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Abstract.  The main target of this paper is to solve a system of two-dimensional Volterra integral
equations (2-DVIEs). Operational Matrices of two-dimensional hybrid of block-pulse functions and
Legendre polynomials are applied to reduce these systems of integral equations to a system of algebraic
equations. The main benefit of these basic functions is their efficiency in dealing with non-sufficiently
smooth functions. An error bound is provided and some examples are prepared to verify the applicability
of the offered numerical technique.
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1 Introduction

Much attention has been devoted to Volterra integral equations considering the large number of applica-
tions in many natural phenomena including superfluidity, elasticity, plasticity, fluid mechanic, fracture
mechanic theory, electromagnetic theory, molecular physics, heat transfer problems, etc [6,8,19,27,31].
System of integral equations also arise in various fields of science, engineering and physics such as de-
scribing the formation of liver zones and chemically reacting flowing systems and some problems in
electromagnetic and elastic waves [ 1,7, 16].

In the past decade, several numerical techniques and basic functions have been devoted to estimate
the solution of two-dimensional integral equations of the second kind such as block-pulse functions
method [4, 25], Franklin wavelet galerkin method [29], Legendre operational matrix method [28], hy-
brid functions method [22,23], discrete Galerkin method [2], expansion method [9], expansion-iterative
method [14], Bernoulli operational matrix method [5], Bernstein operational matrix method [30], Haar
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wavelet [3] and rationalized haar functions method [1 1], shifted Jacobi operational matrix method [32]
and Laguerre wavelet method [20]. There are fewer pieces of research focusing on computational meth-
ods for approximating the solution of system of two-dimensional integral equation. Maleknejad and
Hoseingholipour have used two-dimensional Legendre wavelets, along with collocation method and nu-
merical integration to solve system of two-dimensional integral equations numerically [21]. In [12]
the modified Newton method has been implemented for the numerical solution of a general system of
nonlinear Volterra type integral equations. Karimi et al. have considered Legendre wavelets for the nu-
merical solution of a system of two-dimensional Volterra integral equations [17]. The authors of [20]
have extended modified moving least squares methods for solving two-dimensional linear and nonlinear
systems of integral equations. Adaptive iterative regularization schemes have been used to solve system
of two-dimensional integral equations in [13]. Zaky et al. [33] have used a spectral collocation method
for solving a general class of nonlinear systems of multi-dimensional integral equations.

Here, we plan to find the solution of linear system of 2-DVIEs of the form
t X
AU (x,1) = G(x,1) —|—/ / K(x,t,y,2)U(y,z)dydz, (x,1) € Q, (1)
0 Jo

where U (x,1) = (uy (x,1),u2(x,1))", G(x,1) = (g1(x,1),82(x,1))", and A and K(x,t,y,z) are matrices of
the form

A Mz} [kll(xtyz) ki2(x,t,y,2)
A — ) B , K x,t, 3 — 5 LA IS N IS PA] ,
[12,1 A2 (v, t,3,2) ko (x,2,5,2)  kap(x,t,,2)

such that u; (x,#) and u,(x,) are unknown functions defined on Q = [0, 1) x [0, 1), the functions k; s(x,?,y,z)
and g;(x,7) for I,s = 1,2 are given functions and A, ;(I,s = 1,2) are constant values and detA # 0. The
existence and uniqueness results for the solution of systems of 2-DVIEs have been discussed in [33].

In this paper, we extend the method introduced in [24] to solve syatem of 2-DVIEs of the form
(1). Two-dimensional hybrid of block-pulse functions and Legendre polynomials and their operational
matrix of integration and product operational matrix and product operational vector are utilized to solve
the considered problem. The most important aspect of the hybrid functions method is that the order of
block-pulse functions and Legendre polynomials are adjustable, which helps us to change the number of
subintervals and the degree of Legendre polynomials in each subinterval until getting the best possible
result.

The remaining parts of this paper are structured as follows. In Section 2, two-dimensional hybrid of
block-pulse functions and Legendre polynomials and their operational matrix of integration together with
the product operational matrix and the product operational vector are introduced. Operational matrices
are utilized to convert the system of integral equations into a system of algebraic equations in Section
3. Section 4 is devoted to the description of the error analysis of the proposed method. Some computed
examples are prepared in Section 5 to test the accuracy of the hybrid functions method, followed by a
conclusion in Section 6.
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2 Basic concepts

2.1 Two-dimensional hybrid functions

Two-dimensional hybrid of block-pulse functions and Legendre polynomials on the interval €2, intro-
duced by ¢;, j,i,,, are defined as

