Journal of Algebra and Related Topics

Vol. 9, No 2, (2021), pp 111-120

POSET PROPERTIES WITH RESPECT TO SEMI-IDEAL BASED ZERO-DIVISOR GRAPH

K. PORSELVI AND B. ELAVARASAN*

Abstract

In this paper, we discuss some properties of poset P determined by semi-ideal based zero-divisor graph $G_{K}(P)$, for a semi-ideal K of P. We investigate some interesting properties if $G_{K}(P)$ contains a cycle. Further, we prove that if $V\left(G_{K}(P)\right)$ is a generalized tree, then $\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup K$ and $\left(V\left(G_{K}(P)\right) \backslash S_{\geq x}\right) \cup$ K are prime semi-ideals of P.

1. Preliminaries

Throughout this paper, (P, \leq) denotes a poset with zero element 0 and $G_{K}(P)$ denotes the semi-ideal based zero-divisor graph for a semiideal K of P. For $K \subseteq P$, let $(K)^{l}:=\{s \in P: s \leq k$ for all $k \in K\}$ denotes the lower cone of K, and dually let $(K)^{u}:=\{s \in P: k \leq s$ for all $k \in K\}$ be the upper cone of K. For $K_{1}, K_{2} \subseteq P$, we write $\left(K_{1}, K_{2}\right)^{l}$ instead of $\left(K_{1} \cup K_{2}\right)^{l}$. A non-empty $K \subseteq P$ is said to be semi-ideal if $k_{2} \in K$ and $k_{1} \leq k_{2}$, then $k_{1} \in K$. A semi-ideal $K \subset P$ is said to be prime if for any $k_{1}, k_{2} \in P,\left(k_{1}, k_{2}\right)^{l} \subseteq K$ implies $k_{1} \in K$ or $k_{2} \in K$.

In [4], I. Beck proposed the notion of a zero-divisor graph structure of a commutative ring with identity element, and concentrated mainly on coloring. In [3], D. F. Anderson et al. discussed the subgraph $\Gamma(R)$ of $G(R)$ whose vertices are set of all nonzero zero-divisors of R and any two distinct vertices r and t are connected by an edge if $r t=0$. In [22], S. P. Redmond extended the zero-divisor graph structure for an ideal K of R as follows: An undirected graph $\Gamma_{K}(R)$ with vertices

[^0]$\{r \in R \backslash K: r t \in K$ for some $t \in R \backslash K\}$, and any two distinct vertices r and t are adjacent if and only if $r t \in K$.

In [6], A. Das et al. determined number of some families of cubic graphs. In [10], F.Esmaeili Khalil saraei studied the annihilator graph of module M over a commutative ring R, and shown that $A G(M)$ is connected with diameter at most two and girth at most four, and investigated some properties of the zero-divisor graph of reduced multiplication-like R-modules. In [20], K. Porselvi et al. studied the notion of extended ideal based zero divisor graph $\bar{\Gamma}_{I}(R)$ for an ideal I of a commutative ring R and investigated their properties. Several authors explore graph structures for different algebraic structures ([1], [7], [8], [11], [14], [17], [21], [23] and [24]).

In [13], R. Halas et al. introduced the notion of graph structure for P. The zero-divisor graph of P, denoted by $\Gamma(P)$, is an undirected graph with the elements of P as vertices and two distinct vertices k_{1} and k_{2} are adjacent if and only if $\left(k_{1}, k_{2}\right)^{l}=\{0\}$, and discussed some interesting results using chromatic number and clique. In [16], D. Lu et al. studied the zero-divisor graph $\Gamma(P)$ of P is the graph whose vertices are nonzero zero-divisors of P, in which k_{1} is adjacent to k_{2} if and only if $\left(k_{1}, k_{2}\right)^{l}=0$. But this graph structure is slightly different from the one defined in [13].

