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GENERALIZED PRIME IDEAL FACTORIZATION OF
SUBMODULES

K. R. THULASI.∗, T. DURAIVEL, AND S. MANGAYARCARASSY

Abstract. In this article, we introduce generalized prime ideal
factorization for all proper submodules of a finitely generated
module over a Noetherian ring. We show that the generalized
prime ideal factorization of a product of two coprime ideals is
the product of the generalized prime ideal factorization of the
ideals. We find conditions under which the generalized prime ideal
factorization of a product of prime ideals is equal to the product
of the prime ideals. We show that if R is a Dedekind domain, the
generalized prime ideal factorization of an ideal a in R is exactly
the prime ideal factorization of a.

1. Introduction

Factorization of ideals into a product of prime ideals plays an
important role in commutative algebra. For Noetherian rings, this was
generalized into primary decomposition by Lasker (1905) and Noether
(1921). In 1871, Dedekind had found conditions under which ideals of
a ring can be uniquely expressed as a product of prime ideals. Rings
with this property are now called Dedekind domains. But in general,
the ideals of a Noetherian ring cannot be written as a product of prime
ideals. In this article, we extend the notion of prime ideal factorization
to submodules of a finitely generated module over a Noetherian ring
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which has the uniqueness property. We call it generalized prime ideal
factorization.

In this section, we give the definitions and results which will be used
in our article. Throughout this article R will denote a commutative
Noetherian ring with identity and all R-modules will be assumed
to be finitely generated and unitary. For standard terminology and
notations, the reference will be [4] and [5]. Let R be a ring and M be
an R-module. Then there exists a filtration

F : 0 = M0 ⊂M1 ⊂ · · · ⊂Mn−1 ⊂Mn = M

of M . The filtration F is called a prime filtration of M if Mi/Mi−1 ∼=
R/pi for some prime ideal pi in R for 1 ≤ i ≤ n and the set {p1, . . . , pn}
is denoted as Supp(F). It is well known that Ass(M) ⊆ Supp(F) ⊆
Supp(M). In [1], Dress defined weak prime decomposition of a module
M as a filtration F : 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = M
such that for every i ∈ {1, . . . , n}, there exists a prime ideal pi ∈
Spec(R) with pi = (Mi−1 : x) for every x ∈ Mi \Mi−1. Clearly every
prime filtration is a weak prime decomposition. Dress proved that
every Noetherian module M admits a weak prime decomposition with
Supp(F) = Ass(M) [1, PD7].

Prime extension filtration for a finitely generated module over a
Noetherian ring is defined in [2]. A proper submodule N of an R-
module M is said to be prime if for any a ∈ R and x ∈ M , ax ∈ N
implies a ∈ (N : M) or x ∈ N . We say a submodule K of M is
a p-prime extension of a proper submodule N of M , if N is a prime

submodule of K with (N : K) = p and is denoted as N
p
⊂ K. In [2],

it is defined that a filtration F : N = M0

p1
⊂ M1 ⊂ · · ·

pn
⊂ Mn = M is

a prime extension filtration of M over N if Mi is a pi-prime extension
of Mi−1 in M for 1 ≤ i ≤ n. Further, if each Mi is a maximal pi-
prime extension of Mi−1 in M , then the filtration is called a maximal
prime extension (MPE) filtration of M over N . MPE filtrations exist
for finitely generated modules over a Noetherian ring [2, Remark 7].

Proposition 1.1. [2, Proposition 14] Let N be a proper submodule

of M . If N = M0

p1
⊂ M1 ⊂ · · ·

pn
⊂ Mn = M is an MPE filtration

of M over N , then Ass(M/Mi) ⊆ Ass(M/N) for 1 ≤ i ≤ n, and
Ass(M/N) = {p1, . . . , pn}.

In [2] it is defined that a submodule K is said to be a regular prime
extension of N if K is a maximal p-prime extension of N in M and
p is a maximal element in Ass(M/N) and a prime extension filtration

N = M0

p1
⊂ M1 ⊂ · · ·

pn
⊂ Mn = M is called a regular prime extension
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(RPE) filtration of M over N , if Mi is a regular pi-prime extension
of Mi−1 in M for 1 ≤ i ≤ n. For a finitely generated module over a
Noetherian ring, RPE filtration exists [2, Theorem 11].

We have that Ass(M/N) is precisely the set of prime ideals occurring
in any RPE filtration of M over N . We need the following results.

