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 The brain’s free energy principle (FEP), and active inference, proposed 

by Karl Friston is a model that, based on the Bayesian inference, shows 

uncertainly how the concepts are generated based on the stimuli 

perceived by the human. In this model, it is assumed that the concepts 

exist in a hidden and real form in the environment, and the agent should 

identify and encode the concepts in his brain through the indirect 

perception of the stimuli of these concepts. This process takes place 

based on the Bayesian inference in the declarative or procedural real 

concepts (concepts in the environment) generation requiring the agent’s 

actions and perceptions by the active inference process. Declarative 

concepts are concepts that do not require any action on the environment 

to learn and are learned directly through the transfer of knowledge. But 

procedural concepts are concepts that require the selection of different 

actions on the environment to learn (such as driving). In the current 

study, objectification or construction of abstract concepts (concepts that 

do not exist in the environment but are formulated by the agent through 

the reception of environmental stimuli in his brain) is based on active 

inference. In the proposed model, which is an extension to the active 

inference model, the policies must be identified or generated by the agent 

because these policies do not already exist. The identification or 

construction of these policies to generate or objectify the abstract 

concepts would mean knowledge generation and learning how the 

concepts are generated. 
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1. Introduction 

The brain free energy model proposed by Karl Friston is among the models proposed for different 

brain functions [1, 2, 3]. This model has been proposed using a combination of physical views such 

as the energy and entropy [4, 5, 6], Bayesian inference and probabilities, information theory [7, 8], 

distribution functions (especially Dirichlet, categorical and normal distributions), Markov process 

[9, 10], Kullback-Leibler criterion, and considering the feature of brain self-organization in a 

complex but powerful model of the brain [11, 12].  The execution process based on this model is 

called active inference. 

According to the active inference model, environmental concepts are indirectly inferred in a 

probabilistic process based on the Markov model [4, 1]. In active inference, agents infer the actions 

that will result in visiting concepts of low expected free energy. It is done by sampling actions from 

a prior belief about policies according to how much expected free energy that policy will induce. 

The real concepts (concepts or states in the environment) are formulated and encoded in the agent’s 

brain as a probabilistic process [13] through the perception of sensory stimuli, which are related to 

the characteristics of each concept in the brain. In this case, the concepts are updated with the 

perception of new sensory data in Bayesian inference [14]. In this state, based on the free energy 

principle, the increase in the sensory exchange entropy (i.e., increasing the agent’s surprise) created 

in the brain must be minimized in the shortest possible time to prevent the brain’s collapse [1, 11]. 

Entropy is the uncertainty or surprise caused by the inconsistency of the prior model of the 

environment (previously coded concepts or agent’s prior beliefs [15]) with new sensory data 

(stimuli). The more different these new sensory perceptions with the characteristics expected by the 

concepts encoded in the brain are, the greater the entropy and surprise. Free energy of the brain is 

indicative of the difference between [16] the new sensory stimuli and the expected stimuli, and 

minimization of this energy in an inferential process [17]. According to Bayesian inference, it leads 

to concepts updating in the brain.  

Thus, the free energy minimization corresponds to evasion of the surprise that maximizes evidence 

for perceptual concepts. In this model, we will have three categories of uncertain variables [15]: 

hidden concepts present in the environment that should be perceived by the agent through stimulus, 

the concepts’ characteristics or stimuli, and the policies intended to minimize the free energy. The 

free energy minimization leads to learning of concepts or updating them. This learning takes place 

in two processes, namely perception, and action [18]. 

- Perception is changing the expectations to reduce entropy and prediction error. 

- Action is changing the agent’s composition by biological factor’s impact on the environment 

to change the sensory stimuli to avoid surprise. Under active inference, policies (sequences of 

actions) correspond to sequences of “control states”- a type of hidden concept that agents can 

directly inference. 

Crucially, under active inference, both action and perception are realizations of the single drive to 

minimize surprise. 

In summary, active inference casts perceptions as optimizing beliefs about the causes of sensory 

(stimuli) that minimize surprise (i.e. free energy) and action in terms of policies that minimize 

uncertainly (i.e. expected free energy) [19]. 
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In this case, if the learning process only takes place in the form of sensory perceptions from the 

environment or knowledge transfer from another agent without the need to implement a hierarchy 

of actions, the learning is of declarative type based on the Bayesian inference. Thus, we are faced 

with two sets of uncertain variables, i.e., the concepts and the stimuli. However, besides these cases, 

if we need to perform a set of actions for learning, then, in addition to the probabilistic Bayesian 

inference, in this state,  the variational Bayesian is used instead of the exact Bayesian it is required 

to adopt suitable policies in each step for learning and the free energy minimization (e.g. learning 

how to drive) [14, 20, 21]. This type of learning is of procedural type and inference is referred to as 

‘active inference’. The free energy minimization and active inference process variables are 

presented in Table 1. 

