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Abstract. In this paper, we introduce and investigate a new definition for the density function of fuzzy
random variables. Then, based on this definition, we give a new viewpoint on aging properties. To do
this end, the concepts of the hazard rate function and mean residual function are investigated for the
Exponential fuzzy random variable. Also, we obtain the aging properties of new Exponential fuzzy ran-
dom variables based on existing methods. Finally, using a practical example, we illustrate the proposed
approach and show that the performance of proposed approach is better than two other existing methods.
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1 Introduction

The concept of aging plays an important role in reliability analysis. Depending on statistical distribution,
a component (system) can have one of the situations No aging, Positive aging or Negative aging. No
aging means that the age of a component does not affect on the distribution of the residual lifetime of the
component. Positive aging (also known as averse aging) describes the situation where residual lifetime
tends to decrease, in some probabilistic sense, with increasing age of a component. This is a common
situation in reliability engineering in which the performence of components tend to become worse with
time due to increased wear and tear. On the other hand, negative aging, which is also known as beneficial
aging, describes the situation where performance and residual lifetime of components tends to increase.
Although this situation is less common, when a system undergoes regular testing and improvement, there
are cases for which we have a reliability growth phenomenon.
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The lifetimes of a component are usually assumed to be random variables with probability distribu-
tions that have crisp parameters. Also, in classical reliability theory, the parameters of lifetime distribu-
tions are assumed as an exact quantity. However, in the real world, our understanding of most physical
processes is mainly based on vague quantities. This vagueness is a form of information that can be useful
in decision making, prediction, modeling, etc. Examples of imprecise information are such statements as
the product quality is “acceptable”, the lifetime of a lamp is “approximately 2000(h)”, or the necessary
dose of a certain chemical in a drug must be “about 20%”. In addition, there are situations in which
the parameters of the distribution cannot record precisely due to machine errors, experiments, personal
judgment or estimation. During the past decades, different approaches and theories have proposed for
treating imprecision and uncertainty, among which the fuzzy set theory is a key one, and several re-
searchers have concentrated on applying this theory to various fields [8,28], especially in probability and
statistics [21, 22, 25–27].

As authors known, there are many researchers pay attention to reliability analysis in fuzzy environ-
ment [1, 3–6, 10, 15, 17, 23]. In the following, we review the main studies on fuzzy reliability to display
the motivation for this paper. Buckly [2] introduced fuzzy Exponential density using the α-cuts of pa-
rameters. Guo et al. [9] investigated random fuzzy variable modeling on repairable systems and they
proposed a credibility hazard concept associated with fuzzy lifetimes based on the conditional distribu-
tion of a fuzzy variable under Liu’s non-classical credibility measure theory. Yao et al. [24] considered
the reliability of the serial systems and the reliability of parallel systems using triangular fuzzy numbers
based on statistical data. Karpı́šek et al. [16] defined the fuzzy reliability and its characteristics for the
double-state probability model of an object based on the fuzzy probability distribution and its properties.
Jamkhaneh [12] considered the problem of evaluation of system reliability, in which the lifetimes of
components are described using a fuzzy Exponential distribution. Also, Jamkhaneh et al. [14] proposed
a new method for analyzing the fuzzy system reliability of a parallel-series and series-parallel systems
using fuzzy confidence intervals, where the reliability of each component of each system is unknown.
They proposed a general procedure to construct the reliability characteristics and its α-cut set, when
the parameters are fuzzy [13]. Pak et al. [18] presented a Bayesian approach to estimate the param-
eter and reliability function of Rayleigh distribution from fuzzy lifetime data. Recently, El-Damcese
and Ramadan [7] investigated some statistical properties of the mixture generalized linear failure rate
distribution and mixture generalized linear failure rate distribution with fuzzy parameters and presented
formulas of a fuzzy reliability function, fuzzy hazard function and their α-cut set. Iqbal and Uduman [11]
considered reliability analysis of paper plant using a boolean function with fuzzy logic technique. Shafiq
and Viertl [20] generalized parameter estimation, survival functions, and hazard rates for fuzzy lifetime
data.

