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 Polarimetric Synthetic aperture radar (PolSAR) images contain 

polarimetric and spatial information of materials present in the scene. 

Three simple architectures of convolutional neural networks (CNNs) 

with different dimensions are proposed for PolSAR image classification 

in this work. A one dimensional CNN (1D CNN) is suggested for 

polarimetric feature extraction. A 2D CNN is presented for spatial 

feature extraction and a 3D CNN is introduced for polarimetric-spatial 

feature extraction. The performance of CNNs are compared with 

morphological profile of PolSAR cube when fed to the support vector 

machine (SVM) and random forest (RF) classifiers. The experiments are 

done in two cases of using 1% and 5% training samples. The superiority 

of 3D CNN compared to other methods is shown using different 

quantitative classification measures. 
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1. Introduction  

Synthetic aperture radar (SAR) sensors provide high resolution images from the earth under day and 

night and any weather conditions. Polarimetric SAR (PolSAR) by acquiring SAR images in 

different polarization states allows more accurate discrimination between various materials on the 

earth [1].  

The available classifiers are divided into two main groups: 1- manually classifiers designed based 

on statistics or a specific optimization problem, and 2- intelligent classifiers inspired from human 

brain. Maximum likelihood [2], support vector machine (SVM) [3] and random forest (RF) [4] are 

examples of the first group and various neural networks belong to the second one [5]. In the first 

type of classifiers, the required feature extraction has to be done separately. The separately extracted 

features may not bet so suitable and matched with the used classifier. The use of features together 

with inappropriate classifier may decrease the classification accuracy. In contrast, in the second type 
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of classifiers, both feature extraction and classification is done in a unified framework which is an 

important benefit. 

Deep learning has opened a new vision in machine learning that has improved the efficiency of 

conventional neural networks. Deep neural networks recently attract attention in various remote 

sensing applications [6]. Deep networks automatically extract robust and invariant features in high 

levels. PolSAR image classification using deep networks has been also done in several works.  In 

[7], the PolSAR image is converted to a six-channel image with real values. Then, the real cube is 

fed to a two-dimensional convolutional neural network (2D CNN) for extraction of hierarchical 

spatial features. In [8], three known models (VGG-16, ResNet-50 and DenseNet-121) pretrained 

with the large ImageNet dataset are used for PolSAR image classification by proposing an ensemble 

transfer learning. In [9], a polarimetric scattering coding is proposed to provide a complete 

polarimetric feature set. Then, the extracted features are fed to a designed 2D-CNN for 

classification.  

One drawback of 2D CNN is its weak capacity in feature extraction in polarization or scattering 

dimension. To deal with this issue, 3D CNN has been suggested [10]. But, it has used the real values 

and lost the phase information. The work in [11] has introduced complex valued 3D CNN to benefit 

both real and imaginary parts of PolSAR image.  

In this paper, three CNNs with simple architectures, 1D CNN, 2D CNN and 3D CNN, are proposed 

where polarimetric features, spatial features and polarimetric-spatial features are extracted by them, 

respectively. The CNNs with different dimensions are compared with SVM and RF classifiers in 

two different cases. In the first case, the PolSAR cube is fed to the SVM and RF. In this case, just 

polarimetric features are used. To include the spatial information, the morphological profile (MP), 

which obtain great successful in spatial feature extraction from remote sensing images [12], is 

employed in the second case. The stacked PolSAR cube with the computed MP are used as the input 

of SVM and RF classifiers in the second case. The performance of CNNs are compared with their 

competitors using small training sets and the results obtained by a real PolSAR image are discussed. 

2. Polarimetric and spatial feature extraction using CNN  

One of the main difficulties in the used conventional CNNs is overfitting problem. It is due to the 

high number of trainable parameters of the network and the low number of training samples. To 

overcome to this difficulty, three CNNS with the following characteristics are proposed: 

1- Just two convolutional layers are used in the networks to reduce the number of trainable 

parameters. 

2- The conventional CNNs use the pooling layer to reduce the data size. But, the use of pooling 

layer discard some useful extracted features. In the proposed networks, pooling layers are deleted; 

and instead of them, the convolutional filters with a stride of 2 are used.  