. Table 1. Variables of brain free energy model [19] 

Symbol Explanation 

o Sensory stimuli variable 

s Hidden concepts variable 

 Specific action on the time scale τ 

T All time scales 

 Time scales from the first scale to T scale 

π The selected policy for a specific action in each time scale 

 Set of policies related to each action in each time scale 

 Set of sensory stimuli in all time scales 

 Set of hidden concepts in all time scales 

 Encoding concepts in the brain [18] 

F Variable free energy 

 

In the active inference and utilization of variational Bayesian [11], instead of posterior probabilistic 

distribution of concepts, 𝑝(𝑠|𝑜) whose direct computationalization is not possible, we use the 

estimated distribution function q(s), and the free energy can be minimized by getting the behaviors 

of these two functions closer to each other. In this case, the agent needs presuppositions that are 

indicative of a generation of concepts based on the sensory stimuli [22, 23]. The active inference 

and free energy minimization lead to the evolution of the concepts generation model relative to time, 

in a way that maximize the evidence for performed observations (stimuli). Due to the generation of 

concepts from the perceived stimuli, practically, we are faced with a generative model of concepts 

from the stimuli called the generative model or probabilistic distribution p(s,o) [11, 1]. The 

generative model for Markov decision processes can be parameterized in probabilistic distribution 

𝑝(𝑠. 𝑜. 𝜋). 

μ is the internalized and encoded states of the model in the brain, and a is the action needed to impact 

the sensory stimuli to minimize the free energy. μ will change with the perception of new sensory 

data and in case of entropy change and identification of the difference between the perceived and 

predicted data.  

The hidden environmental concepts become parametric and are encoded by the internal states of the 

brain, i.e. μ. To select suitable actions, it is required to adopt policies ( )π  that lead to free energy 

minimization with selective actions [13]. These actions can change in the discrete time scales based 

( )τa =π τ

 1, 2, ...,τ T

( )π π,Tπ,1 π,2π = a ,a ,...a

o ,...,oT1
=   O

s ,..., sT1
=   S

μ
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on the new sensory perceptions [24], i.e., the actions will be a function of the intended policies in 

each time scale, such as τ. The set of the active inference process variables [25] based on selective 

policies and actions in different phases are presented in Tables 1 and 2.  

Table 2. The generative model functions and variables [19]  

Similarity matrix (mapping the concepts to stimuli) or likelihood matrix A 

Transfer matrix (mapping prior concepts to new ones) B 

The prior distribution of stimuli τC 

The prior distribution of concepts (prior beliefs) D 

Precision parameter γ 

Dirichlet parameters a,b,d 

( ) ( ) ( ) ( ) ( )p A = Dir(a), p B = Dir b , p D = Dir d 

( ) ( ) ( ) ( )p o s = Cat A , p s s ,π = Cat Bτ τ τ πττ+1
 

( ) ( ) ( ) ( ) ( )

( )

p o = Cat(C), p s = Cat D , p π = σ -γG(π)τ 1

T
G(π)= G π,τ

τ


 

 

In Table 2, the G function is the expected free energy at future time step τ under policy π [11, 26].  

The agent's perception and learning of concepts in the action-perception cycle is summarized in 

Figure 1. 

 

Figure 1. Generation process and model in the interaction between the environment and agent under the Bayesian 

inference and agent’s actions on the environment [21] 

 

The left block in Figure 1 is indicative of the environment, and the right block is indicative of the 

agent (brain). There are real concepts or states in the environment (s*) whose sensory stimuli enter 

the environment under a generative process. After the agent perceives these stimuli [27], it is 

possible for the agent to identify or generate them under the generative model [28]. Thus, the 

assumption is that the concepts are hidden in the environment and can be generated by observations 

perceived by the agent (generative model). Regarding the presence of different factors such as noise, 

interference, the agent’s inexactitude, various physical factors affecting sensory stimuli, limitation 

of different senses in the agent such as visual or auditory problems, perception of the sensory stimuli 

generated in the environment is done under an uncertain and probabilistic process [13] with the 

probability p(o). 

