Journal of Algebra and Related Topics Vol. 9, No 2, (2021), pp 111-120

POSET PROPERTIES WITH RESPECT TO SEMI-IDEAL BASED ZERO-DIVISOR GRAPH

K. PORSELVI AND B. ELAVARASAN*

ABSTRACT. In this paper, we discuss some properties of poset P determined by semi-ideal based zero-divisor graph $G_K(P)$, for a semi-ideal K of P. We investigate some interesting properties if $G_K(P)$ contains a cycle. Further, we prove that if $V(G_K(P))$ is a generalized tree, then $(V(G_K(P)) \setminus S_x) \cup K$ and $(V(G_K(P)) \setminus S_{\geq x}) \cup K$ are prime semi-ideals of P.

1. Preliminaries

Throughout this paper, (P, \leq) denotes a poset with zero element 0 and $G_K(P)$ denotes the semi-ideal based zero-divisor graph for a semiideal K of P. For $K \subseteq P$, let $(K)^l := \{s \in P : s \leq k \text{ for all } k \in K\}$ denotes the lower cone of K, and dually let $(K)^u := \{s \in P : k \leq s \text{ for}$ all $k \in K\}$ be the upper cone of K. For $K_1, K_2 \subseteq P$, we write $(K_1, K_2)^l$ instead of $(K_1 \cup K_2)^l$. A non-empty $K \subseteq P$ is said to be semi-ideal if $k_2 \in K$ and $k_1 \leq k_2$, then $k_1 \in K$. A semi-ideal $K \subset P$ is said to be prime if for any $k_1, k_2 \in P$, $(k_1, k_2)^l \subseteq K$ implies $k_1 \in K$ or $k_2 \in K$.

In [4], I. Beck proposed the notion of a zero-divisor graph structure of a commutative ring with identity element, and concentrated mainly on coloring. In [3], D. F. Anderson et al. discussed the subgraph $\Gamma(R)$ of G(R) whose vertices are set of all nonzero zero-divisors of R and any two distinct vertices r and t are connected by an edge if rt = 0. In [22], S. P. Redmond extended the zero-divisor graph structure for an ideal K of R as follows: An undirected graph $\Gamma_K(R)$ with vertices

MSC(2010): Primary: 06D6, 11Y50

Keywords: Posets, semi-ideals, prime semi-ideals, cycle and neighborhood.

Received: 26 April 2021, Accepted: 13 September 2021.

^{*}Corresponding author .

 $\{r \in R \setminus K : rt \in K \text{ for some } t \in R \setminus K\}$, and any two distinct vertices r and t are adjacent if and only if $rt \in K$.

In [6], A. Das et al. determined number of some families of cubic graphs. In [10], F.Esmaeili Khalil saraei studied the annihilator graph of module M over a commutative ring R, and shown that AG(M) is connected with diameter at most two and girth at most four, and investigated some properties of the zero-divisor graph of reduced multiplication-like R-modules. In [20], K. Porselvi et al. studied the notion of extended ideal based zero divisor graph $\overline{\Gamma}_I(R)$ for an ideal I of a commutative ring R and investigated their properties. Several authors explore graph structures for different algebraic structures ([1], [7], [8], [11], [14], [17], [21], [23] and [24]).

In [13], R. Halas et al. introduced the notion of graph structure for P. The zero-divisor graph of P, denoted by $\Gamma(P)$, is an undirected graph with the elements of P as vertices and two distinct vertices k_1 and k_2 are adjacent if and only if $(k_1, k_2)^l = \{0\}$, and discussed some interesting results using chromatic number and clique. In [16], D. Lu et al. studied the zero-divisor graph $\Gamma(P)$ of P is the graph whose vertices are nonzero zero-divisors of P, in which k_1 is adjacent to k_2 if and only if $(k_1, k_2)^l = 0$. But this graph structure is slightly different from the one defined in [13].