Lj, (2Nx—2i; + 1)Lj, (2Nt —2i + 1), (x,1) € [15

0, otherwise,

iy juiz o (x,1) = { 2
where i1,i; = 1,2,...,N, j1,j2=0,1,...,M —1, and N and M are positive integer numbers. Here L;
and L;, are the Legendre polynomials of order j; and j, respectively, which are defined on the interval
[—1, 1] and can be determined recursively as

Lo(x) =
Li(x) =x,
2 1
L1 () = 2l (x) = Ly 1 (x), m=1,2,...,—1<x<1

m—+1 *
From Eq. (2) we have

o0

N N
. o L;L;,L, L dxdt i1 =ny,ir =ny,

/ / ¢11J112]2 X, 1) Py mymymy (X, 1) dxdt = /2 /1 Sz e 3)

otherwise,

where Lj, = Lj, (2Nx—2i1+1), Lj, = Lj,(2Nt —2iy+1), Ly, = Ly, (2Nx—2i1 +1) and Ly, = Ly, (2Nt —
r[—

2ip +1). Then, we transform the integrals over [* Nl,j\l,} and [* Nl ’2] to the integral over [—1,1] by
introducing the following transformations
: ii—1 14
=2Nx—2 1 —
Y X i1+ 1, X € [ N aN]7
= 2Nt —2iy+1 te[i2_1 iz]
n= 2 ) N 'N”

So, Eq. (3) converts to
1,1
/0 /O ¢i1j1i2]'2(xvt)%lmmsz(x»t)dth
:{< f 1 Lj, (V)L (7)d7’>< : I Ly, (m) mz(n)dn) iy = ny,ip = ny,

0, otherwise.

Now, using orthogonality properties of Legendre polynomials from [10], we arrive at

1 1
/O /0 ¢i1j]i2j2(x,t)¢n1m|n2m2 (x7t)dth

1 2 1 2 ) . ) ‘
= X — X = = = —
— <2N 2j1+1> <2N 2j2+1>’ Il =Ny, = N2, J1 =My, j2 =My,
0, otherwise.
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Thus, two-dimensional hybrid of block-pulse functions and Legendre polynomials are orthogonal to each
other with the orthogonality clause

1

1 1 -
./ / (Piljlizjz(xvt)q)mmmzmz(xvt)dXdI = {N2(2j1+1)(2j2+1)7
0o Jo

i1 =ny,ip =ny, j1 =my, jo = my,
0, otherwise.

2.2 Function approximation

Now consider the space X = L?(Q) with the norm

1 bt 1
lgle=<s.8>t= ([ [ lste)Parant,
where (.,.) denotes the inner product and let
Xnm = span{91010(x,1), Pro11(x,), -, Dro1(a—1) (%, 1), P1020 (X, ), - - -, Proam—1) (%:), - - -
ONM—1N0(X58), -+ s DN =1 (—1) (X, 1) }-

Since Xy u is a finite dimensional and closed subspace of the Hilbert Space X, for every g € X there
exists a unique best approximation gy y € Xy u, such that

— — inf [|ge—hls.
| & —gnm 2 heXNMIIg 2

A proof of the above result can be found in [18]. Moreover we have

N M—1 N M-1

g(xvt) %gN,M(xat) = Z Z Z Z gi1j1i2j2¢ilj1i2j2(x7t) = GTd)(x’t% 4)
i1=1j1=0i=1 ja=o
where
G = (21010, 810115 - - - §101(M—1)> 810205 - - - »§102(M—1)» - - -+ EN(M—1)NOs - - - - SNM—1)Nm—1)) » ()
D(x,1) = [Pr010(x,1), Pro11(x,1), -+ Pro1(v—1) (X, 1), Pr020 (%,1) -+, Proo 1) (%,1), -
On—1no (X, 1), - - On—1yvu—1) (6] (6)

and the coefficients are uniquely obtained by

Giiinini = <g’¢i111i2j2>
i1 j1iaj2 — .
e <¢i1j1i2j27¢i1j1i2j2>

In a similar way any function k(x,¢,y,z) in L?(Q x Q) can be expanded in terms of two-dimensional
hybrid of block-pulse functions and Legendre polynomials as

k(x,2,,2) = kn (%, 2,,2) = @7 (x,1)KP(y,2), (7)

where K is an N2M? x N*M? matrix with the entries

o <<k(x7t7yyz)7q)(j)(yaz)>7q)(i)(x7t)>
" @) D 31Pe (0[5

in which @ ;) (x,7) denotes the ith element of the column vector ®(x,?).
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2.3 Operational Matrices

The integration of the vector ®(x,7) determined by (6) can be approximately obtained as [24]