In [15], V. Joshi presented the zero divisor graph $G_{K}(P)$ of P with respect to an ideal K as follows: An undirected graph whose vertices are the set $\left\{k_{1} \in P \backslash K:\left(k_{1}, k_{2}\right)^{l} \subseteq K\right.$ for some $\left.k_{2} \in P \backslash K\right\}$ and distinct vertices k_{1} and k_{2} are connected by an edge if and only if $\left(k_{1}, k_{2}\right)^{l} \subseteq K$. If $K=\{0\}$, then $G_{K}(P)=G_{\{0\}}(P)$, and $G_{K}(P)=\phi$ if and only if K is a prime semi-ideal of P. Following [15], we have studied the above graph structure for a semi-ideal K of P in [9], and investigated the relationship between the graph-theoretic properties of $G_{K}(P)$ for a semi-ideal K of P and poset properties of P, and also topological properties of $\operatorname{Spec}(P)$ where $\operatorname{Spec}(P)$ is intersection of all prime semi-ideals of P.

Following [12], let K be a semi-ideal in P. Then the set $\langle x, K\rangle=$ $\left\{k \in P:(x, k)^{l} \subseteq K\right\}$ is the extension of K by $x \in P$. The neighborhood of $x \in V\left(G_{K}(P)\right)$ is the set $N(x)=\left\{k \in V\left(G_{K}(P)\right):(x, k)^{l} \subseteq\right.$ $K\}$. It is evident that $<x, K>=N(x) \cup K$. A path is a sequence of vertices and edges with no repeated vertices. The distance between two vertices in a graph is the number of edges in a shortest or minimal path. A cycle is a circuit in which no vertex except the first (which is also the last) appears more than once. A maximal complete subgraph of a graph is said to be clique of a graph. The girth $\operatorname{gr}\left(G_{K}(P)\right)$ is the
length of the shortest cycle in $G_{K}(P)$. For any adjacent vertices k_{1}, k_{2} in $V\left(G_{K}(P)\right)$, we denote $C\left(k_{1}, k_{2}\right)=\left\{x \in V\left(G_{K}(P)\right) \mid N(x)=\left\{k_{1}, k_{2}\right\}\right\}$ and let T_{k} denote the set of all end vertices of $G_{K}(P)$ adjacent to k (see [18]). In [19], we introduced z-semi-ideal of P, and discussed many interesting results related to prime and z-semi-ideal of P.

For undefined terms and notations of graph theory, refer [5], and for posets, refer[12].

2. Main Results

In this section, we explore properties of P related to a single vertex in a graph $G_{K}(P)$ for a semi-ideal K of P. We provide some condition under which S_{x} and $S_{\geq x}$ are identical. Also, we discuss interesting results if $V\left(G_{K}(P)\right)$ is a generalized tree.
Theorem 2.1. ([15],[16]) Let $G_{K}(P)$ be a graph of P for a semi-ideal K in P. Then $G_{K}(P)$ is connected and $\operatorname{diam}\left(G_{K}(P)\right) \leq 3$.
Lemma 2.2. Let $G_{K}(P)$ be a graph of P for a semi-ideal K in P and $r, s \in V\left(G_{K}(P)\right)$. If $d(r, s)=3$, then $(r, s)^{l} \cap\left(V\left(G_{K}(P)\right) \backslash\{r, s\}\right) \neq \phi$ and $G_{K}(P)$ contains at least $\left|(r, s)^{l} \cap V\left(G_{K}(P)\right) \backslash\{r, s\}\right|$ induced subgraph of $G_{K}(P)$ with $C(a, b) \neq \phi$ for some $a, b \in V\left(G_{K}(P)\right)$.
Proof. Suppose $r-a-b-s$ is a path of length 3. Then there is $t \in\left((r, s)^{l} \cap V\left(G_{K}(P)\right)\right) \backslash\{r, s\}$ such that $t-a-b-t$.
Theorem 2.3. Let $G_{K}(P)$ be a graph of P for a semi-ideal K in P. If $G_{K}(P)$ does not contain a cycle, then $G_{K}(P)$ is a connected subgraph of two star graphs whose centers are connected by a single edge.