In [15], V. Joshi presented the zero divisor graph $G_K(P)$ of P with respect to an ideal K as follows: An undirected graph whose vertices are the set $\{k_1 \in P \setminus K : (k_1, k_2)^l \subseteq K \text{ for some } k_2 \in P \setminus K\}$ and distinct vertices k_1 and k_2 are connected by an edge if and only if $(k_1, k_2)^l \subseteq K$. If $K = \{0\}$, then $G_K(P) = G_{\{0\}}(P)$, and $G_K(P) = \phi$ if and only if K is a prime semi-ideal of P. Following [15], we have studied the above graph structure for a semi-ideal K of P in [9], and investigated the relationship between the graph-theoretic properties of $G_K(P)$ for a semi-ideal K of P and poset properties of P, and also topological properties of Spec(P) where Spec(P) is intersection of all prime semi-ideals of P.

Following [12], let K be a semi-ideal in P. Then the set $\langle x, K \rangle = \{k \in P : (x,k)^l \subseteq K\}$ is the extension of K by $x \in P$. The neighborhood of $x \in V(G_K(P))$ is the set $N(x) = \{k \in V(G_K(P)) : (x,k)^l \subseteq K\}$. It is evident that $\langle x, K \rangle = N(x) \cup K$. A path is a sequence of vertices and edges with no repeated vertices. The distance between two vertices in a graph is the number of edges in a shortest or minimal path. A cycle is a circuit in which no vertex except the first (which is also the last) appears more than once. A maximal complete subgraph of a graph is said to be clique of a graph. The girth $gr(G_K(P))$ is the

112

length of the shortest cycle in $G_K(P)$. For any adjacent vertices k_1, k_2 in $V(G_K(P))$, we denote $C(k_1, k_2) = \{x \in V(G_K(P)) \mid N(x) = \{k_1, k_2\}\}$ and let T_k denote the set of all end vertices of $G_K(P)$ adjacent to k (see [18]). In [19], we introduced z-semi-ideal of P, and discussed many interesting results related to prime and z-semi-ideal of P.

For undefined terms and notations of graph theory, refer [5], and for posets, refer[12].

2. Main results

In this section, we explore properties of P related to a single vertex in a graph $G_K(P)$ for a semi-ideal K of P. We provide some condition under which S_x and $S_{\geq x}$ are identical. Also, we discuss interesting results if $V(G_K(P))$ is a generalized tree.

Theorem 2.1. ([15],[16]) Let $G_K(P)$ be a graph of P for a semi-ideal K in P. Then $G_K(P)$ is connected and $diam(G_K(P)) \leq 3$.

Lemma 2.2. Let $G_K(P)$ be a graph of P for a semi-ideal K in P and $r, s \in V(G_K(P))$. If d(r, s) = 3, then $(r, s)^l \cap (V(G_K(P)) \setminus \{r, s\}) \neq \phi$ and $G_K(P)$ contains at least $|(r, s)^l \cap V(G_K(P)) \setminus \{r, s\}|$ induced subgraph of $G_K(P)$ with $C(a, b) \neq \phi$ for some $a, b \in V(G_K(P))$.

Proof. Suppose r - a - b - s is a path of length 3. Then there is $t \in ((r, s)^l \cap V(G_K(P))) \setminus \{r, s\}$ such that t - a - b - t.

Theorem 2.3. Let $G_K(P)$ be a graph of P for a semi-ideal K in P. If $G_K(P)$ does not contain a cycle, then $G_K(P)$ is a connected subgraph of two star graphs whose centers are connected by a single edge.

Proof. If $G_K(P)$ has a path of maximum length ≤ 2 , then $G_K(P)$ is a star graph. Assume that u-r-s-v is a path in $G_K(P)$ and $G_K(P)$ does not contain a cycle. Let $c \in V(G_K(P))$ such that $c \notin \{u, r, s, v\}$. If u-c or c-v in $G_K(P)$ (say, u-c), then there exist a path c-u-r-s-v of length 4, a contradiction. So every vertex c in $G_K(P)$ should adjacent with either r or s, but not both. Hence $G_K(P)$ is a two star graph. \Box

Corollary 2.4. Let $G_K(P)$ be a graph of P for a semi-ideal K in P. If $G_K(P)$ has no cycle and $b \in V(G_K(P))$, then $(u, v)^l \subseteq T_b \cup K$ for any $u, v \in T_b \cup K$.