Since the Exponential distribution plays an important role in the reliability of a system, we need to
extend the classical methods for the uncertainty situation. However, there are many different definitions
of the Exponential random variable in the uncertainty situation which led to various discussions about
the aging concepts in this situation. In this paper, we propose a new procedure to construct the reliability
characteristics of lifetime random variables, when the parameter is imprecise and represented as a fuzzy
number. The rest of the paper is organized as follows. In Section 2, we recall Buckley’s approach
and propose two new procedures for constructing reliability characteristics in a fuzzy environment. The
proposed approach was illustrated and then compared with existing methods using a numerical example
in Section 3. A brief conclusion was presented in Section 4.
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2 Aging concepts

In this section, we want to present the formula (may be closed or opened form) for some aging con-
cepts such as Survival, hazard rate and mean residual life functions based on various approaches in the
definition of density function of fuzzy Exponential distribution. Through this section, suppose that X
is a random variable with the support SX = {x ∈ R : f (x|θ)> 0,θ ∈Θ}, where f (x;θ) is the density
function of X and Θ is the parameter space.

2.1 Buckley’s approach

Suppose that due to some conditions in the study of underlying problems, we can not record the parameter
θ as a precise number. In such situations, we can use the fuzzy set theory to formulate θ as a fuzzy
number θ̃ .

According to [2], if we assume that θ is the fuzzy number, then the fuzzy density function is also a
fuzzy number with the following α−cuts

f̃ (x)[α] =
[

f (x)l
α , f (x)u

α

]
, (1)

where {
f (x)l

α = min
{

f (x|θ) |θ ∈ θ̃ [α]
}
,

f (x)u
α = max

{
f (x|θ) |θ ∈ θ̃ [α]

}
.

(2)

Now, we can obtain the probability of any arbitrary value in the interval [c,d], with c > 0, based on
relation (1). If we denote this probability by P̃[c,d], then the α-cuts of P̃[c,d] are defined as (for all
0≤ α ≤ 1)

P̃[c,d][α] =

{∫ d

c
f (x|θ)dx|θ ∈ θ̃ [α]

}
= [p1(α), p2(α)] , (3)

where p1(α) = min
{∫ d

c f (x|θ)dx|θ ∈ θ̃ [α]
}
,

p2(α) = max
{∫ d

c f (x|θ)dx|θ ∈ θ̃ [α]
}
.

(4)

Then, using relations (3-4), we can obtain the survival, hazard rate and mean residual life functions
as the important aging concepts. To this end, first we compute the α−cuts of these indexes respectively
as (for all 0≤ α ≤ 1)

S̃(x)[α] =

[
min

{∫
∞

x
f (t|θ)dt|θ ∈ θ̃ [α]

}
,min

{∫
∞

x
f (t|θ)dt|θ ∈ θ̃ [α]

}]
, (5)

h̃(x)[α] = lim
∆x→0

P̃(x < X < x+∆x|X > x)[α]

∆x

={ lim
∆x→0

S(x)−S(x+∆x)
∆xS(x)

|θ ∈ θ̃ [α]}

={−S′(x)
S(x)

|θ ∈ θ̃ [α]}= { f (x)
S(x)
|θ ∈ θ̃ [α]}, (6)
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m̃(x)[α] =

{∫
∞

0
S(t|x)dt|θ ∈ θ̃ [α]

}
=

{∫
∞

0

S(x+ t)
S(x)

dt|θ ∈ θ̃ [α]

}
=

{∫
∞

x

S(u)
S(x)

du|θ ∈ θ̃ [α]

}
. (7)

Our purpose is to formulate these indexes based on fuzzy Exponential lifetime data. Let X be an
Exponential random variable with the following density function

f (x;θ) = θe−θx, x > 0, θ > 0.