Proof. If $G_{K}(P)$ has a path of maximum length ≤ 2, then $G_{K}(P)$ is a star graph. Assume that $u-r-s-v$ is a path in $G_{K}(P)$ and $G_{K}(P)$ does not contain a cycle. Let $c \in V\left(G_{K}(P)\right)$ such that $c \notin\{u, r, s, v\}$. If $u-c$ or $c-v$ in $G_{K}(P)$ (say, $u-c$), then there exist a path $c-u-r-s-v$ of length 4 , a contradiction. So every vertex c in $G_{K}(P)$ should adjacent with either r or s, but not both. Hence $G_{K}(P)$ is a two star graph.
Corollary 2.4. Let $G_{K}(P)$ be a graph of P for a semi-ideal K in P. If $G_{K}(P)$ has no cycle and $b \in V\left(G_{K}(P)\right)$, then $(u, v)^{l} \subseteq T_{b} \cup K$ for any $u, v \in T_{b} \cup K$.

Proof. Let $u, v \in T_{b} \cup K$ and $t \in(u, v)^{l} \backslash K$. If $G_{K}(P)$ is a star graph, then $t \in T_{b}$. Suppose $G_{K}(P)$ is a two-star graph. Then $G_{K}(P)$ has two centres one of which should be b and other say a. So we have a path $r-a-b-s$ for some $r \in V\left(G_{K}(P)\right)$ and $s \in V\left(G_{K}(P)\right) \cup\{u, v\}$. If $t \notin T_{b}$, then for some $k \in V\left(G_{K}(P)\right), r-a-b-t-k$ is a path of length 4, a contradiction.

Proposition 2.5. Let $G_{K}(P)$ be a graph of P for a semi-ideal K in P and $b \in V\left(G_{K}(P)\right)$. Then the following assertions hold:
(i) If $G_{K}(P)$ has a cycle and for any $u \in T_{b} \cup K$, if $(u)^{l} \cap(y)^{u}=\phi$ for all $y \in V\left(G_{K}(P)\right) \backslash T_{b}$, then $(u, v)^{l} \subseteq T_{b} \cup K$, for any $v \in T_{b} \cup K$.
(ii) If $T_{b} \neq \phi$, then $K \cup\{b\}$ is semi-ideal.
(iii) If S is a clique in $G_{K}(P)$ such that $(b)^{l} \cap\left(V\left(G_{K}(P)\right) \backslash S\right)=\phi$ for all $b \in S$, then $S \cup K$ is semi-ideal.

Proof. (i) Suppose that $(u, v)^{l} \nsubseteq T_{b} \cup K$ for some $v \in T_{b} \cup K$. Then there is $c \in(u, v)^{l}$ such that $c \notin T_{b} \cup K$ which implies $c \in(u)^{l} \cap(c)^{u} \neq \phi$, which is a contradiction.
(ii) Let $a \in T_{b}$ and let $r, s \in P$ with $r \leq s$ and $s \in K \cup\{b\}$. If $s=b$, then $(r, a)^{l} \subseteq K$ which implies $r=b$. Hence $K \cup\{b\}$ is semi-ideal.
(iii) Let $r, s \in P$ with $r \leq s$ and $s \in S \cup K$. If $s \in S$, then $r \notin S$, since S is clique in $G_{K}(P)$. Now $r \in(s)^{l} \cap\left(V\left(G_{K}(P)\right) \backslash S\right) \neq \phi$, a contradiction.

