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POSET PROPERTIES WITH RESPECT TO
SEMI-IDEAL BASED ZERO-DIVISOR GRAPH

K. PORSELVI AND B. ELAVARASAN∗

Abstract. In this paper, we discuss some properties of poset P
determined by semi-ideal based zero-divisor graph GK(P ), for a
semi-ideal K of P. We investigate some interesting properties if
GK(P ) contains a cycle. Further, we prove that if V (GK(P )) is a
generalized tree, then (V (GK(P ))\Sx)∪K and (V (GK(P ))\S≥x)∪
K are prime semi-ideals of P .

1. Preliminaries

Throughout this paper, (P,≤) denotes a poset with zero element 0
and GK(P ) denotes the semi-ideal based zero-divisor graph for a semi-
ideal K of P. For K ⊆ P, let (K)l := {s ∈ P : s ≤ k for all k ∈ K}
denotes the lower cone of K, and dually let (K)u := {s ∈ P : k ≤ s for
all k ∈ K} be the upper cone of K. For K1, K2 ⊆ P, we write (K1, K2)

l

instead of (K1 ∪K2)
l. A non-empty K ⊆ P is said to be semi-ideal if

k2 ∈ K and k1 ≤ k2, then k1 ∈ K. A semi-ideal K ⊂ P is said to be
prime if for any k1, k2 ∈ P, (k1, k2)

l ⊆ K implies k1 ∈ K or k2 ∈ K.
In [4], I. Beck proposed the notion of a zero-divisor graph structure

of a commutative ring with identity element, and concentrated mainly
on coloring. In [3], D. F. Anderson et al. discussed the subgraph Γ(R)
of G(R) whose vertices are set of all nonzero zero-divisors of R and
any two distinct vertices r and t are connected by an edge if rt = 0.
In [22], S. P. Redmond extended the zero-divisor graph structure for
an ideal K of R as follows: An undirected graph ΓK(R) with vertices
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{r ∈ R\K : rt ∈ K for some t ∈ R\K}, and any two distinct vertices
r and t are adjacent if and only if rt ∈ K.

In [6], A. Das et al. determined number of some families of cu-
bic graphs. In [10], F.Esmaeili Khalil saraei studied the annihila-
tor graph of module M over a commutative ring R, and shown that
AG(M) is connected with diameter at most two and girth at most four,
and investigated some properties of the zero-divisor graph of reduced
multiplication-like R-modules. In [20], K. Porselvi et al. studied the
notion of extended ideal based zero divisor graph ΓI(R) for an ideal
I of a commutative ring R and investigated their properties. Several
authors explore graph structures for different algebraic structures ([1],
[7], [8], [11], [14], [17], [21], [23] and [24]).

In [13], R. Halas et al. introduced the notion of graph structure
for P. The zero-divisor graph of P, denoted by Γ(P ), is an undirected
graph with the elements of P as vertices and two distinct vertices k1
and k2 are adjacent if and only if (k1, k2)

l = {0}, and discussed some
interesting results using chromatic number and clique. In [16], D. Lu
et al. studied the zero-divisor graph Γ(P ) of P is the graph whose
vertices are nonzero zero-divisors of P, in which k1 is adjacent to k2 if
and only if (k1, k2)

l = 0. But this graph structure is slightly different
from the one defined in [13].

In [15], V. Joshi presented the zero divisor graph GK(P ) of P with
respect to an ideal K as follows: An undirected graph whose vertices
are the set {k1 ∈ P\K : (k1, k2)

l ⊆ K for some k2 ∈ P\K} and
distinct vertices k1 and k2 are connected by an edge if and only if
(k1, k2)

l ⊆ K. If K = {0}, then GK(P ) = G{0}(P ), and GK(P ) = φ
if and only if K is a prime semi-ideal of P. Following [15], we have
studied the above graph structure for a semi-ideal K of P in [9], and
investigated the relationship between the graph-theoretic properties of
GK(P ) for a semi-ideal K of P and poset properties of P, and also
topological properties of Spec(P ) where Spec(P ) is intersection of all
prime semi-ideals of P.