[ [ 20:2avde= 00 = (P P)(en) ®)
0 JO

where Q is an N>M? x N>M? matrix called operational matrix of integration for two-dimensional hybrid
of block-pulse functions and Legendre polynomials. Note that ® denotes the Kronecker product and P is
the operational matrix of integration for one-dimensional hybrid of block-pulse functions and Legendre
polynomials given by [15]

SR . 100 0 0
0000 0
0SS E ... E
oo o s - Lo 10000 0
. M N[0 000 0 ’
0 00 o Shyam 0000 ... 0],

and S is the operational matrix of integration for one-dimensional shifted Legendre polynomials on the

interval [%, %) and can be specified by

[ 1 1 0 0 0 0 0 |
%1 0 % 0 0 0 0
-1 1
0 — 0 = 0 0 0
s—i 5 5
T 2N : : :
-1 1
0 0 00 2M —3 01 2M —3
0O 0 0 0 .. 0 _ 0
L 2M -1 1 msm

The following property of the product of two vectors ®(x,¢) and ®7 (x,t) defied by (6) will be usable
O (x,1)®" (x,1)G ~ GP(x,1), ©)

where G is defined by (5) and G is an N2M? x N>M? matrix, called product operational matrix and can
be determined by the next algorithm [24]:

1. Dj, pip» foriy,io=1,...,Nand hy =0,...,M — 1 are M x M matrices of the form

M-1

i1,hy,i2

Dil.,h1.,i2 = |:D(]2’m2):|

. 9
J2,m2=0
where

M—1

D[(]]Z};TIZZ) - N(2m2 + 1) Z gizjzhzngilhlizhz) j27m2 - 07 cee 7M_ 17
h,=0
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in which

i

G = [ Lj(2Nx =20+ 1)Ly (2Nx — 2i 4 1)Ly (2Nx —2i +1) .
N

2. Ajp,,forip=1,...,Nand hy =0,...,M — 1 are NM x NM block-diagonal matrices of the form
Di17h171
Di17h1»2
Aip =

Diy i N ypgsenm

3. Gil, forij =1,...,N are NM? x NM? matrices determined by
N oy M—1
Gil = |:Gl(]]]7ml):| . )
J1,m=0,1
such that
M—1

GS{l7ml) :N(2m1 + 1) Z gi]j]h]mlAilhp jl)ml = 07 15"'7M_ 1.
h1=0

4. At the end, the block-diagonal matrix G defined in (9) is obtained as

Gi

ON ] yowrxneare
For an N2M? x N2M? matrix A, it is useful to estimate an N2M? x 1 vector A = [A(l) , A(z), e ,A(NzMz)]T,
which satisfies the next formula:

O (x,1) AD(x,1) =~ AT D(x,1). (10)

A is called product operational vector for two-dimensional hybrid of block-pulse functions and Legendre
polynomials and its entries are obtaiened with the aid of the following formulae [24]:

N N2MENZME (L L (e 1) (x, ) D t)dxdr
A(m) _ Z Z fo fo (z)(xa ) (j)(x7 ) (m)(xa ) Ai,j7
i=1 j=1 <q)(m)7cb(m)>

m=1,2,... N*M>.

3 Implementation of the numerical method

In this section, we apply the operational matrices of two-dimensional hybrid of block-pulse functions
and Legendre polynomials to discuss a numerical algorithm for the solution of the system of 2-DVIEs of
the form (1).
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First, let us rewrite Eq. (1) in the following form

t X
Al,lul(xat)'f‘ll,Z”Z(xat):gl(x’t)+/()/Okl,l(xvtayaz)ul(%z)dydz

t X
[ [ hatenymmddz, 1=12. (an
0 Jo
Expanding the functions in Eq. (11) with respect to the two-dimensional hybrid functions, we have
w(x,t) ~UL®(x,t) = iy p(x,t)  1=1,2, (12)
gi(x,1) =Gl ®(x,1) = g1 (1) [=1,2, (13)
kz,s(x,l,)%Z) %(I)T(x7t)Kl7sq)(y’z) = kl,s7N7M(xatay7Z) l,S = 172a (14)

in which U; and U, are N2M? x 1 unknown vectors to be estimated. Substituting Egs. (12)-(14) into Eq.
(11), we obtain

t X
MU @(x,1) + 42U @(x,t) =G| ®(x,1) + D (x,1)K; / / ®(y,2)®" (v,2)U; dydz
0 JO

t rx
+q>T(x,z)1<1,2/0/0q>(y,z)cI>T(y,z)U2dydz, I=1,2. (15

Making use of the operational matrix of integration (8) and the product operational matrix (9), Eq. (15)
will be converted to

MU @(x,1) + 42U @(x,1) = G| ®(x,1) + D (x,1)K; 10, QP (x,1) + D (x,0)K; 202 0P(x,1), [=1,2.
By setting A; s = KI,SUSQ for [,s = 1,2 and applying the operational vector introduced in (10), we obtain
MU ®(x,t) + A .U) ®(x,t) = G ®(x,1t) + A] 1 P(x,1) + A, P(x,1),  1=1,2.