It is easy to show that based on this density the survival, hazard rate and mean residual life functions are
respectively obtain as follow

S(x;θ) = e−θx, h(x;θ) = θ , m(x;θ) =
1
θ
.

In order to model the ambiguity of the parameter θ in the underlying problem we use the triangular fuzzy
number θ̃ = (c; l,u). It is obvious that

θ̃ [α] =
[
θ

l
α ,θ

u
α

]
= [c+ l(α−1),c−u(α−1)] , ∀α ∈ [0,1].

Now, using the relations (5-7), we will able to obtain the survival, hazard rate and mean residual life
functions based on Buckley’s approach.

First consider the relations (1) and (2). Then the α−cuts of the density function are given as (for all
0≤ α ≤ 1)

f̃ (x)[α] =
[

f (x)l
α , f (x)u

α

]
, (8)

where

f (x)l
α =


θ l

αe−θ l
α x, θ u

α ≤ 1
x ,

θ u
αe−θ u

α x, θ l
α > 1

x ,

min
{

θ l
αe−θ l

α x,θ u
αe−θ u

α x
}
, θ l

α < 1
x < θ u

α ,

and

f (x)u
α =


θ u

αe−θ u
α x, θ u

α ≤ 1
x ,

θ l
αe−θ l

α x, θ l
α > 1

x ,
e−1

x , θ l
α < 1

x < θ u
α .

In the case of survival function, since S(x;θ) is a decreasing function in terms of θ , the α−cuts of
survival function are given by

S̃(x)[α] = [exp(−(c−u(α−1))x) ,exp(−(c+ l(α−1))x)] . (9)

Similarly, the α−cuts of the hazard rate and mean residual life functions are obtained as

h̃[α] = [c+ l(α−1),c−u(α−1)] , (10)

m̃(x)[α] =

[
1

c−u(α−1)
,

1
c+ l(α−1)

]
, (11)

respectively.
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2.2 The Saeidi et al.’s approach

Saeidi et al. [19] introduced a fuzzy density function in a fuzzy environment where the parameter of the
distribution replaced with a fuzzy number. In the following, we recall this approach briefly.

For every θ ∈ Θ, we consider a weighted function, say µ(θ), for the probability density function
f (x|θ) and define the desired FPDF, denoted by fa(x|θ̃).

The FPDF of the random variable X is defined by

fa(x|θ̃) =

∫ 1

a

∫
θ∈θ̃ [α]

µ(θ) f (x|θ)dθdα∫ 1

a

∫
θ∈θ̃ [α]

µ(θ)dθdα

, a ∈ [0,1),

where µ(θ) is the membership function of the fuzzy parameter θ̃ and θ̃ [α] is the corresponding α−cut.
It is easy to show that the above density function has the following properties

• fa(x|θ̃)≥ 0,

•
∫

x∈SX

fa(x|θ̃)dx = 1.

It is clear that the large value of a makes the proposed FPDF fa(x|θ̃) more concentrate on the classical
density f (x|θ).

In the following, we formulate the reliability, hazard rate and mean residual life functions based on
this approach, respectively.

Sa(x|θ̃) =
∫

∞

x
fa(t|θ̃)dt =

∫
∞

x

∫ 1

a

∫
θ∈θ̃ [α]

µ(θ) f (t|θ)dθdαdt∫ 1

a

∫
θ∈θ̃ [α]

µ(θ)dθdα

=

∫ 1

a

∫
θ∈θ̃ [α]

µ(θ)S(x|θ)dθdα∫ 1

a

∫
θ∈θ̃ [α]

µ(θ)dθdα

,

ha(x|θ̃) =
fa(x|θ̃)
Sa(x|θ̃)

=

∫ 1

a

∫
θ∈θ̃ [α]

µ(θ) f (x|θ)dθdα∫
∞

x

∫ 1

a

∫
θ∈θ̃ [α]

µ(θ) f (t|θ)dθdαdt

=

∫ 1

a

∫
θ∈θ̃ [α]

µ(θ) f (x|θ)dθdα∫ 1

a

∫
θ∈θ̃ [α]

µ(θ)S(x|θ)dθdα

,

ma(x|θ̃) =

∫
∞

x
Sa(t|θ̃)dt

Sa(x|θ̃)
.
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Note that sometimes we have to solve these integrals numerically, since the closed form cannot be
achieved.