Following [12], let K be a semi-ideal in P. Then the set < x, K >=
{k ∈ P : (x, k)l ⊆ K} is the extension of K by x ∈ P. The neighbor-
hood of x ∈ V (GK(P )) is the set N(x) = {k ∈ V (GK(P )) : (x, k)l ⊆
K}. It is evident that < x,K >= N(x) ∪K. A path is a sequence of
vertices and edges with no repeated vertices. The distance between
two vertices in a graph is the number of edges in a shortest or minimal
path. A cycle is a circuit in which no vertex except the first (which is
also the last) appears more than once. A maximal complete subgraph
of a graph is said to be clique of a graph. The girth gr(GK(P )) is the
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length of the shortest cycle in GK(P ). For any adjacent vertices k1, k2 in
V (GK(P )), we denote C(k1, k2) = {x ∈ V (GK(P )) | N(x) = {k1, k2}}
and let Tk denote the set of all end vertices of GK(P ) adjacent to k
(see [18]). In [19], we introduced z-semi-ideal of P, and discussed many
interesting results related to prime and z-semi-ideal of P.

For undefined terms and notations of graph theory, refer [5], and for
posets, refer[12].

2. Main results

In this section, we explore properties of P related to a single vertex
in a graph GK(P ) for a semi-ideal K of P. We provide some condition
under which Sx and S≥x are identical. Also, we discuss interesting
results if V (GK(P )) is a generalized tree.

Theorem 2.1. ( [15],[16]) Let GK(P ) be a graph of P for a semi-ideal
K in P . Then GK(P ) is connected and diam(GK(P )) ≤ 3.

Lemma 2.2. Let GK(P ) be a graph of P for a semi-ideal K in P and
r, s ∈ V (GK(P )). If d(r, s) = 3, then (r, s)l ∩ (V (GK(P ))\{r, s}) 6= φ
and GK(P ) contains at least |(r, s)l ∩ V (GK(P ))\{r, s}| induced sub-
graph of GK(P ) with C(a, b) 6= φ for some a, b ∈ V (GK(P )).

Proof. Suppose r − a − b − s is a path of length 3. Then there is
t ∈ ((r, s)l ∩ V (GK(P )))\{r, s} such that t− a− b− t. �

Theorem 2.3. Let GK(P ) be a graph of P for a semi-ideal K in P. If
GK(P ) does not contain a cycle, then GK(P ) is a connected subgraph
of two star graphs whose centers are connected by a single edge.

Proof. If GK(P ) has a path of maximum length ≤ 2, then GK(P ) is a
star graph. Assume that u−r−s−v is a path inGK(P ) andGK(P ) does
not contain a cycle. Let c ∈ V (GK(P )) such that c /∈ {u, r, s, v}. If u−c
or c−v in GK(P ) (say, u−c), then there exist a path c−u−r−s−v of
length 4, a contradiction. So every vertex c in GK(P ) should adjacent
with either r or s, but not both. Hence GK(P ) is a two star graph. �

Corollary 2.4. Let GK(P ) be a graph of P for a semi-ideal K in P.
If GK(P ) has no cycle and b ∈ V (GK(P )), then (u, v)l ⊆ Tb ∪ K for
any u, v ∈ Tb ∪K.

Proof. Let u, v ∈ Tb ∪K and t ∈ (u, v)l\K. If GK(P ) is a star graph,
then t ∈ Tb. Suppose GK(P ) is a two-star graph. Then GK(P ) has two
centres one of which should be b and other say a. So we have a path
r − a − b − s for some r ∈ V (GK(P )) and s ∈ V (GK(P )) ∪ {u, v}. If
t /∈ Tb, then for some k ∈ V (GK(P )), r − a − b − t − k is a path of
length 4, a contradiction. �
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Proposition 2.5. Let GK(P ) be a graph of P for a semi-ideal K in
P and b ∈ V (GK(P )). Then the following assertions hold:
(i) If GK(P ) has a cycle and for any u ∈ Tb ∪K, if (u)l ∩ (y)u = φ

for all y ∈ V (GK(P ))\Tb, then (u, v)l ⊆ Tb ∪K, for any v ∈ Tb ∪K.
(ii) If Tb 6= φ, then K ∪ {b} is semi-ideal.
(iii) If S is a clique in GK(P ) such that (b)l ∩ (V (GK(P ))\S) = φ

for all b ∈ S, then S ∪K is semi-ideal.