Proof. Let $u, v \in T_b \cup K$ and $t \in (u, v)^l \setminus K$. If $G_K(P)$ is a star graph, then $t \in T_b$. Suppose $G_K(P)$ is a two-star graph. Then $G_K(P)$ has two centres one of which should be b and other say a. So we have a path r - a - b - s for some $r \in V(G_K(P))$ and $s \in V(G_K(P)) \cup \{u, v\}$. If $t \notin T_b$, then for some $k \in V(G_K(P)), r - a - b - t - k$ is a path of length 4, a contradiction. \Box **Proposition 2.5.** Let $G_K(P)$ be a graph of P for a semi-ideal K in P and $b \in V(G_K(P))$. Then the following assertions hold:

(i) If $G_K(P)$ has a cycle and for any $u \in T_b \cup K$, if $(u)^l \cap (y)^u = \phi$ for all $y \in V(G_K(P)) \setminus T_b$, then $(u, v)^l \subseteq T_b \cup K$, for any $v \in T_b \cup K$. (ii) If $T_b \neq \phi$, then $K \cup \{b\}$ is semi-ideal.

(iii) If S is a clique in $G_K(P)$ such that $(b)^l \cap (V(G_K(P)) \setminus S) = \phi$ for all $b \in S$, then $S \cup K$ is semi-ideal.

Proof. (i) Suppose that $(u, v)^l \not\subseteq T_b \cup K$ for some $v \in T_b \cup K$. Then there is $c \in (u, v)^l$ such that $c \notin T_b \cup K$ which implies $c \in (u)^l \cap (c)^u \neq \phi$, which is a contradiction.

(ii) Let $a \in T_b$ and let $r, s \in P$ with $r \leq s$ and $s \in K \cup \{b\}$. If s = b, then $(r, a)^l \subseteq K$ which implies r = b. Hence $K \cup \{b\}$ is semi-ideal.

(iii) Let $r, s \in P$ with $r \leq s$ and $s \in S \cup K$. If $s \in S$, then $r \notin S$, since S is clique in $G_K(P)$. Now $r \in (s)^l \cap (V(G_K(P)) \setminus S) \neq \phi$, a contradiction.

Example 2.6. Let $P = \{1, 2, 3, 5, 6, 12\}$ be a poset under the relation division and $K = \{1\}$. Then K is a semi-ideal of P and the graph $G_K(P)$ is given below:

Here $(6)^l \cap (2)^u \neq \phi$ for $6 \in T_5$. But $(6, 12)^l \nsubseteq T_5 \cup K$. Also note that $T_6 = \{\phi\}$, but $K \cup \{6\}$ is not a semi-ideal of P. This shows that one can not drop the conditions $(u)^l \cap (y)^u = \{\phi\}$ and $T_b \neq \{\phi\}$ from Proposition 2.5 (i) and (ii) respectively.

The following example shows that the condition $(b)^l \cap (V(G_K(P)) \setminus S) = \phi$ for all $b \in S$ is necessary in Proposition 2.5 (iii).

Example 2.7. Let $P = \{1, 2, 3, 4, 5, 12\}$ be a poset under the relation division and $K = \{1\}$ be a semi-ideal of P. The graph $G_K(P)$ is given below:

Here $S = \{3, 4, 5\}$ is a clique of $G_K(P)$ and $(4)^l \cap (V(G_K(P)) \setminus S) \neq \phi$, but $S \cup K$ is not a semi-ideal of P.

Following [25], we denote $S_x = \{s \in V(G_K(P)) \mid N(s) = N(x)\}$ and $S_{\geq x} = \{s \in V(G_K(P)) \mid N(s) \subseteq N(x)\}$. It is clear that $S_x \subseteq S_{\geq x}$ for any $x \in V(G_K(P))$. But $S_{\geq x}$ is not necessary to be a subset of S_x . In Example 2.7, for $2 \in V(G_K(P))$, we have $S_{\geq 2} \not\subseteq S_2$.