There are two connecting links between the environment and the agent; one from the environment 

to the agent to transfer the uncertain sensory stimuli, and the other from the agent to the environment 



  25 J. Ghasimi et al. / Computational Sciences and Engineering 2(1) (2022) 21-32   25 

  

to select the policy and impact the environment so that he can fulfill procedural learning under an 

uncertain process and variational Bayesian inference known as the active inference. 

Regarding the agent’s initial prediction of the concepts that generate these perceptual stimuli, 

generating or updating the concept in the agent’s brain becomes viable, and in case there is no prior 

prediction of these stimuli, it is required to generate a new concept by combining the stimuli 

perceived by the agent. This process is done under the complete Bayesian inference. If during the 

learning, the stimuli perceived by the agent are associated with impacting the environment or being 

influenced by it (such as step-by-step learning of driving), and the fact that this learning is allowed 

by different exercises and adoption of various control polices in several stages, , it is required that 

the agent adopt policies in each step that beside impacting the environment [29, 30], he learns the 

procedural concepts or actions (a) such as driving.  

Since the generative model of concepts from the stimuli is based on the selected policies, it can be 

shown as a joint probability density function in Eq.(1) [31, 16]. 

         𝑝(𝑜. 𝑠. 𝜋) = 𝑝(𝑜|𝑠)𝑝(𝑠|𝜋)𝑝(𝜋)                                                                                              (1)                                      

In this model, the assumption is that the concepts and stimuli exist in the environment in a realistic 

and certain form, and they are inferred and generated in an uncertain and probabilistic manner. The 

generated concepts should be one of the concepts which are most likely to exist in the environment. 

The innovation in the current study is the attention paid to concepts that can be generated in agent’s 

brain in an abstract form by the perception of the sensory stimuli from the environment, and they 

can be considered in the improvement of the model for knowledge generation by active inference 

process and generation of abstract concepts in a Bayesian inference process.  In this context, 

knowledge generation means learning how to objectify and construct concepts produced in the 

agent’s mind. To objectify an abstract concept that does not exist in the environment and is produced 

in the brain of an innovative agent, it is necessary for the agent to discover and clarify the 

relationships between the components of the concept, its applications, and how it works. It means 

the production of knowledge by the agent.    

 The free energy equations in the perception and action processes can be written as Eq.(2) [1]: 

 

      Perception to optimize the bound          

F = Divergence + Surprise

= D (q(s μ ) p(s o )) - lnp(o)KL

μ = argmin Divergence
μ








 

(2) 

        Action to minimize the surprise border ( )( ) ( )( )

F = Complexity - Accuracy

= D q p s - < lnp o a s,m >KL q

a = arg max Accuracy
a








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In these equations, q is the estimated probability function by the agent from the concepts existing in 

the environment that is approximately estimated by the agent due to the impossibility of calculating 

the posterior function 𝑝(𝑠|𝑜). The operator DKL is the divergence between these functions 

(Kullback-Leibler divergence). The closer this divergence to zero, the closer the behavior of the 

functions of q and 𝑝(𝑠|𝑜). 

2. Generation of Abstract Concepts 

In the active inference model, generation of real concepts is done by environmental stimuli, while 

we know that in the mind of an agent, by perceiving sensory stimuli, it is possible to produce 

concepts that do not exist in the environment (abstract concepts). Obviously, human agents such as 

scientists, inventors, innovators, artists, and creative people can generate more abstract and non-

objective concepts by perceiving the sensory stimuli from the environment than others. Finally, they 

can present innovation by objectifying or generating their abstract concepts. For example, before 

making their inventions, the inventors should mentally produce abstract concepts and then, in a trial 

and error and learning process, objectify and make these inventions.  

Accordingly, the differences between the normal and innovative people who generate knowledge 

can be mentioned as below [32, 33]: 

- Innovative people, with the perception of the environmental stimuli are much abler to generate 

abstract concepts that do not exist in the environment compared to normal people.  

- The innovative people can create new concepts and create knowledge related to their abstract 

concepts by objectify them.  

- Normal people are usually satisfied with the same real concepts in the environment and have 

no special ability to expand the abstract concepts. In other words, the environment or world 

of such people is the same environment they live in, and the existence of concepts in their 

minds is formulated through adaptation with real concepts.  

- Innovative people's world is not limited to the real world, but they can focus on a more 

extensive world by generating abstract concepts and then objectifying or making them. In 

other words, creative people act beyond the environment to develop their abstract concepts. 

Both innovative and normal people act in a probabilistic method based on the Bayesian inference in 

generating mental concepts, whether they are real or not, and update these concepts with the 

perception of new sensory stimuli [15].  

