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commutator equation [x",y]=g has a solution in a finite groupG ,
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Finite groups written Pgn (G), is equal to P (G) |/|G |?. By using the numerical
Nilpotent groups solutions of the equation xy — zu =t(mod n), We derive formulas for
Commutativity degree, ] . o

GAP calculating the probability Ofpg (G), for some finite groups G .

1. Introduction

In the last years there has been a growing interest in the use of probability in finite group theory.
One of the most important aspects that have been studied is the probability that two elements of a
finite groupc commute. This is denoted by P(G) and is called the commutativity degree of . In

obtaining the properties of p(G), Gustafson [3] proved that for a non-abelian finite groupc. M.
Hashemi [4] gave some explicit formulas of p(c)for some particular finite groupsc. Also Hashemi
and et al. [5] derived formulas for calculating the probability of P, (G)whereG is a two generated
group of nilpotency class two.

Definition 1.1. Let G be a finite group. The commutativity degree of G, written P(G), is defined
as the ratio
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p(G) 0wV (TG|G Xy =y

In [6], Pournaki and R. Sobhani have studied and generalized this concept for the groupG and g e
as follows:

P (6) < HX y)eeleG|2: [x.v1= g}

Note that for everyg € G, we have 0<P, (G)<1. In particular forg eG-G’, we get P, (G)=0 and
P,(G)=1ifand only if G isabelianand g = e.

For integers m, n, k >2 where k [(m,n), we consider the following finitely presented groups

G,, and H(m, n, k), as fallows;

Gy, =(abla"=b"=1, [a,b]"=[ab], [ab]’=[ab])

H(m,n,k)=<a,b,c a™=h"=c* :1,[a,b]:c,[a,c]=[b,C]=1>.

In Section 2, we state some results that are required in later section. Section 3 is devoted to compute
the formula for P,(G) where G =G H (m, n, k). These results can be checked for some groups

with small orders, by GAP [2].

mn !

2. Preliminary

In this section, we state some lemmas and theorems which will be used in the next section. First, we
state lemmas that establishes some properties of groups of nilpotency class two, where

[x, y]=x"y'xy.

Lemma 2.1. If G is a group and G’'cz(G), then the following hold for every integer kand
uv,weG:

@ [uv,w]=[u,w][v,w] and [u,vw]=[u,V][u,w].
(2) [u*,v]=[u,v*]=[u,Vv]".

(3) (uv)k — ukvk [V,u]k(kfl)IZI

(4) If G =(a,b) then G’ =([a,b]).

Lemma 2.2. Let m, n be positive integer numbers andd = g.c.d(m,n). Then |G, |=d xmn.

Proof. Consider the subgroup H =(x,[x, y])of G, . ObviouslyH is abelian and a simple coset
enumeration by defining ncosetas 1=H and ib=i+1,1<i<n-1 showsthat |G:H |=n. Using
the modified Todd-coxeter coset enumeration algorithm, yields the following presentation for H :
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H =(h, b, [h" =hy =hy =hy =1,[h, h,] =1,

Sothat H=7z _xz, and|G_ |5 G:H |x|H |=dxmn.

The following lemma can be seen in [1].

Proposition 2.3. LetG=G,,,. The
@ G ={x, yD-
(2) Every element of G is in the form a'b'g where 0<i<m-1,0< j<n-land geG."

(3)Z(G) =(a,b,c|a™® =b"* =c® =[a,b]=[a,c] =[b,c] =1).

For the particular case, consider m=n then for m > 2 we get

G, =G,, =(a,b|a" =b" =1,[a,b]" =[a,b],[a,b]" =[a,b]).

Lemma24.lLet G=G,. Then

(1) Every element of G can be written uniquely in the form a"b®[b,a]’ where 0 <r,s,t <m-1.
(2)2(G)=G'=([a,b]) and | Z(G,,) = m.

3)|G|=m®.

