, G. H. (1972). Numerical inversion of Laplace transforms with application to percentage labeled mitoses experiments. Computers and Biomedical Research. 5, 596-607.
[33] Lee, S. T., Chien, M. C. H., Culham, W. E. Vertical single-well pulse testing of a three-layer stratified reservoir. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, Houston, Texas, 1984.
[34] Viswanathan, K. K., Tang, J. S., Aziz, Z.A. and Sambath, P. (2012) Mathematical Modeling of Magneto rheological Fluid Damper in the Semi-Active Suspension System. The 11th National Conference on Mathematical Techniques and Applications. AIP Conf. Proc. | ||
آمار تعداد مشاهده مقاله: 478 تعداد دریافت فایل اصل مقاله: 382 |