Proof. (i) Suppose that (u, v)l * Tb∪K for some v ∈ Tb∪K. Then there
is c ∈ (u, v)l such that c /∈ Tb ∪ K which implies c ∈ (u)l ∩ (c)u 6= φ,
which is a contradiction.

(ii) Let a ∈ Tb and let r, s ∈ P with r ≤ s and s ∈ K ∪ {b}. If s = b,
then (r, a)l ⊆ K which implies r = b. Hence K ∪ {b} is semi-ideal.

(iii) Let r, s ∈ P with r ≤ s and s ∈ S ∪ K. If s ∈ S, then r /∈ S,
since S is clique in GK(P ). Now r ∈ (s)l ∩ (V (GK(P ))\S) 6= φ, a
contradiction. �

Example 2.6. Let P = {1, 2, 3, 5, 6, 12} be a poset under the relation
division and K = {1}. Then K is a semi-ideal of P and the graph
GK(P ) is given below:

Here (6)l ∩ (2)u 6= φ for 6 ∈ T5. But (6, 12)l * T5 ∪ K. Also note
that T6 = {φ}, but K ∪ {6} is not a semi-ideal of P . This shows that
one can not drop the conditions (u)l ∩ (y)u = {φ} and Tb 6= {φ} from
Proposition 2.5 (i) and (ii) respectively.

The following example shows that the condition (b)l∩(V (GK(P ))\S) =
φ for all b ∈ S is necessary in Proposition 2.5 (iii).

Example 2.7. Let P = {1, 2, 3, 4, 5, 12} be a poset under the relation
division and K = {1} be a semi-ideal of P . The graph GK(P ) is given
below:

Here S = {3, 4, 5} is a clique of GK(P ) and (4)l∩(V (GK(P ))\S) 6= φ,
but S ∪K is not a semi-ideal of P.
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Following [25], we denote Sx = {s ∈ V (GK(P )) | N(s) = N(x)} and
S≥x = {s ∈ V (GK(P )) | N(s) ⊆ N(x)}. It is clear that Sx ⊆ S≥x for
any x ∈ V (GK(P )). But S≥x is not necessary to be a subset of Sx. In
Example 2.7, for 2 ∈ V (GK(P )), we have S≥2 * S2.

Theorem 2.8. Let GK(P ) be a graph of P for a semi-ideal K of P
and x ∈ V (GK(P )). Then (V (GK(P ))\S≥x) ∪K is a semi-ideal of P .

Proof. Let r, s ∈ P with r ≤ s and s ∈ (V (GK(P ))\S≥x)∪K. If r /∈ K
and s ∈ V (GK(P ))\S≥x, then N(s) ⊆ N(r) and N(s) * N(x) which
imply r /∈ S≥x. �

As an immediate consequence, we have the following.

Corollary 2.9. Let GK(P ) be a graph of P for a semi-ideal K in P
and x ∈ V (GK(P )). Then the following hold:
(i) If GK(P ) is complete graph, then (V (GK(P ))\Sx) ∪ K is semi-

ideal.
(ii) If x is an end vertex, then (V (GK(P ))\Sx) ∪K is semi-ideal.

Following [2], P is said to be a generalized tree if for any r ∈ P
and for every x1, x2 ∈ (r)l, either x1 ≤ x2 or x2 ≤ x1. For a non-empty
Q ⊆ P, an element r ∈ Q is said to be a minimal element of Q, denoted
by Min(Q), whenever s ∈ Q and s ≤ r implies that s = r.

Theorem 2.10. [2] Let V (GK(P )) be a generalized tree and for k ≥ 2,
|Min(P\K)| = k. If (x)l\K has a minimal element for every x ∈ P\K,
then GK(P ) is a complete k-partite graph.

Theorem 2.11. Let GK(P ) be a graph of P for a semi-ideal K in P .
Let V (GK(P )) be a generalized tree and for k ≥ 2, |Min(P\K)| = k.
If (x)l\K has a minimal element for every x ∈ P\K, then the sets Sx

and S≥x are same.