Example 2.6. Let $P=\{1,2,3,5,6,12\}$ be a poset under the relation division and $K=\{1\}$. Then K is a semi-ideal of P and the graph $G_{K}(P)$ is given below:

Here $(6)^{l} \cap(2)^{u} \neq \phi$ for $6 \in T_{5}$. But $(6,12)^{l} \nsubseteq T_{5} \cup K$. Also note that $T_{6}=\{\phi\}$, but $K \cup\{6\}$ is not a semi-ideal of P. This shows that one can not drop the conditions $(u)^{l} \cap(y)^{u}=\{\phi\}$ and $T_{b} \neq\{\phi\}$ from Proposition 2.5 (i) and (ii) respectively.

The following example shows that the condition $(b)^{l} \cap\left(V\left(G_{K}(P)\right) \backslash S\right)=$ ϕ for all $b \in S$ is necessary in Proposition 2.5 (iii).
Example 2.7. Let $P=\{1,2,3,4,5,12\}$ be a poset under the relation division and $K=\{1\}$ be a semi-ideal of P. The graph $G_{K}(P)$ is given below:

Here $S=\{3,4,5\}$ is a clique of $G_{K}(P)$ and $(4)^{l} \cap\left(V\left(G_{K}(P)\right) \backslash S\right) \neq \phi$, but $S \cup K$ is not a semi-ideal of P.

Following [25], we denote $S_{x}=\left\{s \in V\left(G_{K}(P)\right) \mid N(s)=N(x)\right\}$ and $S_{\geq x}=\left\{s \in V\left(G_{K}(P)\right) \mid N(s) \subseteq N(x)\right\}$. It is clear that $S_{x} \subseteq S_{\geq x}$ for any $x \in V\left(G_{K}(P)\right)$. But $S_{\geq x}$ is not necessary to be a subset of \bar{S}_{x}. In Example 2.7, for $2 \in V\left(G_{K}(P)\right)$, we have $S_{\geq 2} \nsubseteq S_{2}$.

Theorem 2.8. Let $G_{K}(P)$ be a graph of P for a semi-ideal K of P and $x \in V\left(G_{K}(P)\right)$. Then $\left(V\left(G_{K}(P)\right) \backslash S_{\geq x}\right) \cup K$ is a semi-ideal of P.
Proof. Let $r, s \in P$ with $r \leq s$ and $s \in\left(V\left(G_{K}(P)\right) \backslash S_{\geq x}\right) \cup K$. If $r \notin K$ and $s \in V\left(G_{K}(P)\right) \backslash S_{\geq x}$, then $N(s) \subseteq N(r)$ and $N(s) \nsubseteq N(x)$ which imply $r \notin S_{\geq x}$.

As an immediate consequence, we have the following.
Corollary 2.9. Let $G_{K}(P)$ be a graph of P for a semi-ideal K in P and $x \in V\left(G_{K}(P)\right)$. Then the following hold:
(i) If $G_{K}(P)$ is complete graph, then $\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup K$ is semiideal.
(ii) If x is an end vertex, then $\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup K$ is semi-ideal.

Following [2], P is said to be a generalized tree if for any $r \in P$ and for every $x_{1}, x_{2} \in(r)^{l}$, either $x_{1} \leq x_{2}$ or $x_{2} \leq x_{1}$. For a non-empty $Q \subseteq P$, an element $r \in Q$ is said to be a minimal element of Q, denoted by $\operatorname{Min}(Q)$, whenever $s \in Q$ and $s \leq r$ implies that $s=r$.
Theorem 2.10. [2] Let $V\left(G_{K}(P)\right)$ be a generalized tree and for $k \geq 2$, $|\operatorname{Min}(P \backslash K)|=k$. If $(x)^{l} \backslash K$ has a minimal element for every $x \in P \backslash K$, then $G_{K}(P)$ is a complete k-partite graph.