Lemma 1.2. [3, Lemma 2.8] Let N be a proper submodule of an R-
module M . If K is a regular p-prime extension of N in M , then for
any submodule L of M either L ∩ K = L ∩ N or L ∩ K is a regular
p-prime extension of L ∩N in L.

The occurrence of prime ideals in an RPE filtration can be
interchanged provided it satisfies some conditions.

Proposition 1.3. [2, Corollary 17] Let N be a proper submodule of M

and N = M0 ⊂ · · ·Mi−1
pi⊂ Mi

pi+1

⊂ Mi+1 · · · ⊂ Mn = M be an MPE
filtration of M over N . If pi and pi+1 are distinct maximal elements
in Ass(M/Mi−1), then there exists a submodule Ki of M , such that

N = M0 ⊂ · · ·Mi−1
pi+1

⊂ Ki

pi⊂Mi+1 · · · ⊂Mn = M is an MPE filtration
of M over N .

Proposition 1.4. [3, Remark 2.5] Let N be a proper submodule of M

and N = M0

p1
⊂ M1 ⊂ · · ·

pn
⊂ Mn = M be an RPE filtration of M over

N . If p is a minimal element in Ass(M/N) and r is the number of
times p occurs in an RPE filtration of M over N , then we can have an

RPE filtration N = M ′
0

pi1⊂ M ′
1 ⊂ · · ·

pin⊂ M ′
n = M, where pij = p for

j = n− r + 1, . . . , n.

Proposition 1.5. [2, Theorem 22] Let N be a proper submodule of M .
Then the number of times a prime ideal p of R occurs in any two RPE
filtrations of M over N are equal, and hence, any two RPE filtrations
of M over N have the same length.

Hence, for every proper submodule N of M , RPE filtration exists
and the set of prime ideals and number of occurrences of each prime
ideal do not depend on any particular RPE filtration.

2. Generalized Prime Ideal Factorization of Submodules

Definition 2.1. Let N be a proper submodule of M and N = M0

p1
⊂

M1 ⊂ · · ·
pn
⊂Mn = M be an RPE filtration of M over N . Then we say

the product p1 · · · pn is the generalized prime ideal factorization of N
in M and we denote it as PM(N).
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Example 2.2. For a prime ideal p in R, PR(p) = p as p
p
⊂ R is the

RPE filtration of R over p.

Example 2.3. PM(0) = 0 if and only if M is a torsion-free module
over an integral domain R.

Example 2.4. [3, Example 2.7] If n = p1
r1 · · · pkrk is the prime

factorization of an integer n, then PZ(nZ) = (p1Z)r1 · · · (pkZ)rk since

nZ
p1Z
⊂ p1

r1−1p2
r2 · · · pkrkZ

p1Z
⊂ · · ·

p1Z
⊂ p1p2

r2 · · · pkrkZ
p1Z
⊂

p2
r2 · · · pkrkZ ⊂ · · · ⊂ pk

rkZ
pkZ⊂ pk

rk−1Z
pkZ⊂ · · ·

pkZ⊂ pkZ
pkZ⊂ Z

is an RPE filtration of Z over nZ.

Example 2.5. We have RPE filtrations

(x2, y)
(x,y)
⊂ (x, y)

(x,y)
⊂ k[x, y],

(x, y2)
(x,y)
⊂ (x, y)

(x,y)
⊂ k[x, y], and

(x2, xy, y2)
(x,y)
⊂ (x, y)

(x,y)
⊂ k[x, y]

in k[x, y]. So, we get

Pk[x,y]((x
2, y)) = Pk[x,y]((x, y

2)) = Pk[x,y]((x
2, xy, y2)) = (x, y)2

and therefore, distinct submodules may have the same generalized
prime ideal factorization.

Example 2.6. Let N be a p-primary submodule of M . Then
Ass(M/N) = {p} and by Proposition 1.1, PM(N) = pr for some integer
r.

Note that if L is a submodule of both K and M , then PK(L)
need not be equal to PM(L) in general. In example 2.5, we see
that Pk[x,y]((x

2, y)) = (x, y)2, and (x2, y) as a submodule of (x, y)
has P(x,y)((x

2, y)) = (x, y). Now we give a sufficient condition for
PK(L) = PM(L) when L ⊂ K ⊂M .

Proposition 2.7. Let K be a submodule of M . For any submodule L
of M , PK(K ∩ L) = PM(L) whenever (K : M) *

⋃
p∈Ass(M/L) p.

