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Abstract. The main target of this paper is to solve a system of two-dimensional Volterra integral
equations (2-DVIEs). Operational Matrices of two-dimensional hybrid of block-pulse functions and
Legendre polynomials are applied to reduce these systems of integral equations to a system of algebraic
equations. The main benefit of these basic functions is their efficiency in dealing with non-sufficiently
smooth functions. An error bound is provided and some examples are prepared to verify the applicability
of the offered numerical technique.

Keywords: System of two-dimensional Volterra integral equations, two-dimensional hybrid functions, oroduct Op-
erational matrix, operational matrices of integration.
AMS Subject Classification 2010: 45D05, 45F05, 65R20.

1 Introduction

Much attention has been devoted to Volterra integral equations considering the large number of applica-
tions in many natural phenomena including superfluidity, elasticity, plasticity, fluid mechanic, fracture
mechanic theory, electromagnetic theory, molecular physics, heat transfer problems, etc [6,8,19,27,31].
System of integral equations also arise in various fields of science, engineering and physics such as de-
scribing the formation of liver zones and chemically reacting flowing systems and some problems in
electromagnetic and elastic waves [1, 7, 16].

In the past decade, several numerical techniques and basic functions have been devoted to estimate
the solution of two-dimensional integral equations of the second kind such as block-pulse functions
method [4, 25], Franklin wavelet galerkin method [29], Legendre operational matrix method [28], hy-
brid functions method [22, 23], discrete Galerkin method [2], expansion method [9], expansion-iterative
method [14], Bernoulli operational matrix method [5], Bernstein operational matrix method [30], Haar
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wavelet [3] and rationalized haar functions method [11], shifted Jacobi operational matrix method [32]
and Laguerre wavelet method [20]. There are fewer pieces of research focusing on computational meth-
ods for approximating the solution of system of two-dimensional integral equation. Maleknejad and
Hoseingholipour have used two-dimensional Legendre wavelets, along with collocation method and nu-
merical integration to solve system of two-dimensional integral equations numerically [21]. In [12]
the modified Newton method has been implemented for the numerical solution of a general system of
nonlinear Volterra type integral equations. Karimi et al. have considered Legendre wavelets for the nu-
merical solution of a system of two-dimensional Volterra integral equations [17]. The authors of [26]
have extended modified moving least squares methods for solving two-dimensional linear and nonlinear
systems of integral equations. Adaptive iterative regularization schemes have been used to solve system
of two-dimensional integral equations in [13]. Zaky et al. [33] have used a spectral collocation method
for solving a general class of nonlinear systems of multi-dimensional integral equations.

Here, we plan to find the solution of linear system of 2-DVIEs of the form

ΛU(x, t) = G(x, t)+
∫ t

0

∫ x

0
K(x, t,y,z)U(y,z)dydz, (x, t) ∈Ω, (1)

where U(x, t) = (u1(x, t),u2(x, t))
T , G(x, t) = (g1(x, t),g2(x, t))

T , and Λ and K(x, t,y,z) are matrices of
the form

Λ =

[
λ1,1 λ1,2
λ2,1 λ2,2

]
, K(x, t,y,z) =

[
k1,1(x, t,y,z) k1,2(x, t,y,z)
k2,1(x, t,y,z) k2,2(x, t,y,z)

]
,

such that u1(x, t) and u2(x, t) are unknown functions defined on Ω= [0,1)×[0,1), the functions kl,s(x, t,y,z)
and gl(x, t) for l,s = 1,2 are given functions and λl,s (l,s = 1,2) are constant values and detΛ 6= 0. The
existence and uniqueness results for the solution of systems of 2-DVIEs have been discussed in [33].

In this paper, we extend the method introduced in [24] to solve syatem of 2-DVIEs of the form
(1). Two-dimensional hybrid of block-pulse functions and Legendre polynomials and their operational
matrix of integration and product operational matrix and product operational vector are utilized to solve
the considered problem. The most important aspect of the hybrid functions method is that the order of
block-pulse functions and Legendre polynomials are adjustable, which helps us to change the number of
subintervals and the degree of Legendre polynomials in each subinterval until getting the best possible
result.