Proposition 2.5. Let G =G_and X € G . For integersm,n > 2, we have

nt_n(n—l)
Xn — anrbns[a’ b] 2

rs

Proof. We use an induction method on n . By part (1) of Lemma 2.4, the assertion holds for

n = 1. Now, let

nt_n(n—l)
Xn — a‘nrbnsl:a, b] 2

rs

Then

n _n(n-1)
Xn+l — arbs[b, a]t a.nrbns [a’ b] 2

rs

Since G, is a group of nilpotency class two, G’ < Z(G). Hence by Lemma 2.1, we have
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n(n-1)
Xn+1:arbsanrbnS[a,b](nJrl)t_ 2
n(n-1)

Za(n+1)rb5[b’a]nrs bns[a,b](n+1)t_ 2 rs

n(n-1)
:a(m'l)rb(ml)s[a b](n+l)t— 2 rs—nrs

n(n+1)
za(n+1)rb(n+1)5[a b](n+l)t— 2 rs

Thus the assertion holds.

o

We recall the Heisenberg group

1 r s
H(Z)=4/0 1 t|rsteZ:.
0 0 1

By [7] (Section 2 of Chapter 7), we get

Proposition 2.6. (1) H(Z) =(a,b,c(a,b]=c,[a,c]=[b,c]=1).
(2) Every element of H(Z) may be written uniquely in the forma'b’c*, where i, j k € Z.
() Z(H(Z)) =H'(Z) ={c).

In particular, for n> 2, we get

1 r s
H(n,n,n)=H Zz =410 1 t r,s,teg <SL 3,z ,
nZ 0 0 1 nZ nZ

Proposition 2.7. For G=H(m,n,k) and T =G x G, we have

(1) Every element of G may be written uniquely in the form a'b°c', where 0<r<m,0<s<n
and 0<t<k.

(2) Z(G)=G'=(c) and |G|=mnk.

(3)Every element of Tis uniquely expressible in the form a™b™cakbscy?; where

0<r,,r,<mO0<s,s,<nand 0<t,,t, <Kk.
(4)Z(T)=T'=(c,c,) and |T |= (mnk)®.

By the results 2.3 and 2.7, we see that G,,,and H(m, n, k) are finite.

The following results are of interest to consider and one may see the proof in [4].
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Corollary 2.8. For the integer n=p“p,”...p,* and variables x, y,zandu, the number of solutions
of the equation xy =zu(mod n) is

H pZa, a+1+ pia, _1)

Corollary 2.9. Let m,n beintegersand X, Y, zand u be variables where 1<x,z<n and1<y,u<m.
Then the number of solutions of the equation xy =zu(modd) is

5 oy (5 oy HIO.Z”'_l(IO“”+ p" -1),

where d =ged(m,n) = p,“p,”... p.*.

3. Computations on finite groups

This section is devoted to compute a generalization of commutativity degree of some classes of
finite groups. First, we need the following Theorem.

Theorem 3.1. [5] For the integers t,n and variables X, y,uandz, the number of solutions of the
equation xy-uz =t (mod n) is

Z[Z s Dyxd)

din d,|d; 2
By elementary concepts of number theory, we have the following corollary:

Corollary 3.2. Let t,n be integers and i, j,r andS be variables, when 0<i,s<n and 0<r, j<n®.
Then the number of solutions of the equation ri—sj=t (mod n) is

YLD ¢( )¢5 XOIz)]-

din d,ld

Now, we get explicit formulas for the commutativity degree of generalized relative g the element
of G of the finite groupG, .

Theorem 3.3. For the group G=G_, andg € G, P,(G) =a/m®, where

a=mY( Z%ﬁ? d,)]

dim  d,l(d.ty)

Proof. For theg e G’, we obtain
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| g (G)1={(x,y) eGxG; [x,y]=g}|
=[{(x,y) eGxG; "= =a"}|
=[{(r,,8,,1,,5,); 1,8, — 1S, =t (mod m)}|.

