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Abstract. In this paper, new upper bounds for the ultraspherical coefficients of differentiable functions
are presented. Using partial sums of ultraspherical polynomials, error approximations are presented to
estimate differentiable functions. Also, an error estimate of the Gauss-Jacobi quadrature is obtained and
we state an upper bound for Legendre coefficients which is sharper than upper bounds proposed so far.
Numerical examples are given to assess the efficiency of the presented theoretical results.
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1 Introduction

The estimation of the ultraspherical coefficients has fascinated a great attention in recent years because
of their importance in spectral methods and the approximation theory [1, 2]. Suppose that a suitably
smooth function f has the following expansion

f (x) =
∞

∑
n=0

unP(α)
n (x), α >−1, (1)

where P(α)
n (x), n = 0,1, . . ., denotes the ultraspherical polynomials and un is the ultraspherical coefficient

defined by

un =
1
γn

∫ 1

−1
(1− x2)α f (x)P(α)

n (x)dx, (2)

in which,

γn =
22α+1Γ2(α +1)Γ(n+2α +1)

n!(2n+2α +1)Γ2(2α +1)
. (3)
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Ultraspherical polynomials are considered as general forms of some famous orthogonal polynomials
such as the Chebyshev, Legendre, and Gegenbauer polynomials [1]. It is demonstrated that the conver-
gence rate of the Jacobi expansion and Gauss-type quadrature depends on the convergence rate of the
Jacobi coefficients [1,3,5–7]. For example, in [1], the authors utilized the following inequality to present
an approximation error bound for a function f (x)

‖ f (x)− fN(x)‖L2
w[−1,1] ≤

∞

∑
n=N+1

|un|
√

γn, (4)

where fN(x) = ∑
N
n=0 anP(α)

n (x) is the partial sums of ultraspherical polynomials.
According to the fundamental importance of the ultraspherical polynomials, a number of researchers

have recently deepened studies on the estimation of the ultraspherical coefficients. As an instance, Xiang
[6] proposed an upper bound for the Jacobi coefficients and then obtained some approximation error
bounds for differentiable functions and the Jacobi-Gauss quadrature.

In this paper, an upper bound is established for the ultraspherical coefficients of differentiable func-
tions, which is sharper compared to that given in [6]. For this purpose, we benefit from the telescoping
series to obtain our suggested upper bound. Moreover, we show a new approximation error bound for a
differentiable function f (x), which exhibits a sharper trend in comparison with the trend observed for that
mentioned in (4). Some numerical examples are also provided to verify the effectiveness of our upper
bounds. Furthemore, it is discussed that in some cases, our proposed upper bound for the ultraspherical
coefficients is much smaller than that presented by Xiang [6].

The rest of this paper is organized as follows. In Section 2, we review some basic definitions and
results of ultraspherical polynomials. In Section 3, we derive a new upper bound for the ultraspherical
coefficients of differentiable functions. Also, we provide a new error estimate on the approximation of a
function f (x) by partial sums of ultraspherical polynomials. In Section 4, numerical results are presented
and we compare the proposed upper bound by the upper bounds were presented in [6]. Furthermore, we
provide a new and sharper upper bound for Legendre coefficients which is sharper than the upper bounds
proposed so far. In Section 5, by using the asymptotic of the ultraspherical coefficients, a new error
estimate on the Jacobi-Gauss quadrature is derived.

2 Preliminary results on ultraspherical polynomials

In this section, we conduct a brief review on some results for the ultraspherical polynomials. The ultra-
spherical polynomials P(α)

n (x) are a subclass of well-known Jacobi polynomials P(α,β )
n (x) with α = β .

The relation between ultraspherical polynomials and Jacobi polynomials is as follow (see [1])

P(α)
n (x) =

Γ(α +1)Γ(n+2α +1)
Γ(2α +1)Γ(n+α +1)

P(α,α)
n (x), α >−1. (5)

The Jacobi polynomials satisfy the following inequality for all x ∈ [−1,1] [2, Theorem 3.24].

|P(α,α)
n (x)| ≤

{ 1√
n , −1 < α < −1

2 ,

|P(α,α)
n (1)|= Γ(n+α+1)

Γ(α+1)Γ(n+1) ,
−1
2 ≤ α.

(6)
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Also, the following relation holds [2, eq. 3.109]

∫ 1

−1

(
P(α,α)

n (x)
)2

(1− x2)αdx = γn. (7)

The following theorems will be useful.