For the Exponential random variable, we have:

fa(x|θ̃) =





exp(−cx)exp(−ux)(6exp(ux)−6exp(aux)
−2cxexp(aux)−2uxexp(aux)+u2x2exp(ux)
+2cxexp(ux)−4uxexp(ux)−au2x2exp(ux)
+cu2x3exp(ux)+2auxexp(ux)+au2x2exp(aux)
+4auxexp(aux)−2cux2exp(ux)−a2u2x2exp(aux)
+acux2exp(ux)−acu2x3exp(ux)+acux2exp(aux))


/

(u2x4)

+



exp(−alx)exp(−cx)(6exp(lx)−6exp(alx)
−l2x2exp(alx)−2cxexp(alx)−4lxexp(alx)
+2cxexp(lx)−2lxexp(lx)−al2x2exp(lx)
−2clx2exp(alx)+4alxexp(lx)+a2l2x2exp(lx)
+al2x2exp(alx)− cl2x3exp(alx)+2alxexp(alx)
+aclx2exp(lx)+aclx2exp(alx)+acl2x3exp(alx))


/

(l2x4)


[
(a−1)2(a+2)(l +u)/6

] , (12)

ha(x|θ̃) =

−





exp(−cx)exp(−ux)(6exp(ux)−6exp(aux)
−2cxexp(aux)−2uxexp(aux)+u2x2exp(ux)
+2cxexp(ux)−4uxexp(ux)−au2x2exp(ux)
+cu2x3exp(ux)+2auxexp(ux)+au2x2exp(aux)
+4auxexp(aux)−2cux2exp(ux)−a2u2x2exp(aux)
+acux2exp(ux)−acu2x3exp(ux)+acux2exp(aux))


/

(u2x4)

+



exp(−alx)exp(−cx)(6exp(lx)−6exp(alx)
−l2x2exp(alx)−2cxexp(alx)−4lxexp(alx)
+2cxexp(lx)−2lxexp(lx)−al2x2exp(lx)
−2clx2exp(alx)+4alxexp(lx)+a2l2x2exp(lx)
+al2x2exp(alx)− cl2x3exp(alx)+2alxexp(alx)
+aclx2exp(lx)+aclx2exp(alx)+acl2x3exp(alx))


/

(l2x4)




 exp(−alx)exp(− cx)(2exp(alx)−2exp(lx))
−lexp(−alx)exp(− cx)(axexp(alx)
−2xexp(alx)+axexp(lx))

/
(l2x3)

+

 exp(− cx−ux)(2exp(aux)−2exp(ux))
−uexp(− cx−ux)(axexp(aux)
−2xexp(ux)+axexp(ux))

/
(u2x3)

+

 exp(−alx)exp(−cx)(x2exp(alx)
−ax2exp(alx))− (exp(−cx−ux)(x2exp(ux)
−ax2exp(ux)))

/
x3



, (13)
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Sa(x|θ̃) =

−



 exp(−alx)exp(− cx)(2exp(alx)−2exp(lx))
−lexp(−alx)exp(− cx)(axexp(alx)
−2xexp(alx)+axexp(lx))

/
(l2x3)

+

 exp(− cx−ux)(2exp(aux)−2exp(ux))
−uexp(− cx−ux)(axexp(aux)
−2xexp(ux)+axexp(ux))

/
(u2x3)