Proof. Let L = M0

p1
⊂ M1 ⊂ · · ·

pn
⊂ Mn = M be an RPE filtration

of M over L. Then {p1, . . . , pn} = Ass(M/L) by Proposition 1.1.
Intersecting with K, we get K ∩ L ⊆ M1 ∩K ⊆ · · · ⊆ Mn ∩K = K.
Since (K : M) *

⋃
p∈Ass(M/L) p, we have a ∈ (K : M) \

⋃
p∈Ass(M/L) p.
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Suppose Mi−1 ∩ K = Mi ∩ K for some i. Since Mi−1 ( Mi, there
exists x ∈ Mi \Mi−1. Then ax ∈ Mi ∩ K = Mi−1 ∩ K ⊆ Mi−1 and
x /∈ Mi−1 implies a ∈ (Mi−1 : Mi) = pi ∈ Ass(M/L), a contradiction.
Therefore, Mi−1 ∩ K ( Mi ∩ K for all i. Then by Lemma 1.2,
Mi−1 ∩ K ⊂ Mi ∩ K is a regular pi-prime extension for all i. This

implies K ∩ L
p1
⊂M1 ∩K ⊂ · · ·

pn
⊂Mn ∩K = K is an RPE filtration of

K over K ∩ L. Hence, PK(K ∩ L) = PM(L). �

Corollary 2.8. If L ⊂ K ⊂ M and (K : M) contains a non-zero-
divisor of M/L, then PK(L) = PM(L).

Corollary 2.9. If a ∈ R is a non-zero-divisor of M , then PaM(0) =
PM(0).

Proof. a ∈ (aM : M) \
⋃

p∈Ass(M) p, since a is a non-zero-divisor of
M . �

Theorem 2.10. Let N and K be submodules of M such that PM(N) =
p1 · · · pn and PM(K) = q1 · · · qk. If pi * qj and qj * pi for every i and
j, then PM(N)PM(K) = PM(N ∩K).

Proof. We can have RPE filtrations N = N0

p1
⊂ N1 ⊂ · · ·

pn
⊂ Nn = M

and K = K0

q1
⊂ K1 ⊂ · · ·

qk⊂ Kk = M for N and K respectively, since
pi * qj and qj * pi for every i and j. Consider the chain

N ∩K ⊆ N1 ∩K ⊆ N2 ∩K ⊆ · · · ⊆ Nn ∩K =

K
q1
⊂ K1 ⊂ · · ·

qk⊂ Kk = M (2.1)

Suppose there exists i such that Ni−1∩K = Ni∩K. Since (K : M)Ni ⊆
Ni ∩K = Ni−1 ∩K ⊆ Ni−1, (K : M) ⊆ (Ni−1 : Ni) = pi ∈ Ass(M/N).
Also, (K : M) ⊆ pi implies pi ∈ Supp(M/K). Then pi contains a
minimal element of Supp(M/K) which is also an element of Ass(M/K).
That is, pi ⊇ qj for some j, which is a contradiction.

Therefore, no equality occurs in (2.1) and by Lemma 1.2, (2.1)
becomes an RPE filtration. Hence, PM(N ∩K) = p1p2 · · · pnq1q2 · · · qk
= PM(N)PM(K). �

Corollary 2.11. Let N = N1 ∩ · · · ∩ Nr be a minimal primary
decomposition of N in M where Ni is pi-primary for every i. If pi
is a minimal associated prime of M/N for every i, then PM(N) =
PM(N1) · · · PM(Nr).

Proof. Since Ni is pi-primary for every i, we have PM(Ni) = pi
ri for

some integer ri. Also, we have pi * pj and pj * pi, j 6= i, since every
pi in Ass(M/N) = {p1, . . . , pn} is minimal. Therefore, using Theorem
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2.10 repeatedly, we get PM(N1) · · · PM(Nr) = PM(N1 ∩ · · · ∩ Nr) =
PM(N). �

The above result need not be true if all pi in Ass(M/N) are not
minimal. For example, let N = (x2, xy) and M = k[x, y]. Then
N = N1 ∩ N2 where N1 = (x) and N2 = (x2, y). So, the prime ideals
are p1 = (x), p2 = (x, y), with p1 ⊂ p2. We have PM(N) = p1p2 from
the RPE filtration

(x2, xy)
(x,y)
⊂ (x)

(x)
⊂ k[x, y],

and we have PM(N1) = p1, PM(N2) = p2
2 from the RPE filtrations

(x)
(x)
⊂ k[x, y] and (x2, y)

(x,y)
⊂ (x, y)

(x,y)
⊂ k[x, y]

respectively. So, PM(N) 6= PM(N1)PM(N2).
Next, we show that the generalized prime ideal factorization of a

product of two coprime ideals is the product of the generalized prime
ideal factorization of the ideals. More generally, we prove the following.