Theorem 1. [1, Theorem 5.1] Let

f (r)(x) =
∞

∑
n=0

u(r)n P(α)
n (x), (8)

in which,

u(r)n =
1
γn

∫ 1

−1
(1− x2)α f (r)(x)P(α)

n (x)dx. (9)

The following relation holds among the ultraspherical coefficients

u(r−1)
n =

1
2n+2α +1

(
u(r)n+1−u(r)n−1

)
, n≥ 1. (10)

Suppose U =

√∫ 1
−1

∣∣ f (r+1)(x)
∣∣2 dx. The following lemma provides an upper bound for u(r)n .

Theorem 2. [6, Lemma 2.2] Assume that f , f ′, . . . , f (r) are continuous on [−1,1]. If U < ∞ for some
r ≥ 0, then ∣∣∣u(r)n

∣∣∣≤ δαλn,αU, (11)

where

δα =

√
2|2α +1|Γ(α +2)Γ2(2α +1)

2αΓ(2α +3)Γ2(α +1)
, λn,α =

√
(n−1)!(2n+2α +1)

Γ(n+2α +2)
.

In [6], Xiang proposed the following upper bound for the ultraspherical coefficients of differentiable
functions.

Theorem 3. [6] Assume that f , f ′, . . . , f (r) are continuous on [−1,1]. If U < ∞ for some r ≥ 1, then

|un| ≤
{

2rδαλn+r,αUβn,r,α , −1 < α ≤ −1
2 ,

2rδαλn−r,αUβn,r,α ,
−1
2 < α,

(12)

where

βn,r,α =
1

(2n+2α +1) · · ·(2n+2α−2r+3)
.
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3 New upper bound for the ultraspherical coefficients

Now, we provide the following upper bounds for ultraspherical coefficients.

Theorem 4. Assume that r≥ 1 and f , f ′, . . . , f (r) are continuous on [−1,1]. If U < ∞ and n≥ r+1, then

|un| ≤
{

2rδαλn+r,αUθn,r,α , −1 < α ≤ −1
2 ,

2rδαλn−r,αUθn,r,α ,
−1
2 < α,

(13)

where

θn,r,α =
1

∏
r
j=1(2n+2α−2r+4 j−1)

.

Proof. From (10) and Lemma 2, we have

|u(r−1)
n | ≤

(
|u(r)n+1|+ |u

(r)
n−1|

)
2n+2α +1

≤ (δαUλn+1,α +δαUλn−1,α)

2n+2α +1
. (14)

The coefficients λn,α are increasing for −1 < α ≤ −1
2 and are decreasing for −1

2 < α . So, we have

|u(r−1)
n | ≤

{
2δαUλn+1,α
2n+2α+1 , −1 < α ≤ −1

2 ,
2δαUλn−1,α
2n+2α+1 , −1

2 < α.
(15)

If we apply (15) in (10), we obtain

|u(r−2)
n | ≤

(
|u(r−1)

n+1 |+ |u
(r−1)
n−1 |

)
2n+2α +1

≤

{ 2δαUλn+2,α
(2n+2α+1)(2n+2α+3) +

2δαUλn,α
(2n+2α−1)(2n+2α+1) −1 < α ≤ −1

2
2δαUλn,α

(2n+2α+1)(2n+2α+3) +
2δαUλn−2,α

(2n+2α−1)(2n+2α+1)
−1
2 < α

≤

{ 2δαUλn+2,α
(2n+2α+1)(2n+2α+3) +

2δαUλn+2,α
(2n+2α−1)(2n+2α+1) , −1 < α ≤ −1

2 ,
2δαUλn−2,α

(2n+2α+1)(2n+2α+3) +
2δαUλn−2,α

(2n+2α−1)(2n+2α+1) ,
−1
2 < α,

=

{ 4δαUλn+2,α
(2n+2α+3)(2n+2α−1) , −1 < α ≤ −1

2 ,
4δαUλn−2,α

(2n+2α+3)(2n+2α−1) ,
−1
2 < α.

If we continue the above process, by easy computation for integers k ≥ 3, we obtain the following upper
bound for u(r−k)

n

|u(r−k)
n | ≤


2kδα λn+k,αU

(2n+2α−2k+3)···(2n+2α−3)(2n+2α+1)···(2n+2α+2k−1) , −1 < α ≤ −1
2 ,

2kδα λn−k,αU
(2n+2α−2k+3)···(2n+2α−3)(2n+2α+1)···(2n+2α+2k−1) ,

−1
2 < α.