In this section, at first, the form of PolSAR image is presented. Then, different dimensions of CNNs 

are introduced for extracting polarimetric features, spatial features or both of them as follows: 

 

1D CNN: polarimetric feature extraction  

2D CNN: spatial feature extraction  

3D CNN: polarimetric-spatial feature extraction  
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2.1. PolSAR image 

A PolSAR system transmits polarized radar pulses horizontally (H) or vertically (V) and receives 

their coherences. Due to scattering of incident electromagnetic on objects and materials on the 

ground, the polarization state of the incident wave is altered. This alteration is a function of 

geometrical and physical characteristics of materials which can be served to characterize them. The 

scattering matrix for each cell of SAR image has the following form:  

 

                                                                         𝑺 = [
𝑆𝐻𝐻 𝑆𝐻𝑉

𝑆𝑉𝐻 𝑆𝑉𝑉
]                                                                       (1) 

 

where 𝑆𝑖𝑗 is known as the scattering coefficient, 𝑖 is the polarization of transmitting and 𝑗 denotes 

that of receiving value. Reciprocity of objects or targets is a common assumption in polarimetry. 

So, the scattering matrix can be constrained to be symmetric, i.e., 𝑆𝑉𝐻 = 𝑆𝐻𝑉 in the symmetric 

monostatic scattering. The scattering vector 𝒌 can simplify the scattering matrix by: 

                                𝒌 =
1

√2
[𝑆𝐻𝐻 + 𝑆𝑉𝑉   𝑆𝐻𝐻 − 𝑆𝑉𝑉    2𝑆𝐻𝑉]𝑇                                                         (2) 

 

where 𝑇 denotes the transpose operation. Then, the coherency matrix for multilook case is expressed 

as follows: 

 

                                      𝑻 =
1

𝐿
∑ 𝒌𝑖

𝐿
𝑖=1 𝒌𝑖

𝐻                                                                                        (3) 

 

 

                                   𝑻 = [
𝑇11 𝑇12 𝑇13

𝑇21 𝑇22 𝑇23

𝑇31 𝑇32 𝑇33

]                                                                                   (4) 

 

where 𝐿 is the number of looks and 𝐻 represents the conjugate transpose. The coherency matrix is 

Hermitive with real values in diagonal elements and complex ones in off-diagonal ones. The 

following vector is considered as the feature vector of each pixel of PolSAR image [13]: 

         𝒇 = [𝑇11, 𝑇22, 𝑇33, 𝑅𝑒(𝑇12), 𝐼𝑚(𝑇12), 𝑅𝑒(𝑇13), 𝐼𝑚(𝑇13), 𝑅𝑒(𝑇23), 𝐼𝑚(𝑇23)]                                       (5) 

                                    

where 𝑅𝑒(∙) and 𝐼𝑚(∙)  denote the real and imaginary parts of (∙), respectively. These 9 features 

obtained by coherency matrix contain polarimetric information of PolSAR image. A PolSAR image 

with 𝑁 rows and 𝑀 columns can be represented by a 𝑁 × 𝑀 × 9 cube where there are spatial 

information in two dimensions and polarization information in the third dimension.  

2.2. 1D CNN 

CNNs have two main useful characteristics: shared weights and local connections which lead to 

better generalization and overcoming to overfitting problem. Each convolutional filter does 

convolutional operation only for a part of neighboring neurons (receptive filed). The local 

connectivity among neurons of near layers is used to exploit the local correlation. To apply 1D CNN 
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to PolSAR image, the polarization vector of each pixel that is a 9 × 1 vector is given as an input of 

network. By applying convolutional operator to local parts of polarimetric feature vector, robust and 

invariant polarimetric features are produced. The relation and correlation among coherency 

elements which involve various polarization states of pixel is also extracted. Figure 1, shows the 

blockdiagram of the PolSAR image classification using 1D CNN. In the1D CNN, pixels are 

imported to the network one by one. The number and size of used kernels are shown in the figure.  

 

 

Figure. 1. PolSAR image classification using 1D CNN. 

 

 

Figure 2. PolSAR image classification using 2D CNN. 

 

 

Figure 3. PolSAR image classification using 3D CNN. 
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2.3. 2D CNN 

In the1D CNN, each pixel of PolSAR image with a 9×1 polarimetric vector is fed to the network to 

extract more abstract polarimetric features in high level. But, PolSAR data in each captured 

polarization or in each channel obtained from the coherence matrix, is a high resolution image. If 

consider the PolSAR cube as a multi-channels image, each channel contains valuable spatial 

information such as shape, texture and geometrical characteristics. 1D CNN is not able to extract 

this rich spatial information. To deal with this problem, the 2D CNN has been suggested.   

One of the main capabilities of convolutional networks compared to fully connected ones is ability 

of them in handling of image data in two dimensions. While in traditional fully connected neural 

networks, only accepted form of input is vector, 2D CNN can accept image data in the same form 

of two-dimensions instead of stacking pixels together. 

The blockdiagram of the suggested 2D CNN is illustrated in Figure 2. Around the given pixel, a 

15×15 patch is considered and imported to the input of 2D CNN. The 2D convolutional operators 

extract high level spatial features in subsequent layers.     