+

 exp(−alx)exp(−cx)(x2exp(alx)
−ax2exp(alx))− (exp(−cx−ux)(x2exp(ux)
−ax2exp(ux)))

/
x3


[
(a−1)2(a+2)(l +u)/6

] , (14)

ma(x|θ̃) =

∫
∞

x


(2exp(−ct)−2exp((1−a)lt− ct))/(l2t3)
+exp(−ct)(2−a−aexp((1−a)lt))/(lt2)
+(2exp((a−1)ut− ct)−2exp(−ct))/(u2t3)
+exp(−ct)(2−a−aexp((a−1)ut))/(ut2)

dt


(2exp(−cx)−2exp((1−a)lx− cx))/(l2x3)
+exp(−cx)(2−a−aexp((1−a)lx))/(lx2)
+(2exp((a−1)ux− cx)−2exp(−cx))/(u2x3)
+exp(−cx)(2−a−aexp((a−1)ux))/(ux2)


. (15)

2.3 The new density-based approach

Under the general assumptions which mentioned in the beginning of the section, we define the new
density function for fuzzy random variables.

Definition 1. Let X be a random variable with fuzzy parameter θ̃ . We define the density function for this
random variable as follows

fα(x|θ̃) =

∫
θ∈θ̃ [α]

µ(θ) f (x|θ)dθ∫
θ∈θ̃ [α]

µ(θ)dθ

, (16)

where µ(θ) is the membership function of θ̃ and θ̃ [α] is its α-cut.

It is clear that fα(x|θ̃) is a weighted average of f (x|θ) for the value of θ̃ in the interval θ̃ [α] and has
the following properties

• fα(x|θ̃)≥ 0,

•
∫

x∈SX

fα(x|θ̃)dx = 1.

In the following, we introduce the reliability function and some aging concepts based on this new defini-
tion of fuzzy density function.



456 J. Zendehdel, R. Zarei, M.G. Akbari

According to relation (16), one can obtain the reliability, hazard rate and mean residual life functions
respectively as

Sα(x|θ̃) =
∫

∞

x
fα(t|θ̃)dt =

∫
∞

x

∫
θ∈θ̃ [α]

µ(θ) f (t|θ)dθdt∫
θ∈θ̃ [α]

µ(θ)dθ

=

∫
θ∈θ̃ [α]

µ(θ)S(x|θ)dθ∫
θ∈θ̃ [α]

µ(θ)dθ

,

hα(x|θ̃) =
fα(x|θ̃)
Sα(x|θ̃)

=

∫
θ∈θ̃ [α]

µ(θ) f (x|θ)dθ∫
θ∈θ̃ [α]

µ(θ)S(x|θ)dθ

,

mα(x|θ̃) =

∫
∞

x
Sα(t|θ̃)dt

Sα(x|θ̃)
,

where f (x|θ) and S(x|θ) are the classical density and survival functions, respectively. For the Exponen-
tial random variable, the above functions are as follow:

hα(x|θ̃) =

−



((exp(−cx)(c2x2 +2cx+2))/x3

−(exp(−x(c− l +αl))(x2(c− l +αl)2

+2x(c− l +αl)+2))/x3

+(c((exp(−x(c− l +αl))(x(c− l +αl)+1))/x2

−(exp(−cx)(cx+1))/x2)))/l
+((exp(−cx)(c2x2 +2cx+2))/x3

−(exp(−x(c+u−αu))(x2(c+u−αu)2

+2x(c+u−αu)+2))/x3

−(c((exp(−cx)(cx+1))/x2− (exp(−x(c+u−αu))
(x(c+u−αu)+1))/x2)))/u
+(−(exp(−x(c− l +αl))(x(c− l +αl)+1))
+(exp(−x(c+u−αu))(x(c+u−αu)+1)))/x2



(

exp(− cx−ux)
(

exp(αux)− exp(ux)
+uxexp(ux)−αuxexp(αux)