The remaining parts of this paper are structured as follows. In Section 2, two-dimensional hybrid of
block-pulse functions and Legendre polynomials and their operational matrix of integration together with
the product operational matrix and the product operational vector are introduced. Operational matrices
are utilized to convert the system of integral equations into a system of algebraic equations in Section
3. Section 4 is devoted to the description of the error analysis of the proposed method. Some computed
examples are prepared in Section 5 to test the accuracy of the hybrid functions method, followed by a
conclusion in Section 6.
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2 Basic concepts

2.1 Two-dimensional hybrid functions

Two-dimensional hybrid of block-pulse functions and Legendre polynomials on the interval Ω, intro-
duced by φi1 j1i2 j2 , are defined as

φi1 j1i2 j2(x, t) =

{
L j1(2Nx−2i1 +1)L j2(2Nt−2i2 +1), (x, t) ∈ [ i1−1

N , i1
N )× [ i2−1

N , i2
N ),

0, otherwise,
(2)

where i1, i2 = 1,2, . . . ,N, j1, j2 = 0,1, . . . ,M− 1, and N and M are positive integer numbers. Here L j1
and L j2 are the Legendre polynomials of order j1 and j2 respectively, which are defined on the interval
[−1,1] and can be determined recursively as

L0(x) = 1,
L1(x) = x,

Lm+1(x) =
2m+1
m+1

xLm(x)−
m

m+1
Lm−1(x), m = 1,2, . . . ,−1≤ x≤ 1.

From Eq. (2) we have

∫ 1

0

∫ 1

0
φi1 j1i2 j2(x, t)φn1m1n2m2(x, t)dxdt =


∫ i2

N

i2−1
N

∫ i1
N

i1−1
N

L j1L j2Lm1Lm2 dxdt, i1 = n1, i2 = n2,

0, otherwise,
(3)

where L j1 = L j1(2Nx−2i1+1), L j2 = L j2(2Nt−2i2+1), Lm1 = Lm1(2Nx−2i1+1) and Lm2 = Lm2(2Nt−
2i2 + 1). Then, we transform the integrals over [ i1−1

N , i1
N ] and [ i2−1

N , i2
N ] to the integral over [−1,1] by

introducing the following transformations

γ = 2Nx−2i1 +1, x ∈ [
i1−1

N
,

i1
N
],

η = 2Nt−2i2 +1, t ∈ [
i2−1

N
,

i2
N
].

So, Eq. (3) converts to∫ 1

0

∫ 1

0
φi1 j1i2 j2(x, t)φn1m1n2m2(x, t)dxdt

=


(

1
2N

∫ 1
−1 L j1(γ)Lm1(γ)dγ

)(
1

2N
∫ 1
−1 L j2(η)Lm2(η)dη

)
, i1 = n1, i2 = n2,

0, otherwise.

Now, using orthogonality properties of Legendre polynomials from [10], we arrive at∫ 1

0

∫ 1

0
φi1 j1i2 j2(x, t)φn1m1n2m2(x, t)dxdt

=


(

1
2N
× 2

2 j1 +1

)(
1

2N
× 2

2 j2 +1

)
, i1 = n1, i2 = n2, j1 = m1, j2 = m2,

0, otherwise.
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Thus, two-dimensional hybrid of block-pulse functions and Legendre polynomials are orthogonal to each
other with the orthogonality clause∫ 1

0

∫ 1

0
φi1 j1i2 j2(x, t)φn1m1n2m2(x, t)dxdt =

{
1

N2(2 j1+1)(2 j2+1) , i1 = n1, i2 = n2, j1 = m1, j2 = m2,

0, otherwise.