Then (12) holds when k = r. So the result holds.

Now, using Theorem 4, we provide a sharper bound on the approximation error of f (x).
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Theorem 5. Assume that r ≥ 2 and f , f ′, . . . , f (r) are continuous on [−1,1]. If U < ∞ and N ≥ r+ 1,
then

‖ f (x)− fN(x)‖L2
w[−1,1] ≤


2r− 1

2 U
(r−1)(N+2α+2)∏

r−1
j=1(2N+2α−2r+4 j−1)

, −1 < α ≤ −1
2 ,

2r−1U
(r−1)(N−r)∏

r−1
j=1(2N+2α−2r+4 j−1)

, −1
2 < α < 0,

2r−1U
√

(N+2α+1)···(N+2α−r+2)
(N+1)N···(N−r+2)

(r−1)(N−r)∏
r−1
j=1(2N+2α−2r+4 j−1)

, α ≥ 0.

(16)

Proof. Applying the inequality (4), we have

‖ f (x)− fN(x)‖L2
w[−1,1] ≤

∞

∑
n=N+1

|un|
√

γn

≤

 ∑
∞
n=N+1

2rδα λn+r,αU
√

γn

∏
r
j=1(2n+2α−2r+4 j−1) −1 < α ≤ −1

2 ,

∑
∞
n=N+1

2rδα λn−r,αU
√

γn

∏
r
j=1(2n+2α−2r+4 j−1)

−1
2 < α.

(17)

Using the properties of the gamma function, for n≥ r+1 we have

δαλn+r,α
√

γn ≤

√
(2n+2α +2r+1)

(n+2α +2)(n+2α +1)(2n+2α +1)
≤

√
2

(n+2α +1)
, (18)

and with the results obtained in [6]

δαλn−r,α
√

γn =

√
(n+2α) · · ·(n+2α− r+1)(2n+2α−2r+1)

n · · ·(n− r)(2n+2α +1)(n+2α− r+1)

≤

{ 1
n−r−1

−1
2 < α < 0,

1
n−r−1

√
(n+2α)···(n+2α−r+1)

n(n−1)···(n−r+1) 0≤ α.
(19)

For n≥ N +1

√
(n+2α) · · ·(n+2α− r+1)

n(n−1) · · ·(n− r+1)
≤

√
(N +2α +1) · · ·(N +2α− r+2)

(N +1)N · · ·(N− r+2)
. (20)
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Therefore, for −1 < α ≤ −1
2 , n≥ r+1 and r ≥ 2, (17) becomes

‖ f (x)− fN(x)‖L2
w[−1,1] ≤ 2rU

∞

∑
n=N+1

√
2

(n+2α +1)∏
r
j=1(2n+2α−2r+4 j−1)

≤ 2rU
(N +2α +2)

∞

∑
n=N+1

√
2

∏
r
j=1(2n+2α−2r+4 j−1)

=
2rU

(N +2α +2)

∞

∑
n=N+1

√
2

(2n+2α +2r−1)r ∏
r
j=1

(
1− 4r−4 j

(2n+2α+2r−1)

)
≤ 2rU

(N +2α +2)∏
r
j=1

(
1− 4r−4 j

(2N+2α+2r−1)

) ∞

∑
n=N+1

√
2

(2n+2α +2r−1)r

≤ 2rU

(N +2α +2)∏
r
j=1

(
1− 4r−4 j

(2N+2α+2r−1)

) ∫ ∞

N

√
2

(2x+2α +2r−1)r dx

=
2r− 1

2 U
(r−1)(N +2α +2)∏

r−1
j=1(2N +2α−2r+4 j−1)

. (21)

Then (16) holds for −1 < α ≤ −1
2 . By the similar method as above, the result holds for α > −1

2 .

4 Comparison results

In the following, comparison results are provided to investigate the quality of the upper bounds discussed
in this paper.

Remark 1. The aim of this remark is to draw a comparison between our proposed upper bound (13)
and the upper bound (12). Note that the only difference between the upper bounds (12) and (13) are
the denominators of the fractions which the denominators of the fractions corresponding to the upper
bounds (12) and (13) are denoted by βn,r,α and θn,r,α , respectively.