Theorem 2.8. Let $G_K(P)$ be a graph of P for a semi-ideal K of P and $x \in V(G_K(P))$. Then $(V(G_K(P)) \setminus S_{\geq x}) \cup K$ is a semi-ideal of P.

Proof. Let $r, s \in P$ with $r \leq s$ and $s \in (V(G_K(P)) \setminus S_{\geq x}) \cup K$. If $r \notin K$ and $s \in V(G_K(P)) \setminus S_{\geq x}$, then $N(s) \subseteq N(r)$ and $N(s) \notin N(x)$ which imply $r \notin S_{\geq x}$.

As an immediate consequence, we have the following.

Corollary 2.9. Let $G_K(P)$ be a graph of P for a semi-ideal K in P and $x \in V(G_K(P))$. Then the following hold:

(i) If $G_K(P)$ is complete graph, then $(V(G_K(P)) \setminus S_x) \cup K$ is semiideal.

(ii) If x is an end vertex, then $(V(G_K(P)) \setminus S_x) \cup K$ is semi-ideal.

Following [2], P is said to be a generalized tree if for any $r \in P$ and for every $x_1, x_2 \in (r)^l$, either $x_1 \leq x_2$ or $x_2 \leq x_1$. For a non-empty $Q \subseteq P$, an element $r \in Q$ is said to be a minimal element of Q, denoted by Min(Q), whenever $s \in Q$ and $s \leq r$ implies that s = r.

Theorem 2.10. [2] Let $V(G_K(P))$ be a generalized tree and for $k \ge 2$, $|Min(P \setminus K)| = k$. If $(x)^l \setminus K$ has a minimal element for every $x \in P \setminus K$, then $G_K(P)$ is a complete k-partite graph.

Theorem 2.11. Let $G_K(P)$ be a graph of P for a semi-ideal K in P. Let $V(G_K(P))$ be a generalized tree and for $k \ge 2$, $|Min(P \setminus K)| = k$. If $(x)^l \setminus K$ has a minimal element for every $x \in P \setminus K$, then the sets S_x and $S_{\ge x}$ are same.

Proof. Let $s \in S_{\geq x}$. Then $N(s) \subseteq N(x)$. Suppose that $N(x) \nsubseteq N(s)$. Then there exists $t \in N(x) \setminus N(s)$. So t and s are in same partition of $V(G_K(P))$ since $G_K(P)$ is a complete k-partite graph by Theorem 2.10. Since $t \in N(x)$, we have $s \in N(x)$ which gives $x \in N(s) \subseteq N(x)$ and so $x \in K$, a contradiction. Thus $N(x) \subseteq N(s)$ which gives $s \in S_x$ and hence S_x and $S_{>x}$ are same.

Theorem 2.12. Let $G_K(P)$ be a graph of P for a semi-ideal K in Pand $x \in V(G_K(P))$. If $V(G_K(P))$ is a generalized tree, then for any $v \in P$, we have $(u, v)^l \subseteq S_{>x} \cup K$ for all $u \in S_{>x} \cup K$.

Proof. Let $u \in S_{\geq x}$ and suppose that $(u, v)^l \nsubseteq S_{\geq x} \cup K$ for some $v \in P$. Then there is $t \in (u, v)^l \setminus S_{\geq x} \cup K$ such that $N(t) \setminus (N(x) \cup N(u)) \neq \phi$. Now let $s \in N(t) \setminus (N(x) \cup N(u))$. Then there is $a \in (s, u)^l \setminus K$ such that $a \leq t$ or $t \leq a$ as $\{a, t\} \subseteq (u)^l$ and $V(G_K(P))$ is generalized tree. Since $(a, t)^l \subseteq K$, we get $a \in K$ or $t \in K$, which is a contradiction. So $(u, v)^l \subseteq S_{\geq x} \cup K$.