2.4. 3D CNN 

While 1D CNN extracts the polarimetric features, 2D CNN extracts the spatial features. But, 

simultaneously extraction of polarimetric and spatial features can be a more effective way for 

increasing separability among different classes. 3D CNN is used as a solution. Figure 3 shows the 

architecture of the suggested 3D CNN. The considered 15×15×9 cube around each pixel is given 

as input of the 3D CNN. The 3D convolutional operators can extract more abstract polarimetric-

spatial features in subsequent layers.   

3. Experiments   

A real benchmark PolSAR dataset, which acquired by AIRSAR in L-band in 1991 [13], is used for 

doing experiments. This agriculture PolSAR image acquired from Flevoland in Netherlands 

contains 14 classes and 1020×1024 pixels. The performance of 1D CNN, 2D CNN and 3D CNN is 

compared with four state-of-the-art classifiers: 

• SVM (POL): the support vector machine classifier (SVM). Its input is the polarization SAR cube 

(POL) where feature representation of it for each pixel is represented in (5). 

• SVM (POL+MP): the SVM classifier where its input is the stacked polarization cube (POL) with 

the morphological profile (MP). “+” means stacking here. 

• RF (POL): the random forest (RF) classifier with POL as input.  

• RF (POL+MP): the RF classifier with POL+MP as input.  

To provide the MP, at first, the principal component analysis transform [14] is applied to the PolSAR 

cube. The first three principal components (PCs) that contain the most of energy of data are selected. 

Then, a MP is made from each PC. To this end, 26 opening filters and 26 closing filters with 

structure element of circle are applied to each PC. Thus, a MP with 26×2+1=53 dimensions is 

created from each PC. The obtained MPs are stacked together to form the final MP. The third degree 

polynomial kernel is used for implementation of SVM. 70 bagged classification trees are used for 
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implementation of RF. RF and SVM are implemented in MATLAB R2018b and CNNs are 

implemented using Keras in Tensorflow backend. 

The performance of different classifiers are assessed in two different cases: 1- when 1% of labeled 

samples are used as training samples and 2- when 5% of labeled samples are used as training 

samples. The number of training samples in two cases are represented in Table 1. To obtain the full 

classification maps, all samples of PolSAR image are used in the testing process. But, just the 

samples with label in ground truth map (GTM) are involved in calculation of classification accuracy.  

Average accuracy, average reliability, overall accuracy and kappa coefficient [15] are used for 

evaluation. In addition, to assess the performance of classifiers from the statistical point of view, 

the McNemars test [16] is done and the Z values are reported in the paper. The difference between 

classification accuracy of two methods is significant if |𝑍12|  >  1.96. 𝑍12  >  0 means method 1 is 

preferred than method 2 and vice versa. 

Table 1. The number of training samples in Flevoland dataset. 

No Name of class 
# 

samples 

# Training samples 

(1%) 

# Training samples (5%) 

1 Potato 21613 217 1081 

2 Fruit 4352 44 218 

3 Oats 1394 14 70 

4 Beet 10817 109 541 

5 Barley 24543 246 1228 

6 Onions 2130 22 107 

7 Wheat 26277 263 1314 

8 Beans 1082 11 55 

9 Peas 2160 22 108 

10 Maize 1290 13 65 

11 Flax 4301 44 216 

12 Rapeseed 28235 283 1412 

13 Grass 4204 43 211 

14 Lucerne 2952 30 148 

Total  135350 1361 6774 
 

The loss versus the number of epochs for both training and validation sets obtained by 1D CNN, 2D 

CNN and 3D CNN for 1% training samples are shown in Figures. 4-6, respectively. As seen, the 

plots of 3D CNN converge faster than 1D CNN and 2D CNN, i.e., becomes stable in lower number 

of epochs. 

 
Figure 4. Loss and accuracy obtained by 1D CNN. 
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Figure 5. Loss and accuracy obtained by 2D CNN. 

 

 

Figure 6. Loss and accuracy obtained by 3D CNN. 

 

The classification results and its associated McNemars results for 1% training samples are reported 

in Table 2 and 3, respectively. The RGB image beside the obtained classification maps are shown 

in Figure 7. The results achieved by 5% training samples are represented in Tables 4-5 and Figure 

8. The following results can be concluded from the obtained results: 

1- Superiority of 2D CNN and 3D CNN with respect to 1D CNN is obvious. It is expected because 

1D CNN ignores the valuable shape, texture and geometrical information contained in two spatial 

dimensions.  