Moreover, the numerical results for the values of βn,r,α and θn,r,α are listed in Table 1. The numerical
results obtained from this table indicate that in all cases, the value of θn,r,α is smaller than that of βn,r,α .
In particular, for the case that r is close to n, the value of θn,r,α is much smaller than βn,r,α . Therefore, it
reveals from this remark that the proposed upper bound (13) is sharper than the upper bound (12).

Table 1: A comparison between the values of βn,r,α and θn,r,α .
n r α βn,r,α θn,r,α n r α βn,r,α θn,r,α

5 2 0 0.01 0.008 20 10 -0.5 1.46×10−15 1.49×10−16

10 6 0 6.87×10−8 1.66×10−8 25 20 -0.5 7.38×10−30 1.62×10−33

20 15 0 7.93×10−22 3.26×10−24 30 27 -0.5 1.69×10−40 1.82×10−46

5 2 0.5 0.0083 0.0071 20 10 1 5.6×10−16 6.78×10−17

10 6 0.5 2.2×10−5 1.5×10−6 25 20 1 8.56×10−31 3.42×10−34

20 15 0.5 4.3×10−22 2.06×10−24 30 27 1 8.42×10−42 2.35×10−47
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Example 1. In this example, we compare the approximation error of fN(x) for two functions f (x) = x20

and f (x) = 1+ x− 1
2 e−5(x− 1

2 )
2
. Figure 1 shows the numerical results of comparing the approximation

error of fN(x) obtained from Theorem 5 and [6, Theorem 2.1] for these two functions.
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Figure 1: Approximation error of fN(x) evaluated by Theorem 5 and [6, Theorem 2.1].

4.1 A new and sharper bound for Legendre coefficients
Legendre polynomials Pn(x) are the special cases of ultraspherical Jacobi polynomials with α = 0 and
satisfies the following inequality [4]:

(1− x2)
1
4 |Pn(x)|<

√
2

π(n+ 1
2 )
, x ∈ [−1,1], n≥ 0. (22)

In [5, Theorem 2.2], Wang presented a new upper bound for Legendre coefficients of differentiable
functions which is sharper than the upper bounds proposed so far.

Theorem 6. [5] Suppose that f , f ′, . . . , f (r−1) are absolutely continuous and the rth derivative f (r) is of
bounded variation and

Vr = ‖ f (r)‖1 =
∫ 1

−1

| f (r+1)(x)|
4
√

1− x2
< ∞. (23)

Then for n≥ r+1

|an| ≤
2Vr√

π(2n−2r−1)

r

∏
j=1

hn− j, (24)

where hn− j = (n− j+ 1
2)
−1.

By using (10), (22) and similar method as in the proof of Theorem 4, we can obtain a sharper upper
bound as follows:

Theorem 7. Suppose f , f ′, . . . , f (r−1) are absolutely continuous and the rth derivative f (r) is of bounded
variation. Furthermore, let Vr =

∫ 1
−1

f (r+1)(x)
4√1−x2

< ∞. Then for n≥ r+1

|un| ≤


√

2(n+r+ 3
2 )Vr

(n−r+ 1
2 )···(n−

1
2 )(n+

3
2 )···(n+r+ 1

2 )
√

π
, r odd,

√
2(n+r+ 3

2 )Vr

(n−r+ 1
2 )···(n−

3
2 )(n+

1
2 )···(n+r+ 1

2 )
√

π
, r even.

(25)
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Proof. The Legendre coefficient of the function f (r+1)(x) is defined by

u(r+1)
n = (n+

1
2
)
∫ 1

−1
f (r+1)(x)Pn(x)dx. (26)

By using (22), we have the following bound

∣∣∣u(r+1)
n

∣∣∣= (n+
1
2
)
∫ 1

−1

∣∣∣ f (r+1)(x)
∣∣∣ |Pn(x)|dx≤

√
2(n+ 1

2 )√
π(n+ 1

2 )

∫ 1

−1

∣∣∣ f (r+1)(x)
∣∣∣

4√1− x2
dx =

Vr

√
2(n+ 1

2 )√
π

. (27)

From (10) and (27), we obtain the following upper bound for u(r)n

∣∣∣u(r)n

∣∣∣≤ 1
2n+1

(∣∣∣u(r+1)
n+1

∣∣∣+ ∣∣∣u(r+1)
n−1

∣∣∣)≤ Vr

√
2(n+ 3

2 )√
π(n+ 1

2 )
. (28)

By using the similar methods as in the proof of Theorem 4 and (10), the result holds.