In view of Theorem 2.12, we have the following:

Corollary 2.13. Let $G_K(P)$ be a graph of P for a semi-ideal K in P and $x \in V(G_K(P))$. If $V(G_K(P))$ is a generalized tree, then $S_{\geq x} \cup K$ is a semi-ideal of P.

Remark 2.14. If $V(G_K(P))$ is not a generalized tree, then Theorem 2.12 will fail. Indeed, in Example 2.7, for $K = \{1\}, S_{\geq 12} = \{12\}$, but $(12)^l \not\subseteq S_{\geq 12} \cup K$.

Theorem 2.15. Let $G_K(P)$ be a graph for a semi-ideal K in P and $x \in V(G_K(P))$. If $V(G_K(P))$ is a generalized tree, then $(V(G_K(P)) \setminus S_x) \cup K$ is semi-ideal. Moreover, for any $k_1, k_2 \in V(G_K(P)) \cup K$, if $(k_1, k_2)^l \subseteq (V(G_K(P)) \setminus S_x) \cup K$, we have $k_1 \in (V(G_K(P)) \setminus S_x) \cup K$ or $k_2 \in (V(G_K(P)) \setminus S_x) \cup K$.

Proof. Let $u, v \in P$ with $u \leq v$ and $v \in (V(G_K(P)) \setminus S_x) \cup K$. Suppose $v \in V(G_K(P)) \setminus S_x$ and $u \in S_x$. Then N(u) = N(x) which implies $N(v) \subset N(x)$. Now let $s \in N(x) \setminus N(v)$. Then there exists $k_1 \in (s, v)^l \setminus K$ such that $k_1 \leq u$ or $u \leq k_1$ as $\{k_1, u\} \subseteq (v)^l$ and $V(G_K(P))$ is generalized tree. Since $(k_1, u)^l \subseteq K$, we have $k_1 \in K$ or $u \in K$, a contradiction. So $u \notin S_x$ and hence $(V(G_K(P)) \setminus S_x) \cup K$ is semi-ideal.

Let $(k_1, k_2)^l \subseteq (V(G_K(P)) \setminus S_x) \cup K$ and $k_1, k_2 \notin \{(V(G_K(P)) \setminus S_x) \cup K\}$. Then $N(k_1) = N(x)$ and $N(k_2) = N(x)$.

Case(i): If $(k_1, k_2)^l \subseteq K$, then $k_2 \in N(k_1) = N(k_2)$ which implies $k_2 \in K$, a contradiction.

Case(ii) : If $(k_1, k_2)^l \not\subseteq K$, then there exists $t \in (k_1, k_2)^l$ such that $t \in V(G_K(P)) \setminus S_x$ which implies $N(t) \not\subseteq N(x)$. Now let $s \in N(t) \setminus (N(x) \cup N(k_1) \cup N(k_2))$. Then there exists $d \in (s, k_1)^l \setminus K$ such that $d \leq t$ or $t \leq d$ as $\{d, t\} \subseteq (k_1)^l$ and $V(G_K(P))$ is a generalized tree. Since $(d, t)^l \subseteq K$, we have $d \in K$ or $t \in K$, a contradiction. So $k_1 \in (V(G_K(P)) \setminus S_x) \cup K$ or $k_2 \in (V(G_K(P)) \setminus S_x) \cup K$.

116

Corollary 2.16. Let $G_K(P)$ be a graph of P for a semi-ideal K of P and $x \in V(G_K(P))$. If $V(G_K(P))$ is a generalized tree and $V(G_K(P)) = P \setminus K$, then $(V(G_K(P)) \setminus S_x) \cup K$ is a prime semi-ideal of P.

The following example shows that we can not drop the condition $V(G_K(P)) = P \setminus K$ in Corollary 2.16.

Example 2.17. Let $P = \{1, 2, 3, 5, 12, 60, 90\}$ be a poset under the relation division and $K = \{1\}$. Then K is a semi-ideal of P and the graph $G_K(P)$ is given below:

Here $S_{12} = \{12\}$ and $(V \setminus S_{12}) \cup K = \{1, 2, 3, 5\}$. But $(V \setminus S_{12}) \cup K$ is not prime as $(60, 90)^l = \{1, 2, 3, 5\} \subseteq (V \setminus S_{12}) \cup K$ with $60, 90 \notin (V \setminus S_{12}) \cup K$.