Thus we have A A
MU+ 20U, — A — Ao =Gy, [=1,2,

which is a system of 2N?>M? equations with the same number of unknowns that can be solved by any
iterative mehod.

4 Error analysis

This section is devoted to the estimation of an error bound for the approximate solution of Eq. (1) based
on two-dimensional hybrid of block-pulse functions and Legendre polynomials. Suppose that

Q= U Qi1i27
1<iy, <N
where C 1
n—1un L—11n
1'11'2:[ N >N)X[ N 7N)
We assume that the functions k;4(x,?,y,z) and g;(x,t) for [,s = 1,2 are sufficiently smooth on each
subinterval €;,;,. Using the above assumptions, we have the next theorems.

Q
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Theorem 1. [24] Let gy m(x,t) be the two-dimensional hybrid expansion of real valued functions
gi(x,1) (I = 1,2) defined by (13) and suppose that g|(x,t) and g>(x,t) are sufficiently smooth on each
subinterval Q; i, i1,i2 = 1,2,...,N, then there exist positive constants 0y such that

o

181 — g1nmll2 < TN

g =L (16)

Theorem 2. [24] Let k; s vy m(x,t,,2) be the two-dimensional hybrid expansion of real valued function
ki s(x,t,y,z) defined by (14) and suppose that k; s(x,t,y,z) for l,s = 1,2 are sufficiently smooth on each
subinterval Q;, i, X Qj, i,, 11,i2,i3,i4 = 1,2,...,N, then there exist positive constants [ ; such that

Bi.s
k1s —kisnmll2 < W]W’

Now, consider Eq. (1) with the operator form

Is=1,2. (17)

t X
AU:G—i—//KUdydz.
0 JO

Let us define the vectors Uy u(x,7), Gy m(x,1) and the matrix Ky p(x,2,y,z) in the following form

Uy m(x,1) = (ﬁl,N7M(x,t),ﬁzﬁN,M(x,t))T, approximate solution of system (1), (18)

Gnw(x,1) = (gvm(x,1), ganm(x,1)" hybrid expansion of G(x,t), (19)

Ky m(x,t,y,2) = KLy m(ny2) kianm(xy, Z)] ) hybrid expansion of K(x,t,y,z).  (20)

N kZ,I,N,M(xat,yaz) k2,2,N,M(X,t7yaZ)
Using the above assumptions we have the following theorem:
Theorem 3. Suppose that U(x,t) is the exact solution of Eq. (1) and Uy pm(x,t) is its approximate
solution obtained by the proposed method. Also, assume that the following conditions hold:

(D) |U]]2 =c1 < oo, (2) [[K|[2 = c2 < o0, (3) A7 ]2 = ¢3 < eo.
Then there exist positive constans p and G such that

c3p
U ~UOyml2 < ZZM_INM%!g - D)
s = oy

Proof. From Eq. (1), we have
AU = Oan(0) = G) = Granln)+ [ [ (K1.0:200(0:2) ~ Kivar..2) O (2)) v
Since 0 < x,7 < 1 and detA # 0, by tacking L?>-norm in the above equation we have

U =Ovmll2 < A 201G = Gy mallz + AT 12| KU — Ky saUn . |- (22)
It is clear that

K(x,t,y,z)U(y,z) _KN,M(X,I,)’,Z)UN,M()/,Z) = K(x,t,y,z) (U(y,z) - UN,M()’,Z))
+ (K(x,t,y,z) —KN7M(X,t,y,Z)) (U(y,z) - UN,M()’,Z)) + (K(xatayaz) _KN7M(x7tayaZ)) U(y,z),
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which leads to
IKU — Ky mUnmll2 < K210 = Onmll2 + 1K = Ky mll2|U — Uy mall2 + |K = Ky m2[| U2 (23)
From Egs. (22) and (23), we obtain

U = Ovpllz <IAT 211G = Gyl + AT 2]IK]2)|U — On a2
+ AT 21K = Ky |l2l|U = On a2 + IA7 211K = Ky a2 U |2