5 New error estimate for Gauss-Jacobi quadrature

The Gauss-type quadrature has been studied in several articles for analytic and differentiable functions
on [−1,1] [3, 6, 7]. In [3, 6] the authors obtained error estimates for the Gauss-type quadrature with the
weight function w(x) = 1 using the Chebyshev series. Although the decay of the Chebyshev coefficients
is faster than the other Jacobi coefficients, but the proposed error estimates are for a specific class of
differentiable functions. The error estimates has been obtained for a differentiable function f such that
f , f ′, . . . , f (r−1) are absolutely continuous and the rth derivative f (r) is of bounded variation and

Vr = ‖ f (r)‖1 =
∫ 1

−1

| f (r+1)(x)|√
1− x2

< ∞. (29)

In this section, we estimate the Gauss-Jacobi quadrature to numerically compute integrals of the form∫ 1
−1(1−x2)α f (x)dx. We obtain an error estimate for Gauss-Jacobi quadrature of a differentiable function

f such that f , f ′, . . . , f (r) are continuous on [−1,1] and U < ∞.
The Gauss-Jacobi quadrature formula in the ultraspherical case associated to the weight function

w(x) = (1− x2)α on [−1,1] satisfies

I[ f ] =
∫ 1

−1
(1− x2)α f (x)dx≈

N

∑
i=1

wi f (xi) = QGJ
N [ f ]. (30)

Now we provide an error bound for Gauss-Jacobi quadrature of differentiable functions. Using the
orthogonality of the Jacobi polynomials leads to

I[Pα
n (x)] =

∫ 1

−1
(1− x2)αPα

n (x)dx =
∫ 1

−1
(1− x2)αPα

n (x)Pα
0 (x)dx = 0, n≥ 1. (31)

Since the Gauss quadrature is accurate for polynomials of degree ≤ 2N−1, therefore

I[Pα
n (x)] = QGJ

N [Pα
n (x)] = 0, 0≤ n≤ 2N−1, (32)
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So, we can see that∣∣I[ f ]−QGJ
N [ f ]

∣∣≤ ∞

∑
n=0
|un|
∣∣I[Pα

n (x)]−QGJ
N [Pα

n (x)]
∣∣= ∞

∑
n=2N
|un|
∣∣QGJ

N [Pα
n (x)]

∣∣ . (33)

So, (33) implies that the error bound for Gauss-Jacobi quadrature depends on the Jacobi coefficients. In
the following theorem, we provide an error estimate on the Gauss-Jacobi quadrature for −1 < α ≤ 0.

Theorem 8. Let f , f ′, · · · , f (r) be continuous on [−1,1] and U < ∞. Then for N > 2r+1
4 and r ≥ 2

∣∣I[ f ]−QGJ
N [ f ]

∣∣≤


2rΓ(α+1)δα γ0U
√

2
(r−1)Γ(2α+1)

√
N ∏

r−1
j=1(4N+2α−2r+4 j−3)

, −1 < α < −1
2 ,

2rδαUγ0
√

2
(r−1)Γ(2α+1)N ∏

r−1
j=1(4N+2α−2r+4 j−3)

, α = −1
2 ,

2rδαUγ0
√

2
(r−1)Γ(2α+1)∏

r−1
j=1(4N+2α−2r+4 j−3)

, −1
2 < α ≤ 0.

(34)

Proof. By using (33) we have∣∣I[ f ]−QGJ
N [ f ]

∣∣= | ∞

∑
n=2N

unQG
N [P

α
n (x)]| ≤

∞

∑
n=2N
|un||QGJ

N [Pα
n (x)]|. (35)

Now, we compute
∣∣QGJ

N [Pα
n (x)]

∣∣ to obtain an upper bound for Gauss-Jacobi quadrature. Then

∣∣QGJ
N [Pα

n (x)]
∣∣= | N

∑
i=1

wiPα
n (xi)| ≤

N

∑
i=1

wi|Pα
n (xi)|. (36)

Using (5) and (6) and by easy computations we have the following inequality for all x ∈ [−1,1]

|Pα
n (x)| ≤

{
Γ(α+1)Γ(n+2α+1)

Γ(2α+1)Γ(n+α+1)
√

n , −1 < α < −1
2 ,

Γ(n+2α+1)
Γ(2α+1)Γ(n+1) ,

−1
2 ≤ α.