Theorem 2.11. Let $G_{K}(P)$ be a graph of P for a semi-ideal K in P. Let $V\left(G_{K}(P)\right)$ be a generalized tree and for $k \geq 2,|\operatorname{Min}(P \backslash K)|=k$. If $(x)^{l} \backslash K$ has a minimal element for every $x \in P \backslash K$, then the sets S_{x} and $S_{\geq x}$ are same.
Proof. Let $s \in S_{\geq x}$. Then $N(s) \subseteq N(x)$. Suppose that $N(x) \nsubseteq N(s)$. Then there exists $t \in N(x) \backslash N(s)$. So t and s are in same partition of $V\left(G_{K}(P)\right)$ since $G_{K}(P)$ is a complete k-partite graph by Theorem 2.10. Since $t \in N(x)$, we have $s \in N(x)$ which gives $x \in N(s) \subseteq N(x)$
and so $x \in K$, a contradiction. Thus $N(x) \subseteq N(s)$ which gives $s \in S_{x}$ and hence S_{x} and $S_{\geq x}$ are same.

Theorem 2.12. Let $G_{K}(P)$ be a graph of P for a semi-ideal K in P and $x \in V\left(G_{K}(P)\right)$. If $V\left(G_{K}(P)\right)$ is a generalized tree, then for any $v \in P$, we have $(u, v)^{l} \subseteq S_{\geq x} \cup K$ for all $u \in S_{\geq x} \cup K$.
Proof. Let $u \in S_{\geq x}$ and suppose that $(u, v)^{l} \nsubseteq S_{\geq x} \cup K$ for some $v \in P$. Then there is $t \in(u, v)^{l} \backslash S_{\geq x} \cup K$ such that $N(t) \backslash(N(x) \cup N(u)) \neq \phi$. Now let $s \in N(t) \backslash(N(x) \cup N(u))$. Then there is $a \in(s, u)^{l} \backslash K$ such that $a \leq t$ or $t \leq a$ as $\{a, t\} \subseteq(u)^{l}$ and $V\left(G_{K}(P)\right)$ is generalized tree. Since $(a, t)^{l} \subseteq K$, we get $a \in K$ or $t \in K$, which is a contradiction. So $(u, v)^{l} \subseteq S_{\geq_{x}} \cup K$.

In view of Theorem 2.12, we have the following:
Corollary 2.13. Let $G_{K}(P)$ be a graph of P for a semi-ideal K in P and $x \in V\left(G_{K}(P)\right)$. If $V\left(G_{K}(P)\right)$ is a generalized tree, then $S_{\geq x} \cup K$ is a semi-ideal of P.

Remark 2.14. If $V\left(G_{K}(P)\right)$ is not a generalized tree, then Theorem 2.12 will fail . Indeed, in Example 2.7, for $K=\{1\}, S_{\geq 12}=\{12\}$, but $(12)^{l} \nsubseteq S_{\geq 12} \cup K$.
Theorem 2.15. Let $G_{K}(P)$ be a graph for a semi-ideal K in P and $x \in$ $V\left(G_{K}(P)\right)$. If $V\left(G_{K}(P)\right)$ is a generalized tree, then $\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup$ K is semi-ideal. Moreover, for any $k_{1}, k_{2} \in V\left(G_{K}(P)\right) \cup K$, if $\left(k_{1}, k_{2}\right)^{l} \subseteq$ $\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup K$, we have $k_{1} \in\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup K$ or $k_{2} \in$ $\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup K$.

Proof. Let $u, v \in P$ with $u \leq v$ and $v \in\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup K$. Suppose $v \in V\left(G_{K}(P)\right) \backslash S_{x}$ and $u \in S_{x}$. Then $N(u)=N(x)$ which implies $N(v) \subset N(x)$. Now let $s \in N(x) \backslash N(v)$. Then there exists $k_{1} \in$ $(s, v)^{l} \backslash K$ such that $k_{1} \leq u$ or $u \leq k_{1}$ as $\left\{k_{1}, u\right\} \subseteq(v)^{l}$ and $V\left(G_{K}(P)\right)$ is generalized tree. Since $\left(k_{1}, u\right)^{l} \subseteq K$, we have $k_{1} \in K$ or $u \in K$, a contradiction. So $u \notin S_{x}$ and hence $\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup K$ is semi-ideal.