Using the assumptions 1-3 and the above inequality we have

c3]|G — Gy ml)2

10~ Onarlz < 1 —ce3 —c3l|K =Ky umlla 9

Now consider definitions (19) and (20). It follows from Theorems 1 and 2 that
: Lo Y
|G —Gnuml2= (;Hgl _gl,N,MH%) (Z (22M lNMM'> ) = 22M+NMM!’
in which p = (o + &3) *,and
Z . 2 : : Bus 2\ ! S
K —Kymll2= (;g”kz,s—kl,s,N,M!z> < <; ; (22M INMM!> ) = =NV
1
in which ¢ = <[5’12 L+ [3122 + [322 |+ ﬁzzz) * . From inequalities (24), (25) and (25), we obtain
c3p
U= Ol < — 2N
s i

which completes the proof. O

Remark 1. It is obvious in the case that cycz # 1 the right hand side of the inequality (21) tends to zero
as N,M — o, so U — Uy y — Oand this proves convergence of the proposed method.

5 Numerical results

In this section, some numerical examples are provided to indicate the accuracy and effectiveness of
the hybrid functions method. In order to analyze the error of the method, we introduce the following
functions:

ehN,M(x,t) = |u1(x,t) —ﬁz,N,M(XJ)|, (x,t) e, [=1,2,

where u;(x,7) for [ = 1,2 denote the exact solutions of Eq. (1) and iy um(x,t) for [ = 1,2 are the
approximate solutions obtained by the proposed method. All of the computations have been done using
MATHEMATICA 11 on a personal computer.
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Example 1. Cconsider the following system of 2-DVIEs [17]:

(1) = wa(r.r) = g ) + | t / (@ (312) + e (3,2)) dydz,

t X
—up(x,1) = g2 (x,1) + /0 /0 (2 u1(y,2) + ztua (v,2)) dydz,

kll(xvtay)z) klZ(x’tvyaz) X e I -1
K t 5 - ’ ’ = s A: ,
(x’ 4 Z) k2,1(X,fay,Z) k272(x,t,y,z) y2Z3 2t 0 —1
where

1

g1(x,t) = o (4e™ (£ +32 + 61 +6) =3 (x> — 1) &' —3x (Tx+41%)),
1 1

g (x,1) = _EX4 (¢ (t((r—3)1+6)—6)+6)— Ex3t6 —xr.

The exact solutions of this system are u; (x,7) = 1xe’ and us(x,1) = x*#°.

Expanding the functions g;(x,#) and k; 5(x,1,y,z) for [,s = 1,2 with respect to two-dimensional hybrid
of block-pulse functions and Legendre polynomials and substituting in the above system, we obtain

Ul ®(x,1) — U D(x,1) =GT®(x,1) + B (x,1)Ky. /0 t /O " ®(y,2)®" (y,2)U dydz
—|—<I>T(x,t)K],2/Ot /Oxcb(y,z)q)T(y,z)Uzdydz,

—UJ ®(x,t) =G ®(x,1) + @ (x,1)K2 | /0 [ /O xCD(y,z)CI)T(y,z)Ul dydz
+<I>T(X,Z)K2,2 /0’ /OX(D(y,z)(IDT(y,z)UZ dydz,

in which G;(I = 1,2) are N°M? x 1 vectors introduced in (4), and Kis(l,s =1,2) are N>M? x N*M?
matrices introduced in (7). Making use of the operational matrix of integration (8) and the product
operational matrix (9), the above equations will be reduced to

Ul ®(x,t) — UI ®(x,1) = G ®(x,1) —l—dDT(x,t)Kl,lﬁle)(x,t) —|—<1>T(x,t)K1,gl~]2QCI>(x,t),
— U] ®(x,t) = GED(x,1) + D7 (x,1) Ko 1 U1 QD (x,1) + DT (x,1) K2 20, QP (x,1).

By setting A;; = K; sU;Q for I,s = 1,2 and applying the operational vector introduced in (10), we have

U —Uy—A1— A2 =Gy,
—~Us— Ay —Aga = G,

which is a system of 2(NM)? equations in terms of unknown vectors U; and U;. The Newton iteration
method with zero vector as the initial guess was used to solve this nonlinear system. Absolute values of
the errors are reported in Table 1 for N =2 and M = 2,3,5. The results of our method and the Legendre
Wavelet method [17] are compared in Table 2. The number of basic functions in our method is 2(NM )2

and for Legendre wavelet method is 2 (ZI‘M)2 . By comparing the results, we can conclude that the
hybrid functions method gives better results by using fewer basic functions.
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Table 1: Absolute errors for Example 1.