2.2 Function approximation

Now consider the space X = L2(Ω) with the norm

‖g‖2 =< g,g >
1
2= (

∫ 1

0

∫ 1

0
|g(x, t)|2 dtdx)

1
2 ,

where 〈., .〉 denotes the inner product and let

XN,M = span{φ1010(x, t),φ1011(x, t), . . . ,φ101(M−1)(x, t),φ1020(x, t), . . . ,φ102(M−1)(x, t), . . . ,

φN(M−1)N0(x, t), . . . ,φN(M−1)N(M−1)(x, t)}.

Since XN,M is a finite dimensional and closed subspace of the Hilbert Space X , for every g ∈ X there
exists a unique best approximation gN,M ∈ XN,M, such that

‖ g−gN,M ‖2= inf
h∈XN,M

‖ g−h ‖2 .

A proof of the above result can be found in [18]. Moreover we have

g(x, t)≈ gN,M(x, t) =
N

∑
i1=1

M−1

∑
j1=0

N

∑
i2=1

M−1

∑
j2=0

gi1 j1i2 j2φi1 j1i2 j2(x, t) = GT
Φ(x, t), (4)

where

G = [g1010,g1011, . . . ,g101(M−1),g1020, . . . ,g102(M−1), . . . ,gN(M−1)N0, . . . ,gN(M−1)N(M−1)]
T , (5)

Φ(x, t) = [φ1010(x, t),φ1011(x, t), . . . ,φ101(M−1)(x, t),φ1020(x, t), . . . ,φ102(M−1)(x, t), . . . ,

φN(M−1)N0(x, t), . . . ,φN(M−1)N(M−1)(x, t)]
T , (6)

and the coefficients are uniquely obtained by

gi1 j1i2 j2 =
〈g,φi1 j1i2 j2〉

〈φi1 j1i2 j2 ,φi1 j1i2 j2〉
.

In a similar way any function k(x, t,y,z) in L2(Ω×Ω) can be expanded in terms of two-dimensional
hybrid of block-pulse functions and Legendre polynomials as

k(x, t,y,z)≈ kN,M(x, t,y,z) = Φ
T (x, t)KΦ(y,z), (7)

where K is an N2M2×N2M2 matrix with the entries

Ki, j =
〈〈k(x, t,y,z),Φ( j)(y,z)〉,Φ(i)(x, t)〉
‖Φ( j)(y,z)‖2

2‖Φ(i)(x, t)‖2
2

,

in which Φ(i)(x, t) denotes the ith element of the column vector Φ(x, t).
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2.3 Operational Matrices

The integration of the vector Φ(x, t) determined by (6) can be approximately obtained as [24]∫ t

0

∫ x

0
Φ(y,z)dydz≈ QΦ(x, t) = (P⊗P)Φ(x, t), (8)

where Q is an N2M2×N2M2 matrix called operational matrix of integration for two-dimensional hybrid
of block-pulse functions and Legendre polynomials. Note that⊗ denotes the Kronecker product and P is
the operational matrix of integration for one-dimensional hybrid of block-pulse functions and Legendre
polynomials given by [15]

P =


S E E . . . E
0 S E . . . E
0 0 S . . . E
...

...
...

. . .
...

0 0 0 . . . S


NM×NM

, with E =
1
N



1 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0


M×M

,

and S is the operational matrix of integration for one-dimensional shifted Legendre polynomials on the

interval [
i−1

N
,

i
N
) and can be specified by

S =
1

2N



1 1 0 0 . . . 0 0 0
−1
3

0
1
3

0 . . . 0 0 0

0
−1
5

0
1
5

. . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . .
−1

2M−3
0

1
2M−3

0 0 0 0 . . . 0
−1

2M−1
0


M×M

.