Theorem 2.18. Let $G_K(P)$ be a graph of P for a semi-ideal K in P and $x \in V(G_K(P))$. If $V(G_K(P))$ is a generalized tree, then the following assertions hold:

(i) For any $v \in P$, $(u, v)^l \subseteq S_x \cup K$ for all $u \in S_x \cup K$. In particular, $S_x \cup K$ is semi-ideal.

(ii) $(V(G_K(P))\setminus S_{\geq x}) \cup K$ is a semi-ideal of P. For any $a, b \in V(G_K(P)) \cup K$, if $(a, b)^l \subseteq (V(G_K(P))\setminus S_{\geq x}) \cup K$, we have

 $a \in (V(G_K(P)) \setminus S_{\geq x}) \cup K$ or $b \in (V(G_K(P)) \setminus S_{\geq x}) \cup K$. In particular, $(V(G_K(P)) \setminus S_{>x}) \cup K$ is prime semi-ideal.

Proof. It is evident from Theorems 2.11, 2.12 and 2.15.

Recall that the set of associated primes of P, denoted by Ass(P), is the set of prime semi-ideals Q in P such that there is some $x \in P$ with $Q = \langle x, K \rangle$ for a semi-ideal K in P.

Theorem 2.19. Let $G_K(P)$ be a graph of P for a semi-ideal K in P. Then following assertions hold:

(i) If $|Ass(P)| \ge 2$ and $P_1 = \langle r, K \rangle$, $P_2 = \langle s, K \rangle$ are distinct elements of Ass(P), then $(r, s)^l \subseteq K$.

(ii) If $|Ass(P)| \ge 3$, then $gr(G_K(P)) = 3$. (iii) If $|Ass(P)| \ge 5$, then $G_K(P)$ is non-planar.

Proof. (i) Suppose $P_1 \neq P_2$. Then there exists $x \in P_1 \setminus P_2$ such that $(x, r)^l \subseteq K \subseteq P_2$. Since P_2 is prime, $r \in P_2$ which implies $(r, s)^l \subseteq K$.

(ii) Let $P_1 = \langle r, K \rangle$, $P_2 = \langle s, K \rangle$ and $P_3 = \langle t, K \rangle$ be distinct elements of Ass(P). Then by (i), r - s - t - r is a cycle in $G_K(P)$ and so $gr(G_K(P)) = 3$.

(iii) Since $|Ass(P)| \ge 5$, the complete graph K_5 is a subgraph of $G_K(P)$. By Kuratowski's theorem, $G_K(P)$ is non-planar.

Theorem 2.20. [2] Let $G_K(P)$ be a graph of P for a semi-ideal K in P. Then following assertions are equivalent:

(i) There exist nonzero prime semi-ideals P_1 and P_2 in P such that $P_1 \cap P_2 = K$.

(ii) $G_K(P)$ is a complete bipartite graph.

(iii) $G_K(P)$ is a bipartite graph.

Theorem 2.21. Let $G_K(P)$ be a graph of P for a semi-ideal K in P. If $|Ass(P)| = \{P_1, P_2\}$ and $|P_1| \ge 3$, $|P_2| \ge 3$ with $P_1 \cap P_2 = K$, then $gr(G_K(P)) = 4$.

Proof. Let $P_1 = \langle r, K \rangle$ and $P_2 = \langle s, K \rangle$ with $x \in P_1 \setminus (K \cup \{s\})$ and $y \in P_2 \setminus (K \cup \{r\})$. Since $(x, y)^l \subseteq K$, we have x - r - s - y - xand so $gr(G_K(P)) \leq 4$. By Theorem 2.20, $G_K(P)$ is a bipartite graph. Hence $gr(G_K(P)) = 4$.

Acknowledgments

The authors are grateful to the referee for his/her valuable comments and suggestions for improving the paper.