359

(x,1) (e122(x,1),€222(x,1)) (e123(x,1),€223(x,1)) (e12,5(x,1),€225(x,1))
(0,0) (8.97x 107°,1.03 x 10~ 3) (736 x 1078,1.92x 1077) (429 x 10710,1.67 x 10~1T)
(0.1,0.1)  (2.77x 10~ 5| ,3.13x107%)  (1.16 x 1073,2.25 x 107%)  (5.60 x 1077,3.82 x 10~19)
(0.2,0.2)  (6.16x 10~ i ,8.46 x107%)  (1.94x1075,7.00 x 107°)  (2.27 x 1078,1.69 x 10~°)
(0.3,0.3)  (8.40x 10~ i 216 x 1073)  (2.68 x 1073,1.57 x 107%)  (2.29 x 1078,5.61 x 1077)
(0.4,0.4)  (3.45x 10~ - ,3.86x107°)  (4.95x107°,3.59x 1074)  (1.09 x 1078,2.30 x 10~8)
(0.5,0.5) (4.86x 10~ 3, ,236x 1072) (271 x1073,1.56 x 1073)  (3.75x1077,9.44 x 1078)
(0.6,0.6)  (9.52x 10~ 5| ,242x1073)  (1.09x10748.05x 1074)  (1.24x1077,6.35x 1078)
(0.7,0.7)  (3.39x 10~ 3, ,2.63x1072)  (1.06 x 107#,8.53 x 107%)  (1.80 x 1077,5.48 x 1078)
(0.8,0.8)  (3.28x 10~ 3| ,3.71x1073)  (1.23x 1074 1.12x 1073)  (4.35x1078,7.70 x 1078)
(0.9,0.9) (2.22x 10~ 3, ,3.92x1073)  (1.66 x 1074,1.80 x 1073)  (1.36 x 1077,1.84 x 1077)

Table 2: Absolute errors for Example 1.

Present method with N =2,M =3 Method of [17] withk=2,M =4

~
~—

e123(x,1),e223(x,1))

(6‘1()6,1‘),82()6,1‘))

SN NN NN TN TN N
001 —00] (100 L0 | ~J00| —00| oo | LIoo LY &
001 001 IO L0 | 00| ~J00| LhEO | ~J00| WA

~— e e e e N

(

(8.73x107°,3.83 x 1074
(9.36 x 1073,3.85 x 1074
(1.42x1074,1.06 x 1073
(3.30 x 1073,4.49 x 10~
(1.18 x 107#,2.08 x 103
(5.56 x 1073,3.84 x 1074
(9.06 x 107°,1.06 x 1073
(1.79 x 107°,4.27 x 107>

) (1.12x 1072,1.05 x 1072)
) (1.59 x 1072,1.41 x 1072)
) (3.24 x 1072,2.80 x 10~ 2)
%) (1.72x1073,1.67 x 1073)
) (121 x1072,1.17 x 1072)
) (6.62x 1073,6.44 x 1073)
) (1.88x1072,1.76 x 1072)
) (2.43x1074,2.43 x 1074)

Example 2. Consider the following system of 2-DVIEs [33]:

where

P fx+y—t—z
wen) =g+ [ [ o)y

P x+y—t—z
uz(xvt):gZ(xat)+/o/() yful(yaz)dyda

X+y—t—z
_ 0 4 _|1 o
K(x,t,y,z)— X+y—t—z 0 ’ A= o 1|’
4
g1(x,1) =xel ™" — ﬁﬁ (3+3x—5t+e (-3 —6x+51)),

g (x,t) =

_ e
re! ¥ 4+ —x?

24

(3—5x+3t+¢ " (—3+5x—61)).
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The exact solutions of this system are u; (x,t) = xe' =" and u,(x,t) = te' ~*. Absolute values of errors for
N =2and M = 2,3,5 are listed in Table 3. As expected from the theoretical achievements, we obtain
better numerical results by increasing the values M.

Table 3: Absolute errors for Example 2.

(x,1) (e122(x,1),€22(x,1)) (e123(x,1),€223(x,1)) (e12,5(x,1),€225(x,1))

(0,0) (8.74x107%,8.77x 107%)  (1.02x 1077,1.02x 10~7) (1.11 x 10~7,5.02 x 10~ 1)
(0.1,0.1)  (9.50x1075,9.34x 1075)  (8.29 x 107°,8.29 x 107°)  (4.90 x 1078,3.25 x 10~8)
(0.2,0.2)  (4.02x1073,4.01 x1073)  (1.20x 1074,1.20 x 107%)  (1.41 x 1077,1.34 x 1077)
(0.3,0.3)  (5.66x1073,5.65x1073) (1.91 x1074,1.91 x 107%)  (2.10x 1077,2.03 x 10~7)
(0.4,0.4)  (1.00x 1073,1.02 x 1073)  (3.06 x 1074,3.05 x 107#)  (1.53 x 1077,1.37 x 1077)
(0.5,0.5)  (1.41x1072,1.40x 1072)  (6.96 x 1074,6.95 x 107%)  (6.80x 1077,6.80 x 10~7)
(0.6,0.6) (3.46x107%3.39x 107%) (3.02x1074,3.01 x107#) (1.18 x 1077,1.18 x 10~7)
(0.7,0.7)  (8.54x 1073851 x1073) (2.55x107%,2.54x107%) (2.84x1077,2.84 x1077)
(0.8,0.8)  (9.17x1073,9.11 x 1073)  (3.09 x 1074,3.09 x 10™#)  (3.29 x 1077,3.28 x 10~7)
(0.9,0.9)  (1.35x1073,1.41 x1073) (4.18 x107%,4.16 x107%) (1.86x1077,1.87 x 1077)