Let $\left(k_{1}, k_{2}\right)^{l} \subseteq\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup K$ and $k_{1}, k_{2} \notin\left\{\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup\right.$ $K\}$. Then $N\left(k_{1}\right)=N(x)$ and $N\left(k_{2}\right)=N(x)$.

Case(i): If $\left(k_{1}, k_{2}\right)^{l} \subseteq K$, then $k_{2} \in N\left(k_{1}\right)=N\left(k_{2}\right)$ which implies $k_{2} \in K$, a contradiction.

Case(ii) : If $\left(k_{1}, k_{2}\right)^{l} \nsubseteq K$, then there exists $t \in\left(k_{1}, k_{2}\right)^{l}$ such that $t \in$ $V\left(G_{K}(P)\right) \backslash S_{x}$ which implies $N(t) \nsubseteq N(x)$. Now let $s \in N(t) \backslash(N(x) \cup$ $\left.N\left(k_{1}\right) \cup N\left(k_{2}\right)\right)$. Then there exists $d \in\left(s, k_{1}\right)^{l} \backslash K$ such that $d \leq t$ or $t \leq d$ as $\{d, t\} \subseteq\left(k_{1}\right)^{l}$ and $V\left(G_{K}(P)\right)$ is a generalized tree. Since $(d, t)^{l} \subseteq K$, we have $d \in K$ or $t \in K$, a contradiction. So $k_{1} \in$ $\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup K$ or $k_{2} \in\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup K$.

Corollary 2.16. Let $G_{K}(P)$ be a graph of P for a semi-ideal K of P and $x \in V\left(G_{K}(P)\right)$. If $V\left(G_{K}(P)\right)$ is a generalized tree and $V\left(G_{K}(P)\right)=$ $P \backslash K$, then $\left(V\left(G_{K}(P)\right) \backslash S_{x}\right) \cup K$ is a prime semi-ideal of P.

The following example shows that we can not drop the condition $V\left(G_{K}(P)\right)=P \backslash K$ in Corollary 2.16.
Example 2.17. Let $P=\{1,2,3,5,12,60,90\}$ be a poset under the relation division and $K=\{1\}$. Then K is a semi-ideal of P and the graph $G_{K}(P)$ is given below:

Here $S_{12}=\{12\}$ and $\left(V \backslash S_{12}\right) \cup K=\{1,2,3,5\}$. But $\left(V \backslash S_{12}\right) \cup K$ is not prime as $(60,90)^{l}=\{1,2,3,5\} \subseteq\left(V \backslash S_{12}\right) \cup K$ with $60,90 \notin$ $\left(V \backslash S_{12}\right) \cup K$.
Theorem 2.18. Let $G_{K}(P)$ be a graph of P for a semi-ideal K in P and $x \in V\left(G_{K}(P)\right)$. If $V\left(G_{K}(P)\right)$ is a generalized tree, then the following assertions hold:
(i) For any $v \in P,(u, v)^{l} \subseteq S_{x} \cup K$ for all $u \in S_{x} \cup K$. In particular, $S_{x} \cup K$ is semi-ideal.
(ii) $\left(V\left(G_{K}(P)\right) \backslash S_{\geq x}\right) \cup K$ is a semi-ideal of P. For any $a, b \in$ $V\left(G_{K}(P)\right) \cup K$, if $(a, b)^{l} \subseteq\left(V\left(G_{K}(P)\right) \backslash S_{\geq x}\right) \cup K$, we have
$a \in\left(V\left(G_{K}(P)\right) \backslash S_{\geq x}\right) \cup K$ or $b \in\left(V\left(G_{K}(\bar{P})\right) \backslash S_{\geq x}\right) \cup K$. In particular, $\left(V\left(G_{K}(P)\right) \backslash S_{\geq x}\right) \cup K$ is prime semi-ideal.
Proof. It is evident from Theorems 2.11, 2.12 and 2.15.
Recall that the set of associated primes of P, denoted by $\operatorname{Ass}(P)$, is the set of prime semi-ideals Q in P such that there is some $x \in P$ with $Q=<x, K>$ for a semi-ideal K in P.
Theorem 2.19. Let $G_{K}(P)$ be a graph of P for a semi-ideal K in P. Then following assertions hold:
(i) If $|\operatorname{Ass}(P)| \geq 2$ and $P_{1}=<r, K>, P_{2}=<s, K>$ are distinct elements of $\operatorname{Ass}(P)$, then $(r, s)^{l} \subseteq K$.
(ii) If $|\operatorname{Ass}(P)| \geq 3$, then $\operatorname{gr}\left(G_{K}(P)\right)=3$.
(iii) If $|\operatorname{Ass}(P)| \geq 5$, then $G_{K}(P)$ is non-planar.