References

- 1. M. Adlifard and SH. Payrovi, Some classes of perfect annihilator-ideal graphs associated with commutative rings, J. Algebra Relat. Top., 9 (1) (2021), 21 29.
- M. Alizadeh, H. R. Maimani, M. R. Pournaki and S. Yassemi, An ideal theoretic approach to complete partite zero-divisor graphs of posets, J.Algebra Appl., 12(2) (2013), 1250148.
- D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J.Algebra, 217 (1999), 434 - 447.
- 4. K. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208 226.
- J. A. Bondy and U. S. R. Murty, Graph theory with applications, North-Holland, Amsterdam, 1976.
- A. Das and M. Saha, Determining number of some families of cubic graphs, J. Algebra Relat. Top., 8 (2) (2020), 39 - 55.

- F. R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroups, Semigroup Forum, 65 (2002), 206 - 214.
- P. Dheena and B. Elavarasan, An ideal based-zero-divisor graph of 2-primal nearrings, Bull. Korean Math. Soc., 46(6) (2009), 1051 - 1060.
- B. Elavarasan and K. Porselvi, An ideal based zero-divisor graph of posets, Commun. Korean Math. Soc., 28 (2013), No. 1, 79 - 85.
- F. Esmaeili Khalil Saraei, The annihilator graph of modules over commutative ring, J. Algebra Relat. Top., 9 (1) (2021), 93 - 108.
- Frank DeMeyer and Lisa DeMeyer, Zero divisor graphs of semigroups, J. Algebra, 283 (2005), 190-198.
- R. Halas, On extensions of ideals in posets, Discrete Math., 308 (2008), 4972 -4977.
- R. Halas and Marek Jukl, On beck's coloring of posets, Discrete Math., 309 (2009), 4584 - 4589.
- Hossein Rashmanlou, G. Muhiuddin, SK Amanathulla, F. Mofidnakhaei and Madhumangal Pal, A study on cubic graphs with novel application, J. Intell. Fuzzy Syst., 40(1) (2021), 89-101.
- V. Joshi, Zero divisor graph of a poset with respect to an ideal, Order, 29 (2012), 499–506.
- D. Lu and T. Wu, The zero-divisor graphs of posets and an application to semigroups, Graphs Combin., 26 (2010), 793 - 804.
- S. B. Pejman, SH. Payrovi and S. Babaei, Resolvability in complement of the intersection graph of annihilator submodules of a module, J. Algebra Relat. Top., 8 (1) (2020), 27 - 37.
- K. Porselvi and B. Elavarasan, Poset properties determined by the ideal based zero-divisor graph, Kyungpook Math. J., 54 (2014), 197-201.
- K. Porselvi and B. Elavarasan, Some properties of prime and z-semi-ideals in posets, Khayyam J. Math., 6 (2020), 46 - 56.
- K. Porselvi and R. Solomon Jones, Properties of extended ideal based zerodivisor graph of a commutative ring, J. Algebra Relat. Top., 5 (1) (2017), 55 -59.
- T. Pramanik, G. Muhiuddin, Abdulaziz M. Alanazi and Madhumangal Pal, An Extension of Fuzzy Competition Graph and Its Uses in Manufacturing Industries, Mathematics, 8 (2020), 1008.
- S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31(9) (2003), 4425 - 4443.
- S. Samanta, G. Muhiuddin, Abdulaziz M. Alanazi and Kousik Das, A Mathematical Approach on Representation of Competitions: Competition Cluster Hypergraphs, Math. Probl. Eng., Volume (2020), Article ID 2517415, 10 pages.
- S. Satham Hussain, R. Jahir Hussain and G. Muhiuddin, *Neutrosophic Vague Line Graphs*, Neutrosophic Sets and Systems, **36** (2020), 121-130.
- Tongsuo Wu and Dancheng Lu, Sub-semigroups determined by the zero-divisor graph, Discrete Math., 308 (2008), 5122-5135.

K. Porselvi

Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, Tamilnadu, India. Email: porselvi94@yahoo.co.in

B. Elavarasan

Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, Tamilnadu, India. Email: belavarasan@gmail.com

120