So that, by Corollary 3.2, we have

| p,(G) = deZ[ %¢ d,)], where d|m,d,= =(d,t,). And the result follows from the
m dald; 2
| o (G)]
P(G)=—"~.
g( ) |G|2 o

In the present part, we consider G =H(m,n,k). To compute the commutativity degree of G, let
x,y € G. Then by the first part of Proposition 2.7, we have x=a'b%c", y=a"h%c® where

0<r,r,<m-1,0<s,s,<n-1and 0<t,t, <k-1. Hence by Lemma 2.1 and the relations of G, we

get [x,y]=c* ™",

By using the above information, we prove that;

Theorem 3.4. For the group G =H(m,n,k), we have P, (G) =( p where

mnk)?
e

Proof. Forg=c" eG’, we have
95| (X, ¥) €GxG; [x, y] = g}
= H(x, y) e GxG; ¢ =" }

:‘{(H, S oY Szftz); IS, =15, Etg(mOd k)}‘

BA{(n st 0.5,0t,);0< L, <m-1,0<s,5, <n-1,0<t,t, <k -1,

S, — s, =ti (modt)} = {(1, 5., 1,,5,,8,);0 <1, r, <m-1,0<s,,5, <n-1,0<t,t, <k -1,

s, — 1,5, =0 (modt)}| mnk) Z{qu(dj [ JZ}
djt | dy/d 2
_ (mnk)? t (). (d)
B
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We now turn to a generalization ofp (G). For everyr, we considenz2

[x",y]=g, Then the probability that the commutator equation p(G) ={(x,y) e GxG; [x", y]=g}. written

ey 1P (G)| ey 12 G) .
P'(G), isequal to ———. Thatis F(G)="—-—— Now, for the groupn>1 and integer G, g €G,
|GxG]| |GxG|

.ads us to prove the main resultThese facts le [x", y]=g.; we consider the commutator equation

Theorem 3.5. For the group G,,, g=[a,b] €G! and, we haveneN
(1) the equation [x",y]=g has a solution ing_if and only if ||t , where |=gcd(m,n).

5™ gy xd)1

(2) P/(G,)=y/m’, where =Y ( LT

m t |2d
di dld.)

| |
Proof. Let x=a"b*[b,a]",y =a"b*[b,a]” €G,,, we have 2.4. Then by the first part of Lemma x,y e G_

, Where1<r,r,,s,s,,t,t, <m. Now, using Lemma 2.1, Proposition 2.4 and the relations of G, we get

nty+t, —@ [S—NrS;

Xﬂy — anl’1+l'2bn51+52 [a b]

and

n(n-1)
+ ‘Tﬁ%‘”ﬁ%

an — Mty [a’ b]ml o
Thus
[Xn’ y] — [a’ b]n(rISZ_rZSl).

On the other hand by the second part of Lemma 2.4, for X,Y,g € G where g =[x, y]G'={([a,b]) there
is 1<t<m such that g=[x y]=[ab]. Now, forgeG', we obtain

| 2, () [F{(x,¥) € GxG; [X, y]= g}
=H{(x y) € GxG; [a,b]"** " =[a,b] }

={(r,s,,t,1,,8,,1,); n(rs, —1,8,) =t (mod m)}|.

For the calculating of p;(G), let 1= ged(m,n). Then %(rlsz—rzsl)zr—(modlm). Since (?’?’:1’ we have

S, — 1,8, E%(modlm). So, the congruence has the solution if and only if I |t. Therefore, by Theorem 3.1,

the result follows.
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The Table 1 is a verified result of GAP [2], where 2<n<10 and some values of m, t.

Table 1: The number of solutions of n(r;s, -1,s,) =t(mod m).

n m t The number of solutions of n(rs, - 1,s,) =t(mod m).
2 2 2 16

3 6 3 486

4 8 4 1536

5 10 5 3750

6 2 96

7 7 14 2401

8 6 2 384

9 3 6 81

10 15 5 15000

4. Conclusions

In this paper, by using the properties of G, we obtain pg”(G) for geG and n>1. For these, it is

enough to compute the [x",y]=g wherex,y €G,. We note that, this method can be generalized to
finite groups of small orders.
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