2- 3D CNN provides the best classification results. It extracts high level polarimetric-spatial 

features that can increase the class discrimination.  

3- Difference between 2D CNN and 3D CNN using 1% training samples is more than that using 

5% training samples. According to the McNemars test results, difference in classification accuracy 

between 2D CNN and 3D CNN is not significant from the statistical point of view using 5% 

training samples.  

4- SVM and RF generally provide better classification results with respect to 1D CNN.  

5- Using 1% training samples, RF (POL) is preferred than SVM (POL) while SVM (POL+MP) 

works better than RF (POL+MP). In the case of POL+MP, the dimensionality of data is high and 

SVM has higher ability for dealing with the curse of dimensionality.  

6- Using 5% training samples, RF is preferred than SVM in both cases of POL and POL+MP.  
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Table 2. Classification results achieved by 1% training samples. 

 

 

Table 3. McNemars test results achieved by 1% training samples. 

 SVM (POL) 
SVM 

(POL+MP) 
RF (POL) 

RF 

(POL+MP) 
1D CNN  2D CNN  3D CNN  

SVM (POL) 0 -109.66 -4.56 -103.16 11.92 -121.39 -125.52 

SVM (POL+MP) 109.66 0 107.98 9.93 115.55 -23.58 -30.33 

RF (POL) 4.56 -107.98 0 -101.43 15.80 -119.12 -123.21 

RF (POL+MP) 103.16 -9.93 101.43 0 109.24 -30.90 -37.37 

1D CNN  -11.92 -115.55 -15.80 -109.24 0 -127.21 -131.05 

2D CNN 121.39 23.58 119.12 30.90 127.21 0 -6.81 

3D CNN  125.52 30.33 123.21 37.37 131.05 6.81 0 

 

 

 

 
Figure 7. RGB image and classification maps achieved by 1% training samples. 

 

 

 

class 
SVM 

 (POL) 

SVM 

(POL+MP) 

RF 

 (POL) 

RF  

(POL+MP) 
1D CNN  2D CNN  3D CNN  

No 
Name of 

class 
#samples Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Potato 21613 89.52 86.02 98.16 98.94 89.82 85.11 98.14 98.55 85.73 88.33 99.97 99.66 99.80 99.09 

2 Fruit 4352 79.20 87.60 98.05 99.42 71.81 91.88 98.25 100 78.47 79.23 99.45 99.98 99.33 99.54 

3 Oats 1394 41.03 37.02 98.35 96.48 27.26 66.09 97.70 98.84 11.26 66.53 98.78 99.14 97.70 99.56 

4 Beet 10817 90.92 82.38 96.33 95.34 89.15 84.01 93.01 94.66 93.41 71.53 92.47 98.21 97.47 95.45 

5 Barley 24543 89.83 89.29 98.04 97.80 93.51 87.18 97.64 96.37 93.65 85.92 99.55 99.70 99.73 99.61 

6 Onions 2130 17.14 31.12 77.89 82.78 22.82 38.33 81.64 88.77 7.09 27.31 64.93 59.97 63.76 81.07 

7 Wheat 26277 93.52 88.09 98.37 98.20 93.23 88.87 98.96 97.23 91.44 90.60 99.76 99.13 99.33 99.08 

8 Beans 1082 73.01 53.13 85.58 97.68 54.99 57.88 83.36 99.34 37.34 64.13 93.16 91.39 93.16 94.74 

9 Peas 2160 49.91 82.48 97.04 94.03 67.69 87.97 99.77 96.68 72.82 78.97 99.77 99.35 97.13 100 

10 Maize 1290 39.15 68.80 95.89 98.72 49.38 68.27 96.90 97.58 2.25 11.15 86.28 82.94 93.18 89.43 

11 Flax 4301 91.40 94.29 96.65 99.40 82.05 92.84 98.21 99.81 83.89 87.17 99.33 99.79 98.35 100 

12 Rapeseed 28235 91.02 90.18 98.21 96.86 91.45 88.83 97.72 95.34 91.72 88.66 99.89 99.60 99.93 99.07 

13 Grass 4204 58.75 69.40 84.35 87.00 62.84 72.98 80.66 91.38 53.50 70.06 94.58 88.87 91.27 98.08 

14 Lucerne 2952 54.61 83.96 88.25 86.37 54.03 87.88 78.35 86.60 66.06 80.05 95.39 99.61 99.25 94.33 

Average Accuracy and 

Average Reliability 
68.50 74.55 93.65 94.93 67.86 78.44 92.88 95.80 62.04 70.69 94.52 94.10 94.96 96.36 

Overall Accuracy 85.91 96.89 86.28 96.38 85.02 98.18 98.45 

Kappa coefficient 0.8334 0.9634 0.8373 0.9573 0.8227 0.9786 0.9818 
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Table 4. Classification results achieved by 5% training samples. 