Proof. Let s ∈ S≥x. Then N(s) ⊆ N(x). Suppose that N(x) * N(s).
Then there exists t ∈ N(x)\N(s). So t and s are in same partition
of V (GK(P )) since GK(P ) is a complete k-partite graph by Theorem
2.10. Since t ∈ N(x), we have s ∈ N(x) which gives x ∈ N(s) ⊆ N(x)
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and so x ∈ K, a contradiction. Thus N(x) ⊆ N(s) which gives s ∈ Sx

and hence Sx and S≥x are same. �

Theorem 2.12. Let GK(P ) be a graph of P for a semi-ideal K in P
and x ∈ V (GK(P )). If V (GK(P )) is a generalized tree, then for any
v ∈ P , we have (u, v)l ⊆ S≥x ∪K for all u ∈ S≥x ∪K.

Proof. Let u ∈ S≥x and suppose that (u, v)l * S≥x∪K for some v ∈ P .
Then there is t ∈ (u, v)l\S≥x ∪K such that N(t)\(N(x) ∪N(u)) 6= φ.
Now let s ∈ N(t)\(N(x) ∪ N(u)). Then there is a ∈ (s, u)l\K such
that a ≤ t or t ≤ a as {a, t} ⊆ (u)l and V (GK(P )) is generalized tree.
Since (a, t)l ⊆ K, we get a ∈ K or t ∈ K, which is a contradiction. So
(u, v)l ⊆ S≥x ∪K. �

In view of Theorem 2.12, we have the following:

Corollary 2.13. Let GK(P ) be a graph of P for a semi-ideal K in P
and x ∈ V (GK(P )). If V (GK(P )) is a generalized tree, then S≥x ∪K
is a semi-ideal of P .

Remark 2.14. If V (GK(P )) is not a generalized tree, then Theorem
2.12 will fail . Indeed, in Example 2.7, for K = {1}, S≥12 = {12}, but
(12)l * S≥12 ∪K.

Theorem 2.15. Let GK(P ) be a graph for a semi-ideal K in P and x ∈
V (GK(P )). If V (GK(P )) is a generalized tree, then (V (GK(P ))\Sx)∪
K is semi-ideal. Moreover, for any k1, k2 ∈ V (GK(P ))∪K, if (k1, k2)

l ⊆
(V (GK(P ))\Sx) ∪ K, we have k1 ∈ (V (GK(P ))\Sx) ∪ K or k2 ∈
(V (GK(P ))\Sx) ∪K.

Proof. Let u, v ∈ P with u ≤ v and v ∈ (V (GK(P ))\Sx)∪K. Suppose
v ∈ V (GK(P ))\Sx and u ∈ Sx. Then N(u) = N(x) which implies
N(v) ⊂ N(x). Now let s ∈ N(x)\N(v). Then there exists k1 ∈
(s, v)l\K such that k1 ≤ u or u ≤ k1 as {k1, u} ⊆ (v)l and V (GK(P ))
is generalized tree. Since (k1, u)l ⊆ K, we have k1 ∈ K or u ∈ K, a
contradiction. So u /∈ Sx and hence (V (GK(P ))\Sx)∪K is semi-ideal.

Let (k1, k2)
l ⊆ (V (GK(P ))\Sx)∪K and k1, k2 /∈ {(V (GK(P ))\Sx)∪

K}. Then N(k1) = N(x) and N(k2) = N(x).
Case(i) : If (k1, k2)

l ⊆ K, then k2 ∈ N(k1) = N(k2) which implies
k2 ∈ K, a contradiction.

Case(ii) : If (k1, k2)
l * K, then there exists t ∈ (k1, k2)

l such that t ∈
V (GK(P ))\Sx which implies N(t) * N(x). Now let s ∈ N(t)\(N(x)∪
N(k1) ∪ N(k2)). Then there exists d ∈ (s, k1)

l\K such that d ≤ t
or t ≤ d as {d, t} ⊆ (k1)

l and V (GK(P )) is a generalized tree. Since
(d, t)l ⊆ K, we have d ∈ K or t ∈ K, a contradiction. So k1 ∈
(V (GK(P ))\Sx) ∪K or k2 ∈ (V (GK(P ))\Sx) ∪K. �



POSET PROPERTIES WITH RESPECT TO ZERO-DIVISOR GRAPH 117

Corollary 2.16. Let GK(P ) be a graph of P for a semi-ideal K of P
and x ∈ V (GK(P )). If V (GK(P )) is a generalized tree and V (GK(P )) =
P\K, then (V (GK(P ))\Sx) ∪K is a prime semi-ideal of P .