))/
ux2

−
(

exp(−αlx)exp(− cx)
(

exp(αlx)− exp(lx)
+lxexp(αlx)−αlxexp(lx)

))/
lx2


, (17)



A novel approach for constructing system reliability characteristics 457

mα(x|θ̃) =

∫
∞

x exp(−ct)


(exp((α−1)ut)−1)/(ut2)
−(1− exp((1−α)lt))/(lt2)
−α(exp((α−1)ut)
−exp(lt(1−α)))/t

dt

exp(−cx)


(exp((α−1)ux)−1)/(ux2)
−(1− exp((1−α)lx))/(lx2)
−α(exp((α−1)ux)
−exp(lx(1−α)))/x



, (18)

fα(x|θ̃) =



((exp(−cx)(c2x2 +2cx+2))/x3

−(exp(−x(c− l +αl))(x2(c− l +αl)2

+2x(c− l +αl)+2))/x3

+(c((exp(−x(c− l +αl))(x(c− l +αl)+1))/x2

−(exp(−cx)(cx+1))/x2)))/l
+((exp(−cx)(c2x2 +2cx+2))/x3

−(exp(−x(c+u−αu))(x2(c+u−αu)2

+2x(c+u−αu)+2))/x3

−(c((exp(−cx)(cx+1))/x2− (exp(−x(c+u−αu))
(x(c+u−αu)+1))/x2)))/u
+(−(exp(−x(c− l +αl))(x(c− l +αl)+1))
+(exp(−x(c+u−αu))(x(c+u−αu)+1)))/x2


[(α2−1)(l +u)/2]

, (19)

Sα(x|θ̃) =

−


(

exp(− cx−ux)
(

exp(αux)− exp(ux)
+uxexp(ux)−αuxexp(αux)

))/
ux2

−
(

exp(−αlx)exp(− cx)
(

exp(αlx)− exp(lx)
+lxexp(αlx)−αlxexp(lx)

))/
lx2


[(α2−1)(l +u)/2]

. (20)

3 Practical Example

In this section, we suppose that the components of the underlying system have an Exponential distribu-
tion. Then, we compare the aging concepts based on the various definitions presented in the previous
section using numerical example.

Example 1. Consider two systems for transporting water from place A to place B using equally spaced
pressure pumps. Suppose that systems 1 and 2 uses five pressure pumps of type I and each pump can
transport water to the next pump. Thus, if anyone of the pumps fails, then the system cannot transport
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Table 1: The fuzzy numbers for componnents of underlying systems in Example 1.
System Component1 Component2 Component3 Component4 Component5

System1 λ̃1 = (1,0.6,0.7) λ̃2 = (1,0.5,0.6) λ̃3 = (1,0.7,0.6) λ̃4 = (1,0.7,0.6) λ̃5 = (1,0.5,0.5)
System2 λ̃1 = (1,0.6,1.4) λ̃2 = (1,0.7,1.6) λ̃3 = (1,0.5,1.5) λ̃4 = (1,0.7,1.2) λ̃5 = (1,0.5,1.3)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

µ(
θ) µ(θ) = α

α− cut

µ(θ) = α

α− cut

α = 0.5
θ~1 = (5;3,3)
θ~2 = (5;3,7)

Figure 1: Membeship functions of two triangular fuzzy numbers in Example 1.

the water. Systems 1 and 2 are series systems. Systems 1 and 2 were put on the test, and the parameters
value for each component of systems were recorded and presented as fuzzy triangular numbers reported
in Table 1.

Since each component of underlying systems has an Exponential distribution, we can conclude that
the lifetimes of systems1 and 2 have an Exponential distribution with triangular fuzzy parameters θ̃1 =
(5,3,3) and θ̃2 = (5,3,7), respectively. Hence, we consider two triangular fuzzy numbers θ̃1 and θ̃2
to model the vagueness in each system and depict density, survival, hazard rate and mean residual life
functions.

