تعداد نشریات | 31 |
تعداد شمارهها | 738 |
تعداد مقالات | 6,960 |
تعداد مشاهده مقاله | 9,889,463 |
تعداد دریافت فایل اصل مقاله | 6,709,191 |
ارزیابی پتانسیل تولید و خلأ عملکرد برنج در ایران با استفاده از مدل SSM-iCrop2 | ||
تحقیقات غلات | ||
دوره 11، شماره 3، آذر 1400، صفحه 175-191 اصل مقاله (1.04 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/cr.2022.20959.1696 | ||
نویسندگان | ||
صالح کرامت* 1؛ بنیامین ترابی2؛ افشین سلطانی3؛ ابراهیم زینلی2 | ||
1دانشجوی دکتری، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
2دانشیار، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
3استاد، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
چکیده | ||
برنج در رژیم غذایی مردم ایران از جایگاه ویژهای برخوردار است. برای تامین نیاز کشور لازم است تولید این محصول افزایش یابد که با توجه به محدودیت سطح زیر کشت، افزایش عملکرد در واحد سطح روش مناسبتری است. یکی از بهترین راهها برای افزایش تولید، کاهش خلاء عملکرد میباشد. مطالعه حاضر با هدف برآورد خلاء عملکرد برنج در کشور در سال 1395 طراحی و اجرا شد. در این مطالعه، با استفاده از پروتکل اطلس جهانی خلاء عملکرد، مناطق اقلیمی و ایستگاههای هواشناسی مرجع تولید برنج در ایران تعیین شدند. ابتدا عملکرد واقعی برنج از آمارنامه کشاورزی کشور استخراج و سپس عملکرد پتانسیل در مناطق اصلی تولید این محصول با استفاده از مدل شبیهسازی SSM-iCrop2 و دادههای مربوط به آب و هوا، مدیریت و خاک برآورد شد. خلاء عملکرد از اختلاف بین عملکرد واقعی کشاورزان و عملکرد پتانسیل محاسبه شد. مقدار عملکرد واقعی برنج در مناطق اقلیمی اصلی تولید این محصول در کشور از 5/3 تا 2/5 تن در هکتار و عملکرد پتانسیل شبیهسازی شده از 3/6 تا 5/9 تن در هکتار برآورد شد. بنابراین میزان خلاء عملکرد از 1/2 تا 1/5 تن در هکتار متغیر بود. نتایج این تحقیق نشان داد که در صورت کاهش خلاء عملکرد برنج، میزان تولید این محصول را میتوان از 2 میلیون و 440 هزار تن به 4 میلیون و 103 هزار تن افزایش داد و بنابراین به خودکفایی در تامین برنج کشور دست یافت. | ||
کلیدواژهها | ||
عملکرد پتانسیل؛ عملکرد واقعی؛ شبیه سازی | ||
مراجع | ||
Agus, F., Andrade, J., Rattalino Edreira, J. I., Deng, N., Purwantomo, D. K. G., Agustiani, N., Aristya, V. E., Batubara, S. F., Herniwati, Hosang, E. Y., Krisnadi, L. Y., Makka, A., Samijan, Cenacchi, N., Wiebe, K. D. and Grassini, P. 2019. Yield gaps in intensive rice-maize cropping sequences in the humid tropics of Indonesia. Field Crops Research 237 (1): 12-22.##Belder, P., Bouman, B. A. M., Cabangon, R., Lu, G., Quilang, E. J. P., Li, Y., Spiertz, J. H. J. and Tuong, T. P. 2004. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Management and Water Quality 65 (3): 193-210.##Boling, A. A., Bouman, B. A. M., Tuong, T. P., Konboon, Y. and Harnpichitvitay, D. 2011. Yield gap analysis and the effect of nitrogen and water on photoperiod-sensitive Jasmine rice in north-east Thailand. NJAS -Wageningen Journal of Life Science 58: 11-19.##Bouman, B. A. M., Krop, M. J., Tuong, T. P., Wopereis, M. C. S., Ten Berge, H. F. M. and Van Laar, H. H. 2001. Oryza 2000: Modelling lowland rice. IRRI Books. International Rice Research Institute (IRRI), Wageningen University and Research Centre, Los Ban os, Philippines, Wageningen, Netherlands. 235 p. DOI: 10.22004/ag.econ.281825.##Carracelas, G., Guilpart, N., Cassman, K., Grassini, P. and Zorrilla, G. 2016. Yield potential and yield gaps of irrigated rice in Uruguay and other rice producing countries. Available at: http://www.ainfo.inia.uy/digital/bitstream/item/6559/1/Carracelas Yield-potential-and-Yield-gaps-of-irrigated-rice-in-Uruguay-.pdf.##Carracelas, G., Hornbuckle, J., Rosas, J. and Roel, A. 2019. Irrigation management strategies to increase water productivity in Oryza sativa (rice) in Uruguay. Agricultural Management and Water Quality 222: 161-172.