3. Generation of Knowledge and New Concepts 

The agent can innovate or generate knowledge based on mental inferences and abstract concepts or 

objectify his abstract knowledge. This type of objectification is equivalent to the generation of 

concepts that have not previously existed in the environment and have been generated based on 

stimuli perceived from the environment. These concepts can include various innovative, 

explorative, or artistic achievements generated in the procedural process by an agent who has 

previously generated them in his mind in an abstract form [33]. This procedural process is different 

from the generation or learning of real concepts existing in the environment, which are explained in 

the following: 
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- In learning the procedural concepts, the knowledge of generation or method of learning these 

concepts already exists, and the agent is required to learn this knowledge by transferring the 

knowledge to implement the required procedures. Since we need different actions on the 

environment in these conditions, the generation of concepts is done in a hierarchy of selective 

actions (an outcome of the agent’s predicted policies) based on which the agent can predict 

his learning. Regarding the existence of previous knowledge, the policies the agent adopts are 

pre-determined, and the agent's duty is to properly select them in terms of prior and posterior 

and settings relevant to each policy (knowledge generation process). Whereas, when 

objectifying the abstract concepts, the agent is required to generate the knowledge. Thus, the 

policy selected by the agent must be discovered and implemented by himself. These policies 

are implemented through error and trial or based on the staged inference in implementing 

procedures leading to innovation. 

- In normal learning, the learning takes place through minimization of free energy by the agent, 

while in the learning and innovation, first, the agent should discover and find different actions 

and policies by energy consumption. Then, by carrying these policies out in the form of 

environmental actions, he can fulfill his knowledge and innovation relevant learning by free 

energy minimization.  

- In addition to the generation of new and beyond-environmental concepts, innovative people 

can create extensive changes in the environment. 

- In the free energy model of brain and active inference, normal people can acquire skills by 

free energy minimization that leads to spontaneity or creation different skills in the 

environment. In contrast, in the proposed model, which is an extension of the active inference 

model, the innovative people, by the generation of schemata and knowledge and skills that 

did not previously exit, fulfill this learning process and knowledge generation through 

generation or creation of new actions. 

4. Model of Knowledge Generation and Learning in Innovative People  

Learning and knowledge generation by an agent based on the characteristics mentioned in previous 

section takes place in the two branches: generation or construction of real concepts (model of brain 

free energy), and construction or generation of abstract concepts, knowledge generation, and skill 

acquisition. In the free energy model and the active inference, we only have the first branch, while 

in the model proposed in the current study, both branches have been considered, and a model for 

knowledge generation in the innovative and creative agents has been presented.  

The proposed model has been shown in Figure 2. The left side shows the environment and 

generation of real stimuli from real concepts. The stimuli transmitted from the environment to the 

agent are perceived with the probability p(o). The agent can generate real and abstract concepts in 

two separate branches by these stimuli. In one branch, generation of real concepts and acquiring 

existing skills through knowledge acquisition and generative model 𝑝(𝑜. 𝑠. 𝜋) is fulfilled. This 

generative model can lead to the transfer and acquisition of declarative knowledge, or under a 

probabilistic process and selection of different policies (π) that are pre-determined, lead to the skill 

acquisition. In the other branch, during the generative and abstract process 𝑝(𝑜. 𝑠′. 𝜋′), the agent 

can generate abstract concepts (s') in his mind which do not exist in the real world, and finally, these 

concepts can be encoded in his brain without the existence of a real form. 
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Figure 2. Real concepts generation and learning process in blue and abstract concepts in pink, under the framework of 

Bayesian inference for declarative concepts and active inference for procedural concepts and knowledge generation 

 

If the agent is from innovative type, he can do this with the aim of objectification or physical 

construction of his abstract concepts during the learning and knowledge generation stage. In this 

method, similar to the basic skill acquisition process, it is required to realize the objectification and 

generation of concepts with a hierarchy of policies.  However, unlike the basic state, these policies 

are not predetermined, and the agent should himself generate these policies by consuming energy. 

This policy generation and its ultimate utilization for constructing and objectifying the concepts will 

mean knowledge generation or innovation. In the free energy model of brain, we only have concept 

generation from the stimuli while the policies are pre-determined; however, in the proposed model, 

there is both concept generation and policy generation. This state is shown in Figure 2, which is 

presented as a more detailed part of Figure 3. 