Figure 1 shows the membership functions of two fuzzy parameters. The density functions of lifte-
times for systems 1 and 2 are presented in Figure 2 based on different approaches. It is clear that as the
value of α increases, Buckley’s density function (8) tends to the classical (crisp) density function. Since
θ̃1 is a symmetric fuzzy number, there is no difference between the approaches based on fα(t|θ̃) and
fa(t|θ̃). Thus, we can said that when the ambiguity of fuzzy parameters is symmetric, the performance
of two new approaches is the same and they are better than the Buckley’s approach in modeling the
vagueness of underlying systems.

The result of density functions for θ̃2 is given in the Figure 3. In this case, the approach based
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Figure 2: Density function for lifetime of system 1 based on different approaches.
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Figure 3: Density function for lifetime of system 2 based on different approaches.



460 J. Zendehdel, R. Zarei, M.G. Akbari

on fa(t|θ̃) perform more appropriately than two other methods in the sense of closeness to the classical
(crisp) mode. In other words, even though the data that occurring in the system are taken as real numbers,
the proposed method in this paper can still handle it as we just described above. In fact, the fuzzy
approach in the definition of the density function is a kind of extension of the conventional density
function. Therefore, the fuzzy density function proposed in this paper has no loss of generality.

Figures 4 and 5 depict the survival functions of different approaches based on θ̃1 and θ̃2 respectively.
According to obtained results, we can conclude that there are no noticeable differences between new
approaches (approaches based on fα(t|θ̃) and fa(t|θ̃)) and the classic method when θ̃ is a symmetric
fuzzy number. Also, the performance of two new approaches is close to each other based on θ̃2. The
performance of the Buckley’s approach and the approach based on fα(t|θ̃) depends on the size of α . It
seems that the former is more sensitive to the value of α than the latter.

The hazard rate functions of systems 1 and 2 are shown in Figures 6 and 7, respectively. Based on
Figure 6, we can say that when the value of α (a for the approach based on fa(t|θ̃)) is small, the hazard
rate function of the two new methods decreases in time. Also, there is a slight difference between two
new approaches. Meanwhile, Figure 7 shows that all three methods tend to the classic mode when α

(a for the approach based on fa(t|θ̃)) tends to 1. It is obvious that the best approach is the new method
based on density fa(t|θ̃), Because it is the closest to the classic model for each value of a.

Finally, the performance of mean residual life functions for different approaches was presented in
Figures 8 and 9 for underlying systems. It is seen that the approach based on density fα(t|θ̃) fails to
perform well in both situations of fuzzy environment. Thus, we can conclude that the best approach is
the one based on the density fa(t|θ̃).

4 Conclusion

In this paper, we provide a new definition for fuzzy density function of fuzzy random variables. The
performance of reliability function and aging concepts for fuzzy Exponential distribution were consid-
ered carefully and then compared with other existing approaches. An advantage of new method is that
all functions are single-valued while the Buckley’s one is interval-valued. We apply our method to the
situation of Exponential lifetime random variable with fuzzy parameters θ̃1 = (5;3,3) and θ̃2 = (5;3,7).
After considering the graphs of density, survival, hazard rate and mean residual life functions, we ob-
serve that the performance of the approach based on density fa(t|θ̃) is better than two other methods.
Thus we can say that the best method is the one based on density fa(t|θ̃).
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Figure 4: Survival functions for lifetime of system 1 based on different approaches.
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Figure 5: Survival functions for lifetime of system 2 based on different approaches.
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Figure 6: Hazard rate functions for lifetime of system 1 based on different approaches.
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Figure 7: Hazard rate functions for lifetime of system 2 based on different approaches.
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Figure 8: Mean residual life functions for lifetime of system 1 based on different approaches.
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Figure 9: Mean residual life functions for lifetime of system 2 based on different approaches.
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