##Chakravarthi, B. K. and Naravaneni, R. 2006. SSR marker-based DNA fingerprinting and diversity study in rice (Oryza sativa L.). African Journal of Mycology and Biotechnology 5 (9): 684-688.##Challinor, A. J., Wheeler, T. R. and Slingo, J. M. 2005. Simulation of the impact of high temperature stress on the yield of an annual crop. Agricultural and Forest Meteorology 135: 180-189.##Chen, Z., Li, P., Jiang, S., Chen, H., Wang, J. and Cao, C. 2021. Evaluation of resource and energy utilization, environmental and economic benefits of rice water-saving irrigation technologies in a rice-wheat rotation system. Science of the Total Environment 757: 143748.##Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W.,Huang, C., Zhang, W., Mi, G., Miao, Y., Li, X., Gao, Q., Yang, J., Wang, Z., Ye, Y., Guo, S., Lu, J., Huang, J., Lv, S., Sun, Y., Liu, Y., Peng, X., Ren, J., Li, S., Deng, X., Shi, X., Zhang, Q., Tang, L., Wei, C., Jia, L., Zhang, J., He, M., Tong, Y., Tang, Q., Zhong, X., Liu, Z., Cao, N., Kou, C., Ying, H., Yin, Y., Jiao, X., Zhang, Q., Fan, M., Jiang, R., Zhang, F. and Dou, Z. 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555: 363-366.##Dadrasi, A., Torabi, B., Rahimi, A., Soltani, A. and Zeinali, E. 2021. Determination of potato (Solanum tuberosum L.) yield gap in Golestan province. Agroecology 12 (4): 613-633. (In Persian with English Abstract).##Deng, N., Grassini, P., Yang, H., Huang, J., Cassman, K. G. and Peng, S. 2019. Closing yield gaps for rice self-sufficiency in China. Nature Communications 10: 1725.##Espe, M. B., Cassman, K. G. Cassman, H., Guilpart, N., Grassini, P., Van Wart, J., Anders, M., Beighley, D., Harrell, D., Linscombe, S., McKenzie, K., Mutters, R., Wilson, L. T. and Linquist, B. A. 2016. Yield gap analysis of US rice production systems shows opportunities for improvement Matthew. Field Crops Research 196: 276-283.##FAO. 2019. FAO statistics. http://www.fao.org/faostat/en/#data/QC/visualize.##Fischer, R. A. 2015. Definitions and determination of crop yield gaps, and of rates of change. Field Crops Research 182: 9-18.##Fischer, T., Byerlee, D. and Edmeades, G. O. 2014. Crop yields and global food security: Will yield increase continue to feed the world? ACIAR Monograph. Australian Centre for International Agricultural Research, Canberra, Australia.##Gorjizad, A., Soltani, A., Dastan, S. and Ajam Norouzi, H. 2019. Evaluation of potential yield and yield gap associated with crop management in improved rice cultivars in Neka region. Agroecology 11 (1): 277-294. (In Persian with English Abstract).##Grassini, P., Eskridge, K. M. and Cassman, K. G. 2013. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications 4: 2918.##Grassini, P., van Bussel, L. G. J., Van Wart, J., Wolf, J., Claessens, L., Yang, H., Boogaard, H., de Groot, H., van Ittersum, M. K. and Gassman, K. G. 2015a. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research 177: 49-63.##Habib, E., Niknezhad, Y., Fallah, H., Dastan, S. and Barari Tari, D. 2019. Estimation of yield gap of rice by comparative performance analysis (CPA) in Amol and Rasht regions. Journal of Plant Productions 42 (4): 551-562. (In Persian with English Abstract).##Halalkhor, S., Dastan, S., Soltani, A. and Ajam Norouzi, H. 2018. Documenting the process of rice production and gap yield associated with crop management in rice production. (Case study: Mazandaran province, Babol region). Journal of Crops Improvement 20 (2): 397-414. (In Persian with English Abstract).##Harvest Choice. 2014. Crop production: SPAM. International Food Policy Research Institute, Washington, DC., and University of Minnesota, St. Paul, M. N. Available online at: http://harvestchoice.org/node/9716.