Corollary 2.12. Let N , K be submodules of M such that (N : M)
and (K : M) are coprime. Then PM(N)PM(K) = PM(N ∩ K). In
particular, if a and b are coprime ideals in R, then PR(a)PR(b) =
PR(ab).

Proof. Let N = N0

p1
⊂ N1 ⊂ · · ·

pr
⊂ Nr = M and K = K0

q1
⊂ K1 ⊂ · · ·

qs
⊂

Ks = M be RPE filtrations of M over N and M over K respectively.
Then PM(N) = p1 · · · pr and PM(K) = q1 · · · qs. Suppose pi ⊆ qj
for some i, j. Then, since pi ∈ Supp(M/N) and qj ∈ Supp(M/K),
we have (N : M) ⊆ pi ⊆ qj and (K : M) ⊆ qj. This implies
(N : M) + (K : M) ⊆ qj, i.e., R ⊆ qj, a contradiction. Therefore,
pi * qj for all i, j. Similarly, qj * pi for all i, j. So, by Theorem 2.10,
we get PM(N)PM(K) = PM(N ∩K). �

Example 2.5 shows us that for an ideal a in R, the product PR(a) is
not equal to a in general. Even if a is a power of a prime ideal, PR(a)
need not be equal to a. For example, let R = k[x, y, z]/(xy − z2) and
let x, y, z denote the images of x, y, z respectively in R. Then p = (x, z)
is a prime ideal and p2 has the RPE filtration

p2 = (x2, xy, xz, z2)
(x,y,z)
⊂ (x, z2)

(x,z)
⊂ (x, z)

(x,z)
⊂ R.

So, PR(p2) = (x, y, z)(x, z)2 6= p2.

Definition 2.13. Let M be an R-module and p1, . . . , pk be prime
ideals in R. Then p1

r1 · · · pkrkM is called a minimal prime product
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representation in M if p1
r1 · · · piri−1 · · · pkrkM 6= p1

r1 · · · pkrkM and pi
is maximal in Ass(p1

r1 · · · pi−1ri−1M/p1
r1 · · · pkrkM) for i = 1, . . . , k.

Next we give a sufficient condition for PR(a) = a. More generally,
we prove the following theorem.

Theorem 2.14. Let N = p1
r1 · · · pkrkM be a minimal prime product

representation in M . Then PM(N) = p1
r1 · · · pkrk .

Proof. Let aij denote p1
r1 · · · pi−1ri−1pi

j for 1 ≤ j ≤ ri and 1 ≤ i ≤ k.
We show that

N
p1
⊂ (N : a11)

p1
⊂ (N : a12) ⊂ · · ·

p1
⊂ (N : a1r1 )

p2
⊂ (N : a21) ⊂ · · ·

pi⊂ (N : airi )
pi+1

⊂ (N : a(i+1)1) ⊂ · · ·
pk⊂ (N : akrk ) = M

is an RPE filtration of M over N which would imply that PM(N) =
p1

r1 · · · pkrk . So, it is enough to show that (N : aij−1
) ⊂ (N : aij) is a

regular prime extension for 1 ≤ j ≤ ri and 1 ≤ i ≤ k.
Clearly (N : aij−1

) ⊆ (N : aij), as aij−1
⊃ aij . Suppose equality holds,

since aijpi
ri−jpi+1

ri+1 · · · pkrkM = N , we have pi
ri−jpi+1

ri+1 · · · pkrkM ⊆
(N : aij) = (N : aij−1

). This implies p1
r1 · · · piri−1 · · · pkrkM = N , a

contradiction. Therefore, (N : aij−1
) ( (N : aij).

Since for every x ∈ (N : aij) \ (N : aij−1
), there exists a ∈ aij−1

\ aij
such that ax /∈ N , the set

S =
{

(N : ax) | x ∈ (N : aij) \ (N : aij−1
), a ∈ aij−1

and ax /∈ N
}

is non-empty. We claim that pi is a maximal element in S. By maximal
condition, S has a maximal element, say q = (N : by). Then q is a
prime ideal. For if cd ∈ q and c /∈ q for some c, d ∈ R, then cby /∈ N ,
and cb ∈ aij−1

implies (N : cby) ∈ S with q ⊆ (N : cby). Then by
maximality of q, q = (N : cby). Since cd ∈ q, d ∈ (N : cby) = q. Now,
by ∈ aij−1

M \ N implies q = (N : by) ∈ Ass(p1
r1 · · · pi−1ri−1M/N).