Example 3. Consider the following system of 2-DVIEs:

) =aien)+ [ [ 02 +0:2) drz

uz(x,1) = g2(x,1) +/0t /Ox(ul(y,Z) —uz(y,2)) dydz,

where

(x,1) ﬂ—%lﬂ +15i Lag

X,t) = —— + =t~ cosx+tsinx — =1~ sinx
st 272 P

2

(x,1) ! +1t2(:os +1cos +1t2sin
xXt)=——=+= x x+ = Xx.
82X, ) )

The exact solutions of this system are u (x,7) = tsinx and uy(x,7) = tcosx. The absolute errors of this
example for N =2 and M = 2,3, 5 are shown in Table 4.

Example 4. Consider the following system of 2-DVIEs:

et =00+ [ [ 5200, +un0.) e

1 X
us (x,1) :gz(x,t)—i—/o /0 (xt +yz) ur(y,z) dydz,

Xz xz 110
K(X,t,y,Z) - |:0 X[+yZ:|7 A_ |:0 1:| ’

where g (x,t) and g»(x,7) are defined in such a way that

) xt+x, 0<x<3,0<r<l,
uy(x,1) =
: X1, L<x<i0<i<,



Numerical solutions of system of 2-DVIESs via operational matrices of hybrid functions 361

Table 4: Absolute errors for Example 3.

(x,1) (e122(x,1),€222(x,1)) (e123(x,1),€223(x,1)) (e125(x,1),€225(x,1))
(0,0) (2.65x107°,1.47x 107°)  (3.74x1077,1.00x 107%)  (2.85x10712,5.38 x 10~1?)
(0.1,0.1)  (6.01 x107>,7.05x107%) (3.65x107°,7.78 x 107%)  (1.51 x 1078,4.23 x 1077)
(0.2,0.2)  (3.88x107*1.78 x 1073)  (5.61 x 107°,1.56 x 1073)  (6.14 x 1078,1.59 x 10~8)
(0.3,0.3)  (7.75x1074,2.62x 1073) (8.46x107°,1.99 x 107°)  (9.21 x 1078,2.32 x 1078)
(0.4,0.4)  (1.20x1074,4.01 x 107%)  (1.43x107%,4.26 x 1073)  (6.08 x 1078,1.49 x 1078)
(0.5,0.5)  (6.82x1073,7.92x1073) (3.92x107%,3.33x107%) (3.85x1077,3.38x 1077)
(0.6,0.6) (671><104216><10 Y (1.70x 1074,1.46 x 107%)  (6.76 x 1073,6.37 x 107%)
(0.7,0.7)  (412x1073,481x1073) (1.45x10741.37x107%) (1.61 x 1077,1.50 x 10~7)
(0.8,0.8) (521><103517><10 3 (1.74x1074,1.60 x 107%)  (1.86 x 1077,1.74 x 1077)
(0.9,0.9)  (6.29x1073,8.12x107%) (2.35x1074,2.38 x 107#)  (1.06 x 1077,9.94 x 10~8)
and

xt+t, 0<x<3,0<r<1,
up(x,1) = |
x—t, 7<x<1,0<r<1,
to be the exact solutions. Absolute values of the errors are reported in Table 5 for different values of
N And M. The results Confirm proficiency of the hybrid functions method in dealing with non-smooth

solutions. Also, the graphical representation of the error functions e; y y(x,t) for / = 1,2, N =2 and
M = 2,3 are illustrated in Figures 1 and 2.

Table 5: Absolute errors for Example 4.