Proof. (i) Suppose $P_{1} \neq P_{2}$. Then there exists $x \in P_{1} \backslash P_{2}$ such that $(x, r)^{l} \subseteq K \subseteq P_{2}$. Since P_{2} is prime, $r \in P_{2}$ which implies $(r, s)^{l} \subseteq K$.
(ii) Let $P_{1}=<r, K>, P_{2}=<s, K>$ and $P_{3}=<t, K>$ be distinct elements of $A s s(P)$. Then by (i), $r-s-t-r$ is a cycle in $G_{K}(P)$ and so $\operatorname{gr}\left(G_{K}(P)\right)=3$.
(iii) Since $|\operatorname{Ass}(P)| \geq 5$, the complete graph K_{5} is a subgraph of $G_{K}(P)$. By Kuratowski's theorem, $G_{K}(P)$ is non-planar.
Theorem 2.20. [2] Let $G_{K}(P)$ be a graph of P for a semi-ideal K in P. Then following assertions are equivalent:
(i) There exist nonzero prime semi-ideals P_{1} and P_{2} in P such that $P_{1} \cap P_{2}=K$.
(ii) $G_{K}(P)$ is a complete bipartite graph.
(iii) $G_{K}(P)$ is a bipartite graph.

Theorem 2.21. Let $G_{K}(P)$ be a graph of P for a semi-ideal K in P. If $|\operatorname{Ass}(P)|=\left\{P_{1}, P_{2}\right\}$ and $\left|P_{1}\right| \geq 3,\left|P_{2}\right| \geq 3$ with $P_{1} \cap P_{2}=K$, then $\operatorname{gr}\left(G_{K}(P)\right)=4$.

Proof. Let $P_{1}=<r, K>$ and $P_{2}=<s, K>$ with $x \in P_{1} \backslash(K \cup\{s\})$ and $y \in P_{2} \backslash(K \cup\{r\})$. Since $(x, y)^{l} \subseteq K$, we have $x-r-s-y-x$ and so $\operatorname{gr}\left(G_{K}(P)\right) \leq 4$. By Theorem 2.20, $G_{K}(P)$ is a bipartite graph. Hence $\operatorname{gr}\left(G_{K}(P)\right)=4$.

Acknowledgments

The authors are grateful to the referee for his/her valuable comments and suggestions for improving the paper.