##Huang, M., Fang, S., Shan, S. and Zou, Y. 2019. Delayed transplanting reduced grain yield due to low temperature stress at anthesis in machine-transplanted late-season rice. Experimental Agriculture 55 (6): 843-848.##Hubbart, S., Smillie, I. R., Heatley, M., Swarup, R., Foo, C. C., Zhao, L. and Murchie, E. H. 2018. Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Communicative and Integrative Biology 1 (1): 1-12.##Ishfaq, M., Akbar, N., Anjum, S. A. and Anwar-Ijl-Haq, M. 2020. Growth, yield and water productivity of dry direct seeded rice and transplanted aromatic rice under different irrigation management regimes. Journal of Integrative Agriculture 19 (11): 2656-2673.##Ishikawa, S., Nakashima, T., Iizumi, T. and Hare, M. C. 2021. Evaluating irrigated rice yields in Japan within the climate zonation scheme of the global yield gap atlas. The Journal of Agricultural Science 158 (8-9): 718-729.##Kamran, A., Iqbal, M. and Spaner, D. 2014. Flowering time in wheat (Triticum aestivum L.): A key factor for global adaptability. Euphytica 197: 1-26.##Keating, B. A., Herrero, M., Carberry, P. S., Gardner, J. and Cole, M. B. 2014. Food wedges: Framing the global food demand and supply challenge towards 2050. Global Food Secur 3: 125-132.##Koo, J. and Dimes, J. 2013. HC27 Generic Soil Profile Database. http://hdl.handle.net/1902.1/20299, Harvard Data Verse, V4.##Laborte, A. G., de Bie, K., Smaling, E. M. A., Moya, P. F., Boling, A. A., van Ittersum, M. K. 2012. Rice yields and yield gaps in southeast Asia: Past trends and future outlook. European Journal of Agronomy 36 (1): 9-20.##Lobell, D. B., Cassman, K. G. and Field, C. B. 2009. Crop yield gaps: Their importance, magnitudes, and causes. Annual Reviw of Environmental Resources 34: 179-204.##Ministry of Jihad Agriculture. 2016. Agricultural statistics. Vol. 1: Crops. Statistics and Information Technology Office, Deputy of Planning and Economy, Ministry of Jihad Agriculture, Tehran, Iran. (In Persian).##Momeni, R., Behbahani, M. R., Nazarifar, M. H. and Azadegan, B. 2011. Evaluation of increasing water productivity scenarios for rainfed wheat by management analysis of cropsyst crop model in Karkheh Basin. Water and Irrigation Management. 1 (1): 29-40. (In Persian with English Abstract).##Nehbandani, A., Soltani, A., Rahemi-Karizaki, A., Dadrasi, A. and Nourbakhsh, F. 2021. Determination of soybean yield gap and potential production in Iran using modeling approach and GIS. Journal of Integrative Agriculture 20 (2): 395-407.##Neumann, K., Verburg, P. H., Stehfest, E. and Müller, C. 2010. The yield gap of global grain production: A spatial analysis. Agriculture, Ecosystems and Environment 103: 316-326.##Pirdashti, H. and Aghaeipour, N. 2018. Yield gap analysis of rice in relation to soil properties in Foumanat plain. Crop Production 10 (4): 159-172. (In Persian with English Abstract).##Pirmoradian, N., Saadati, Z., Rezaei, M. and Khaledian, M. R. 2020. Simulating water productivity of paddy rice under irrigation regimes using AquaCrop model in humid and semiarid regions of Iran. Applied Water Science 10 (7): 1-8.##Rezvantalab, N., Dastan, S. and Soltani, A. 2019. Identification of production constraints and yield gap monitoring of local rice (Oryza sativa L.) cultivars in mazandaran province. Iranian Journal of Crop Sciences 21 (2): 155-172. (In Persian with English Abstract).##Ribas, G. Gh., Streck, N. A., Ulguim, A. D. R., Carlos, F. S., Alberto, C. M., Souza, P. M. D., Bercellos, T., Puntel, S. and Zanon, A. J. 2021. Assessing factors related to yield gaps in flooded rice in southern Brazil. Agronomy Journal 113 (4): 3341-3350.