The following example shows that we can not drop the condition
V (GK(P )) = P\K in Corollary 2.16.

Example 2.17. Let P = {1, 2, 3, 5, 12, 60, 90} be a poset under the
relation division and K = {1}. Then K is a semi-ideal of P and the
graph GK(P ) is given below:

Here S12 = {12} and (V \S12) ∪ K = {1, 2, 3, 5}. But (V \S12) ∪ K
is not prime as (60, 90)l = {1, 2, 3, 5} ⊆ (V \S12) ∪ K with 60, 90 /∈
(V \S12) ∪K.
Theorem 2.18. Let GK(P ) be a graph of P for a semi-ideal K in
P and x ∈ V (GK(P )). If V (GK(P )) is a generalized tree, then the
following assertions hold:

(i) For any v ∈ P , (u, v)l ⊆ Sx∪K for all u ∈ Sx∪K. In particular,
Sx ∪K is semi-ideal.

(ii) (V (GK(P ))\S≥x) ∪ K is a semi-ideal of P . For any a, b ∈
V (GK(P )) ∪K, if (a, b)l ⊆ (V (GK(P ))\S≥x) ∪K, we have
a ∈ (V (GK(P ))\S≥x)∪K or b ∈ (V (GK(P ))\S≥x)∪K. In particular,
(V (GK(P ))\S≥x) ∪K is prime semi-ideal.

Proof. It is evident from Theorems 2.11, 2.12 and 2.15. �

Recall that the set of associated primes of P, denoted by Ass(P ), is
the set of prime semi-ideals Q in P such that there is some x ∈ P with
Q =< x,K > for a semi-ideal K in P.

Theorem 2.19. Let GK(P ) be a graph of P for a semi-ideal K in P.
Then following assertions hold:

(i) If |Ass(P )| ≥ 2 and P1 =< r,K >, P2 =< s,K > are distinct
elements of Ass(P ), then (r, s)l ⊆ K.
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(ii) If |Ass(P )| ≥ 3, then gr(GK(P )) = 3.
(iii) If |Ass(P )| ≥ 5, then GK(P ) is non-planar.

Proof. (i) Suppose P1 6= P2. Then there exists x ∈ P1\P2 such that
(x, r)l ⊆ K ⊆ P2. Since P2 is prime, r ∈ P2 which implies (r, s)l ⊆ K.

(ii) Let P1 =< r,K >, P2 =< s,K > and P3 =< t,K > be distinct
elements of Ass(P ). Then by (i), r− s− t− r is a cycle in GK(P ) and
so gr(GK(P )) = 3.

(iii) Since |Ass(P )| ≥ 5, the complete graph K5 is a subgraph of
GK(P ). By Kuratowski’s theorem, GK(P ) is non-planar. �

Theorem 2.20. [2] Let GK(P ) be a graph of P for a semi-ideal K in
P. Then following assertions are equivalent:

(i) There exist nonzero prime semi-ideals P1 and P2 in P such that
P1 ∩ P2 = K.
(ii) GK(P ) is a complete bipartite graph.
(iii) GK(P ) is a bipartite graph.

Theorem 2.21. Let GK(P ) be a graph of P for a semi-ideal K in P.
If |Ass(P )| = {P1, P2} and |P1| ≥ 3, |P2| ≥ 3 with P1 ∩ P2 = K, then
gr(GK(P )) = 4.

Proof. Let P1 =< r,K > and P2 =< s,K > with x ∈ P1\(K ∪ {s})
and y ∈ P2\(K ∪ {r}). Since (x, y)l ⊆ K, we have x − r − s − y − x
and so gr(GK(P )) ≤ 4. By Theorem 2.20, GK(P ) is a bipartite graph.
Hence gr(GK(P )) = 4. �
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