(37)

So (36) becomes

∣∣QGJ
N [Pα

n (x)]
∣∣≤{ Γ(α+1)Γ(n+2α+1)

Γ(2α+1)Γ(n+α+1)
√

n ∑
N
i=1 wi, −1 < α < −1

2 ,
Γ(n+2α+1)

Γ(2α+1)Γ(n+1) ∑
N
i=1 wi,

−1
2 ≤ α,

=

{
Γ(α+1)Γ(n+2α+1)

Γ(2α+1)Γ(n+α+1)
√

n

∫ 1
−1(1− x2)αdx, −1 < α < −1

2 ,
Γ(n+2α+1)

Γ(2α+1)Γ(n+1)

∫ 1
−1(1− x2)αdx, −1

2 ≤ α.
(38)

Combining (5) with (7), we obtain∫ 1

−1
(1− x2)αdx =

∫ 1

−1
(Pα

0 (x))2 (1− x2)αdx = γ0. (39)

So by applying (38) and (39) we obtain

∣∣I[ f ]−QGJ
N [ f ]

∣∣≤{ ∑
∞
n=2N

Γ(α+1)Γ(n+2α+1)γ0
Γ(2α+1)Γ(n+α+1)

√
n |un|, −1 < α < −1

2 ,

∑
∞
n=2N

Γ(n+2α+1)γ0
Γ(2α+1)Γ(n+1) |un|, −1

2 ≤ α.
(40)
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If −1 < α < −1
2 , we can see that Γ(n+2α+1)

Γ(n+α+1) < 1 and λn+r,α ≤
√

2. So (40) becomes

∣∣I[ f ]−QGJ
N [ f ]

∣∣≤ ∞

∑
n=2N

2rΓ(α +1)δαλn+r,αγ0U
Γ(2α +1)

√
n∏

r−1
j=1(2n+2α−2r+4 j−1)

≤
∞

∑
n=2N

2rΓ(α +1)δαγ0U
√

2
Γ(2α +1)

√
n∏

r−1
j=1(2n+2α−2r+4 j−1)

≤ 2rΓ(α +1)δαγ0U
√

2
Γ(2α +1)

√
N

∞

∑
n=2N

1

∏
r−1
j=1(2n+2α−2r+4 j−1)

.

If −1
2 < α ≤ 0, we can see that Γ(n+2α+1)

Γ(n+1) ≤ 1 and λn−r,α ≤
√

2. So we have

∣∣I[ f ]−QGJ
N [ f ]

∣∣≤ 2rδαUγ0
√

2
Γ(2α +1)

∞

∑
n=2N

1

∏
r−1
j=1(2n+2α−2r+4 j−1)

.

Also, for the case that α = −1
2 , we have Γ(n+2α+1)

Γ(n+1) = 1
n . So we get

∣∣I[ f ]−QGJ
N [ f ]

∣∣≤ 2rδαUγ0
√

2
Γ(2α +1)N

∞

∑
n=2N

1

∏
r−1
j=1(2n+2α−2r+4 j−1)

.

By the similar method as in the proof of Theorem 5, the result holds.

Remark 2. The authors in [6] obtained error estimates for the Gauss-Jacobi quadrature for w(x) =
1. Moreover, they showed that for functions with the conditions stated in the relation (29), the error
estimates for the Gauss-Jacobi quadrature is equal to O(N−r). Taking this discussion into consideration,
in Theorem 8, we have presented the approximation errors for the Gauss-Jacobi quadrature for the
weight function w(x) = (1− x2)α , −1 < α ≤ 0. In particular, we show that in the special case α = −1

2 ,
the error estimates for the Gauss-Jacobi quadrature is equal to O(N−r).

6 Conclusion

In this paper a new upper bounds for the ultraspherical Jacobi coefficients of differentiable functions
were obtained (see Theorem 4). We compared these upper bounds by previous upper bounds which are
presented in [6]. Moreover, we provided upper bounds on the approximation error of a function f (x) by
truncated ultraspherical Jacobi polynomial series. In specially, we provided a sharper upper bounds for
Legendre coefficients. Finally, we derived a new error estimate on the Gauss-Jacobi quadrature.
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