(x,1) (e1,13(x,1), €213(x,7)) (e122(x,1),€222(x1)) (e123(x,1),€223(x,1))

(0,0) (460><104928><10 2y (5.22x107°,5.22x 107°)  (1.16 x 10710,2.28 x 10~10)
(0.1,0.1) (4.68x1072,2.78 x 1072) (7.30x 1076,7.26 x 107®)  (4.36 x 10~ 8.28 x 10~!1)
(0.2,0.2) (880><103148><10 2) (152><105153><10 3 (5.69%x 10~ 12102x10 I
(0.3,0.3) (3.48x1072,6.04 x1072) (2.83x107°,2.79x 107°) (4.87 x 107'2,9.99 x 10~'?)
(0.4,0.4) (6.76x1072,1.70 x 107!)  (1.23x 107%,1.22 x 107%) (4.37x 107'1,8.30 x 10~'")
(0.5,0.5) (1.48x1071,3.98x107!) (3.49x1074,5.62x 107%) (1.02x 10712,7.09 x 10~!2)
(0.6,0.6) (109><101351><10 D) (111><104548><10 4 (7.61 x 10~ 14522><10 13)
(0.7,0.7) (5.93x1072,2.45x 107")  (6.60x 1070,2.22 x 10™%) (1.06 x 10713,1.87 x 107 13)
(0.8,0.8) (4.31x1073,7.42 x 1072) (377><106226><10 4 (5.10x 10~ 15108><10 12)
(0.9,0.9) (5.10x1072,1.64x107")  (1.19x 1074,8.61 x 107%)  (1.92x 10713,4.73 x 10~ 13)

Example 5. Consider the following system of 2-DVIEs:

et =00+ [ [x200:0) +un0.2) bz

et =0+ [ [0 -n02) o
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e1.22(x.t)

€222(x.t)

Figure 1: Plote of functions e; 2 »(x,) and e »(x,¢) for Example 4.

e1.23(x,t) €223(x.1)

Figure 2: Plote of functions e; 5 3(x,) and e 3(x,¢) for Example 4.

where g;(x,7) and g»(x,7) are defined in such a way that

x+xt, 0<x<4,0<r<1,
up(x,t) ={x—xt, 1<x<3,0<r<1,
x+t, 3<x<1,0<r<]1,
and
l+xsinf, 0<x<$,0<r<1,
up(x,t) =< 1 —xsint, %§x< %,O§t< 1,
x—t, I<x<1,0<r <1,

to be the exact solutions. Absolute values of the errors are reported in Table 6 for N =2,3 and M = 2,4.

We observe that the values of errors decay as N and M increase. The results indicate that our algorithm
also provides accurate results for discontinuous functions.



Numerical solutions of system of 2-DVIESs via operational matrices of hybrid functions 363

Table 6: Absolute errors for Example 5.

(x,1) (e122(x,1),€202(x,1)) (e132(x,1),e232(x,1)) (e134(x,1),€234(x,1))
(0,0) (5.11x 1075, 1.17x 1073) (497 x107°,5.68 x 107%) (3.41 x 1071°,4.86 x 10~ 13)
(0.1,0.1)  (6.66x1072,6.75x 1073) (1.49x 1076,2.46 x 107%) (1.17 x 107191.75 x 10~8)
(0.2,0.2) (3.25x1072,3.24x1072) (2.53x1075,1.54x107%) (5.92x1071°,6.53 x 1078)
(0.3,0.3) (1.17x 1071, 1.15x 1071)  (1.70x 1073,1.99 x 10~%)  (5.61 x 107191.01 x 1077)
(0.4,04) (7.09x1072,6.91 x 1072) (5.64x 1070,8.19x 107) (1.98 x 107?,5.65 x 1077)
(0.5,0.5) (3.71x1072,1.15x 1071)  (4.59x 1077, 1.10x 1073)  (2.15x 107!1,6.59 x 10~7)
(0.6,0.6) (2.67x107',1.46 x107!) (3.96x 107, 1.18 x 107%)  (6.62 x 107?,8.65 x 1077)
(0.7,0.7)  (5.15x1071,3.51 x107")  (2.93x1074,9.04 x 107%) (2.09 x 1072,2.07 x 10~°)
(0.8,0.8) (2.55x107',1.54 x 107!)  (1.00 x 107#,2.06 x 107)  (7.38 x 1077,7.31 x 107?)
(0.9,0.9) (8.81x1072,7.62x1072) (2.26x1074,9.29x 107°) (1.21 x 1078,1.21 x 10~%)

6 Concluding remarks

System of two-dimensional integral equations have applications in many branches of science and en-
gineering. This article applied the operational matrices of the two-dimensional hybrid of block-pulse
functions and Legendre polynomials to solve a system of two-dimensional Volterra integral equations of
the second kind. These operational matrices transform the system of integral equations into a system of
algebraic equations. The convergence analysis of the numerical method is considered and an error bound
is obtained. Some numerical examples are provided to show the reliability of the proposed method.
Numerical results indicate that the proposed method is effective to deal with smooth and non-smooth
solutions.
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