##Sadras, V. O., Cassman, K. G., Grassini, P., AJ. H., Bastiaanssen, W. G. M., Laborte, A. G. AE, M. Sileshi, G. W. and Steduto, P. 2015. Yield gap analysis of rainfed and irrigated crops: Methods and case studies. FAO, Rome, Italy.##Sharifi, H., Hijmans, R. J., Hill, J. E. and Linquist, B. A. 2018. Water and air temperature impacts on rice (Oryza sativa) phenology. Paddy and Water Environment 16 (3): 467-476.##Silva, J. V., Reidsma, P., Laborte, A. G. and van Ittersum, M. K. 2016. Explaining rice yields and yield gaps in central Luzon, Philippines: An application of stochastic frontier analysis and crop modelling. European Journal of Agronomy 82: 223-241.##Simaie, E., Homaee, M. and Norouzi, A. 2013. Evaluating sebal model to estimate evapotranspiration using modis and tm sensor data. Soil and Water Resources Conservation 2 (4): 29-40. (In Persian with English Abstract).##Soltani, A. and Sinclair, T. R. 2011. A simple model for chickpea development, growth and yield. Field Crops Research 124: 252-260.##Soltani, A. and Sinclair, T. R. 2012. Modeling physiology of crop development, growth and yield. CAB. 322 p.##Soltani, A., Alimagham, M., Nehbandani, A., Torabi, B., Zeinali, E., Zand, E., Ghassemi S., Vadez V., Sinclair T. R. and van Ittersum M. K. 2020. Modeling plant production at country level as affected by availability and productivity of land and water. Agricultural Systems 183: 102859. DOI: 10.1016/j.agsy.2020.102859.##Stuart, A. M., Pame, A. R. P., Silva, J. V., Dikitanan, R. C., Rutsaert, P., Malabayabas, A. J. P., Lampayan, R. M., Radanielson, A. M. and Singleton, G. R. 2016. Yield gaps in rice-based farming systems: Insights from local studies and prospects for future analysis. Field Crops Research 194: 43-56.##Tilman, D., Balzer, C., Hill, J. and Befort, B. L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences India 108 (50): 20260-20264.##van Bussel, L. G. J., Grassini, P., van Wart, J., Wolf, J., Claessens, L., Yang, H., Boogaard, H., de Groot, H., Saito, K., Gassman, K. G. and van Ittersum, M. K. 2015. From field to atlas: Upscaling of location-specific yield gap estimates. Field Crops Research 177: 98-108.##van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P. and Hochman, Z. 2013. Yield gap analysis with local to global relevance: A review. Field Crops Research 143: 4-17.##van Ittersum M. K., van Bussel, G. J., Wolf, J., Grassini, P., van Wart, J., Guilpart, N., Claessens, L., Groot, H., Wiebe, K., Mason-D'Croz, D., Yang, H., Boogaard, H., van Oort, P. A. J., van Loon, M. P., Saito, K., Adimo, O., Adjei-Nsiah, S., Agali, A., Bala, A., Chikowo, Kaizzi, R. K., Kouressy, M., Makoi, J. H. J. R., Ouattara, K., Tesfaye, K. and Cassman, K. G. 2016. Can Sub-Saharan Africa feed itself? Proceedings of the National Academy of Sciences 113: 14964-14969.##van Wart, J., van Bussel, L. G. J., Wolf, J., Licker, R., Grassini, P., Nelson, A., Boogaard, H., Gerber, J., Mueller, N. D., Claessens, L., van Ittersum, M. K. and Cassman, K. G. 2013. Use of agro-climatic zones to upscale simulated crop yield potential. Field Crops Research 143: 44-55.##Wang, J., Zhang, J., Bai, Y., Zhang, S., Yang, Sh. and Yao, F. 2020. Integrating remote sensing-based process model with environmental zonation scheme to estimate rice yield gap in northeast China. Field Crops Research 246: 1-17.##Xu, X., He, P., Zhao, S., Qiua, S., Johnstond, A. M. and Zhou, W. 2016. Quantification of yield gap and nutrient use efficiency of irrigated rice in China. Field Crops Research 186: 58-65.##Yousefian, M., Soltani, A., Dastan, S. and Ajamnoroozi, H. 2019. Documenting production process and the ranking factors causing yield gap in rice fields in Sari, Iran. Iran Agricultural Research 38 (1): 101-109.## | ||
آمار تعداد مشاهده مقاله: 987 تعداد دریافت فایل اصل مقاله: 256 |