Clearly pi ⊆ q, and since pi is maximal in Ass(p1
r1 · · · pi−1ri−1M/N),

pi = q. Hence, pi is maximal in S.
Clearly pi ⊆ ((N : aij−1

) : (N : aij)). Let a ∈ ((N : aij−1
) : (N : aij)).

Then aij−1
ay ⊆ N which implies aby ∈ N . That is, a ∈ q = pi, and

hence, ((N : aij−1
) : (N : aij)) = pi.

Suppose c ∈ R, x ∈ (N : aij) \ (N : aij−1
) with cx ∈ (N : aij−1

).
Then there exists a ∈ aij−1

\ aij such that ax /∈ N and cax ∈ N .
Let b = (N : ax). Then c ∈ b and b ∈ S. Since piax ⊆ N ,
pi ⊆ (N : ax) = b and by claim, pi = b. Hence, c ∈ pi and this

implies (N : aij−1
)

pi⊂ (N : aij) is a pi-prime extension in M .
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Let K be a maximal pi-prime extension of (N : aij−1
) in M .

Then piK ⊆ (N : aij−1
), which implies aijK ⊆ N , and therefore,

K ⊆ (N : aij). That is, (N : aij) is a maximal pi-prime extension of
(N : aij−1

) in M .
Let p′ ∈ Ass(M/(N : aij−1

)) such that pi ⊆ p′. Then p′ =
((N : aij−1

) : x) for some x ∈ M . Since pix ∈ (N : aij−1
),

x ∈ (N : aij) \ (N : aij−1
). Then there exists a ∈ aij−1

such that
ax /∈ N , and therefore, (N : ax) ∈ S with pi ⊆ p′ ⊆ (N : ax). Then by
claim, pi = p′. Therefore, pi is maximal in Ass(M/(N : aij−1

)). Hence,

(N : aij−1
)

pi⊂ (N : aij) is a regular pi-prime extension in M .

Similarly, (N : airi )
pi+1

⊂ (N : a(i+1)1) is also a regular pi+1-prime
extension in M for 1 ≤ i ≤ k − 1. This completes the proof. �

Corollary 2.15. Let M be an R-module and m1, . . . ,mk be maximal
ideals in R. If m1

r1 · · ·mi
ri−1 · · ·mk

rkM 6= m1
r1 · · ·mk

rkM for every
1 ≤ i ≤ k, then PM(m1

r1 · · ·mk
rkM) = m1

r1 · · ·mk
rk .

Taking M = R in Theorem 2.14, we have the following corollary.

Corollary 2.16. Let R be a Noetherian ring and p1
r1 · · · pkrk be a

minimal prime product representation in R. Then PR(p1
r1 · · · pkrk) =

p1
r1 · · · pkrk .

Corollary 2.17. Let R be an integral domain.

(i) If p1, . . . , pk are prime ideals in R such that pi is maximal in
Ass(p1

r1 · · · pi−1ri−1/ p1
r1 · · · pkrk) for every 1 ≤ i ≤ k, then

PR(p1
r1 · · · pkrk) = p1

r1 · · · pkrk .
(ii) If m1, . . . ,mk are maximal ideals in R, then PR(m1

r1 · · ·mk
rk) =

m1
r1 · · ·mk

rk .

Now we get a necessary and sufficient condition for PR(a) = a in a
domain R.

Corollary 2.18. Let R be an integral domain. Then R is a Dedekind
domain if and only if PR(a) = a for every non-zero ideal a.

Proof. If R is a Dedekind domain, for any non-zero ideal a, a =
p1

r1 · · · pkrk , where p1, . . . , pk are non-zero maximal ideals in R. Then
by Corollary 2.17, PR(p1

r1 · · · pkrk) = p1
r1 · · · pkrk . Hence, PR(a) = a.

Conversely, if PR(a) = a for every non-zero ideal a, this implies that
every non-zero ideal of R can be written as a product of a finite number
of prime ideals, and hence, R is Dedekind. �

So, for an ideal in a Dedekind domain, the generalized prime ideal
factorization coincides with its prime ideal factorization.
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