Generation of new concepts by the agent can impact or change the environment either limitedly or 

extensively. Figure 3 shows a general scheme of some policies considered by the agent to generate 

new environmental concepts. For example, for generating abstract concepts, the agent can predict 

the components and their relationships, how the environment impacts them, and how they are 

assembled in the framework of his policies and then construct or produce them. Likewise, if his 

selected policies are not in line with his predictions in the generation of the concept, and he does 

not receive an appropriate answer, he can change his policy under the active inference process. This 
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collection of policies which finally allow for the objectification of abstract concepts can become a 

new knowledge for innovation or invention. 

 

Figure 3. Active inference process in the generation of abstract concepts with the production of new policies and 

knowledge associated with learning 

 

In the active inference model, the real concepts do not go through any changes, however, their 

transmitted stimuli may go through different changes over time, while in the proposed model, the 

abstract concepts are generated by the agent based on some specifically predicted characteristics 

and stimuli, and based on his efforts for the objectification of them, and these concepts are changed 

under different and variable policies to achieve the predicted objectives. In this model, there is the 

expectation that concepts are changed when objectifying them to achieve the goals intended by the 

agent, while the concepts’ stimuli or characteristics can remain unchanged. In other words, the 

abstract concepts can change from the abstraction phase to objective production, based on the 

agent’s knowledge which is an outcome of his selected policies.  

Figure 3 shows the concept generation by the agent to their objectification in several stages. These 

stages include selecting the concept’s components, connecting and assembling the components, and 

objectification and construction. If the characteristics of this type of generation are not consistent 

with the characteristics initially intended by the agent, he has to revise his policy and adopt a new 

one for the components and their assembly to fulfill the generation of his abstract concept. This 

process has been shown in the cycle of selecting components, assembling them, objectifying the 
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concept and placing it in the environment, lack of appropriate answer, modification of the 

components, and return to the selection of components. This cycle indicates new learning processes 

and, finally, the generation of knowledge of objectification of concepts that does not already exist 

in the real environment.  

Due to the fact that the active inference model is a type of generative model, the proposed model 

that is developed from this model is categorized under generative models. The difference is that in 

the proposed model, the generation of abstract concepts is done by free energy minimization (as in 

the model of active inference), while the generation of policies related to the objectification of 

abstract concepts is fulfilled by energy consumption in the brain. In the proposed model, we will 

have three stages: In the first stage, abstract concepts are generated by free energy minimization; in 

the second stage, through energy consumption, different policies are generated by the agent for 

objectification; and in the third stage, based on the formulated policies and by free energy 

minimization, abstract concepts are objectified. 

This model is unsupervised learning that can update itself using a combination of different stimuli 

as a generative model can generate new concepts of unsupervised received stimuli. In this model, 

the active inference process is used in the generation of procedural and conditional knowledge and 

the perception process is used to generate declarative knowledge. 

 

Figure 4. We have illustrated the active inference model graphically, and emphasized the propagation of beliefs 

through time. Starting from the back of the brain, sensory areas send messages to higher regions encoding beliefs 

about the causes of those sensations. These beliefs are propagated forwards in time, allowing for a plan of action into 

the future (presumably evaluated in cortico-striatal loops). Once a policy has been inferred, this is used to select an 

action (u) [34] 

 

As shown in Figure 4, the active inference model fully correlates between variables, how concepts 

are inferred, the presence of different policies, and neuroscience characteristics of the brain in terms 

of specialized areas in the brain such as perceptual region and prefrontal cortex and memory. In this 

figure, the areas associated with the active inference model variables are highlighted. For example, 

the cerebellum as the nucleus for producing and recording actions and the occipital region as the 

receptor for sensory stimuli (observations) are completely separable. For this reason, in the proposed 
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model of Figure 2, there is an appropriate compromise between the classification of different types 

of memory and the neuroscience model of active inference of the brain. The actions are represented 

by the variable u in the cerebellum in this figure. 

The evaluated and computational model of active inference is considered a logical benchmark for 

the proposed model. In practice, the foundation and validity of both models are the same. 

5. Conclusion 

The model of brain free energy is proposed with the assumption of real concepts and environment. 

And it properly presents skill acquisition or declarative learning, and knowledge transfer under the 

Bayesian inference, brain free energy characteristic, and entropic changes. However, this model 

needs to be developed in terms of knowledge generation and provision of abstract concepts by the 

agent, which is what presented in the proposed model in the current study. According to this model, 

it can be extended in two branches of real and abstract concepts with latter considering the skill 

acquisition, objectification of the abstract concepts, and knowledge generation. Both branches act 

under the active inference, while in the real concepts branch, we take the stimuli change and 

stabilization of the concepts into consideration, and in the abstract concepts branch, we consider the 

change in concepts and stabilization of the stimuli to generate knowledge and achieve the agent’s 

goals.  
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