References

1. M. Adlifard and SH. Payrovi, Some classes of perfect annihilator-ideal graphs associated with commutative rings, J. Algebra Relat. Top., 9 (1) (2021), 21-29.
2. M. Alizadeh, H. R. Maimani, M. R. Pournaki and S. Yassemi, An ideal theoretic approach to complete partite zero-divisor graphs of posets, J.Algebra Appl., 12(2) (2013), 1250148.
3. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J.Algebra, 217 (1999), 434-447.
4. K. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
5. J. A. Bondy and U. S. R. Murty, Graph theory with applications, North-Holland, Amsterdam, 1976.
6. A. Das and M. Saha, Determining number of some families of cubic graphs, J. Algebra Relat. Top., 8 (2) (2020), 39-55.
7. F. R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroups, Semigroup Forum, 65 (2002), 206-214.
8. P. Dheena and B. Elavarasan, An ideal based-zero-divisor graph of 2-primal nearrings, Bull. Korean Math. Soc., 46(6) (2009), 1051-1060.
9. B. Elavarasan and K. Porselvi, An ideal - based zero-divisor graph of posets, Commun. Korean Math. Soc., 28 (2013), No. 1, 79-85.
10. F. Esmaeili Khalil Saraei, The annihilator graph of modules over commutative ring, J. Algebra Relat. Top., 9 (1) (2021), 93-108.
11. Frank DeMeyer and Lisa DeMeyer, Zero divisor graphs of semigroups, J. Algebra, 283 (2005), 190-198.
12. R. Halas, On extensions of ideals in posets, Discrete Math., 308 (2008), 4972 4977.
13. R. Halas and Marek Jukl, On beck's coloring of posets, Discrete Math., 309 (2009), 4584-4589.
14. Hossein Rashmanlou, G. Muhiuddin, SK Amanathulla, F. Mofidnakhaei and Madhumangal Pal, A study on cubic graphs with novel application, J. Intell. Fuzzy Syst., 40(1) (2021), 89-101.
15. V. Joshi, Zero divisor graph of a poset with respect to an ideal, Order, 29 (2012), 499-506.
16. D. Lu and T . Wu, The zero-divisor graphs of posets and an application to semigroups, Graphs Combin., 26 (2010), 793-804.
17. S. B. Pejman, SH. Payrovi and S. Babaei, Resolvability in complement of the intersection graph of annihilator submodules of a module, J. Algebra Relat. Top., 8 (1) (2020), 27-37.
18. K. Porselvi and B. Elavarasan, Poset properties determined by the ideal - based zero-divisor graph, Kyungpook Math. J., 54 (2014), 197-201.
19. K. Porselvi and B. Elavarasan, Some properties of prime and z-semi-ideals in posets, Khayyam J. Math., 6 (2020), 46-56.
20. K. Porselvi and R. Solomon Jones, Properties of extended ideal based zerodivisor graph of a commutative ring, J. Algebra Relat. Top., 5 (1) (2017), 55 59.
21. T. Pramanik, G. Muhiuddin, Abdulaziz M. Alanazi and Madhumangal Pal, An Extension of Fuzzy Competition Graph and Its Uses in Manufacturing Industries, Mathematics, 8 (2020), 1008.
22. S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31(9) (2003), 4425-4443.
23. S. Samanta, G. Muhiuddin, Abdulaziz M. Alanazi and Kousik Das, A Mathematical Approach on Representation of Competitions: Competition Cluster Hypergraphs, Math. Probl. Eng., Volume (2020), Article ID 2517415, 10 pages.
24. S. Satham Hussain, R. Jahir Hussain and G. Muhiuddin, Neutrosophic Vague Line Graphs, Neutrosophic Sets and Systems, 36 (2020), 121-130.
25. Tongsuo Wu and Dancheng Lu, Sub-semigroups determined by the zero-divisor graph, Discrete Math., 308 (2008), 5122-5135.

K. Porselvi

Department of Mathematics,
Karunya Institute of Technology and Sciences,
Coimbatore - 641 114, Tamilnadu, India.

Email: porselvi94@yahoo.co.in

B. Elavarasan

Department of Mathematics,
Karunya Institute of Technology and Sciences,
Coimbatore - 641 114, Tamilnadu, India.
Email: belavarasan@gmail.com

[^0]: MSC(2010): Primary: 06D6, 11Y50
 Keywords: Posets, semi-ideals, prime semi-ideals, cycle and neighborhood. Received: 26 April 2021, Accepted: 13 September 2021.
 $*$ Corresponding author .