 

 

Table 5. McNemars test results achieved by 5% training samples. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. RGB image and classification maps achieved by 5% training samples. 

 

class 
SVM 

 (POL) 

SVM 

(POL+MP) 

RF 

 (POL) 

RF 

(POL+MP) 
1D CNN  2D CNN  3D CNN  

No 
Name of 

class 
#samples Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. Acc. Rel. 

1 Potato 21613 90.94 88.60 99.23 99.39 90.52 88.73 99.39 99.80 90.08 90.03 99.99 99.83 99.81 99.99 

2 Fruit 4352 78.10 89.61 99.59 99.98 78.29 90.76 99.75 100 84.79 84.30 100 99.98 99.95 99.07 

3 Oats 1394 36.37 75.67 99.57 99.14 40.17 75.07 99.50 97.95 52.80 61.59 100 100 100 99.79 

4 Beet 10817 92.90 83.60 98.19 97.79 92.35 86.41 98.97 98.97 91.35 85.63 98.96 99.05 99.31 99.29 

5 Barley 24543 93.96 90.09 98.72 98.32 94.39 90.01 99.35 98.82 93.03 90.87 99.97 99.95 99.91 99.93 

6 Onions 2130 9.58 27.46 86.34 92.79 30.09 63.91 87.98 98.01 22.39 36.05 93.66 94.82 93.66 95.18 

7 Wheat 26277 93.59 90.99 98.86 98.49 94.52 90.37 99.53 99.03 93.04 90.64 99.98 99.75 99.92 99.81 

8 Beans 1082 65.53 75.91 97.50 99.15 77.08 75.00 98.06 100 63.77 70.99 97.13 98.41 96.40 99.05 

9 Peas 2160 78.43 86.43 99.63 99.45 76.94 86.65 99.77 99.68 77.27 87.80 99.95 100 98.19 99.81 

10 Maize 1290 64.19 54.37 99.92 94.09 61.71 71.26 99.46 99.07 70.08 57.32 98.29 96.43 98.91 97.70 

11 Flax 4301 92.47 94.29 99.09 99.70 91.12 97.39 99.19 99.93 93.56 92.63 99.81 100 99.95 100 

12 Rapeseed 28235 92.47 91.53 98.97 98.84 92.73 90.67 99.20 98.79 92.78 91.12 99.96 99.98 100 99.83 

13 Grass 4204 68.03 73.73 93.55 95.18 71.86 78.41 96.57 97.01 61.70 80.38 97.03 99.37 99.86 98.96 

14 Lucerne 2952 66.53 86.25 94.78 96.65 63.41 88.34 95.22 95.94 68.06 83.05 99.46 98.29 98.81 99.76 

Average Accuracy and 

Average Reliability 
73.08 79.18 97.43 97.78 75.37 83.78 98.00 98.79 75.34 78.74 98.87 98.99 98.91 99.16 

Overall Accuracy 88.37 98.46 88.99 98.98 88.38 99.65 99.68 

Kappa coefficient 0.8625 0.9819 0.8697 0.9880 0.8628 0.9959 0.9962 

 SVM (POL) 
SVM 

(POL+MP) 
RF (POL) 

RF 

(POL+MP) 
1D CNN  2D CNN  3D CNN  

SVM (POL) 0 -111.06 -9.11 -116.12 -0.16 -122.47 -122.88 

SVM (POL+MP) 111.06 0 107.18 -15.26 111.16 -32.85 -34.79 

RF (POL) 9.11 -107.18 0 -112.80 8.73 -118.64 -118.91 

RF (POL+MP) 116.12 15.26 112.80 0 116.12 -21.59 -23.68 

1D CNN  0.16 -111.16 -8.73 -116.12 0 -122.54 -122.66 

2D CNN 122.47 32.85 118.64 21.59 122.54 0 -1.64 

3D CNN  122.88 34.79 118.91 23.68 122.66 1.64 0 
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4. Conclusion  

Simple CNNs are proposed for dealing with overfitting problem in this work. 1D CNN is not very 

efficient in PolSAR image classification because it loses the valuable spatial information. Although 

2D CNN can be useful in feature extraction and classification of PolSAR image, but, it has not a 

high capacity in simultaneously polarimetric-spatial features extraction. PolSAR image contains 

valuable polarimetric-spatial information that can be automatically extracted by 3D CNN. 

Difference of 2D CNN and 3D CNN is significant from the statistical point of view when limited 

training samples are used.  
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