The following property of the product of two vectors Φ(x, t) and ΦT (x, t) defied by (6) will be usable

Φ(x, t)ΦT (x, t)G≈ G̃Φ(x, t), (9)

where G is defined by (5) and G̃ is an N2M2×N2M2 matrix, called product operational matrix and can
be determined by the next algorithm [24]:

1. Di1,h1,i2 , for i1, i2 = 1, . . . ,N and h1 = 0, . . . ,M−1 are M×M matrices of the form

Di1,h1,i2 =
[
D( j2,m2)

i1,h1,i2

]M−1

j2,m2=0
,

where

D( j2,m2)
i1,h1,i2 = N(2m2 +1)

M−1

∑
h2=0

ςi2 j2h2m2gi1h1i2h2 , j2,m2 = 0, . . . ,M−1,
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in which

ςi jhm =
∫ i

N

i−1
N

L j(2Nx−2i+1)Lh(2Nx−2i+1)Lm(2Nx−2i+1)dx.

2. Ai1h1 , for i1 = 1, . . . ,N and h1 = 0, . . . ,M−1 are NM×NM block-diagonal matrices of the form

Ai1h1 =


Di1,h1,1

Di1,h1,2
. . .

Di1,h1,N


NM×NM

.

3. G̃i1 , for i1 = 1, . . . ,N are NM2×NM2 matrices determined by

G̃i1 =
[
G̃( j1,m1)

i1

]M−1

j1,m1=0,1
,

such that

G̃( j1,m1)
i1 = N(2m1 +1)

M−1

∑
h1=0

ςi1 j1h1m1Ai1h1 , j1,m1 = 0,1, . . . ,M−1.

4. At the end, the block-diagonal matrix G̃ defined in (9) is obtained as

G̃ =


G̃1

G̃2
. . .

G̃N


N2M2×N2M2

.

For an N2M2×N2M2 matrix Λ, it is useful to estimate an N2M2×1 vector Λ̂ = [Λ̂(1), Λ̂(2), . . . , Λ̂(N2M2)]
T ,

which satisfies the next formula:

Φ
T (x, t)ΛΦ(x, t)≈ Λ̂

T
Φ(x, t). (10)

Λ̂ is called product operational vector for two-dimensional hybrid of block-pulse functions and Legendre
polynomials and its entries are obtaiened with the aid of the following formulae [24]:

Λ̂(m) =
N2M2

∑
i=1

N2M2

∑
j=1

∫ 1
0
∫ 1

0 Φ(i)(x, t)Φ( j)(x, t)Φ(m)(x, t)dxdt〈
Φ(m),Φ(m)

〉 Λi, j, m = 1,2, . . . ,N2M2.

3 Implementation of the numerical method

In this section, we apply the operational matrices of two-dimensional hybrid of block-pulse functions
and Legendre polynomials to discuss a numerical algorithm for the solution of the system of 2-DVIEs of
the form (1).
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First, let us rewrite Eq. (1) in the following form

λl,1u1(x, t)+λl,2u2(x, t) = gl(x, t)+
∫ t

0

∫ x

0
kl,1(x, t,y,z)u1(y,z)dydz

+
∫ t

0

∫ x

0
kl,2(x, t,y,z)u2(y,z)dydz, l = 1,2. (11)

Expanding the functions in Eq. (11) with respect to the two-dimensional hybrid functions, we have

ul(x, t)≈UT
l Φ(x, t) = ūl,N,M(x, t) l = 1,2, (12)

gl(x, t)≈GT
l Φ(x, t) = gl,N,M(x, t) l = 1,2, (13)

kl,s(x, t,y,z)≈Φ
T (x, t)Kl,sΦ(y,z) = kl,s,N,M(x, t,y,z) l,s = 1,2, (14)

in which U1 and U2 are N2M2×1 unknown vectors to be estimated. Substituting Eqs. (12)-(14) into Eq.
(11), we obtain

λl,1UT
1 Φ(x, t)+λl,2UT

2 Φ(x, t) =GT
l Φ(x, t)+Φ

T (x, t)Kl,1

∫ t

0

∫ x

0
Φ(y,z)ΦT (y,z)U1 dydz

+Φ
T (x, t)Kl,2

∫ t

0

∫ x

0
Φ(y,z)ΦT (y,z)U2 dydz, l = 1,2. (15)

Making use of the operational matrix of integration (8) and the product operational matrix (9), Eq. (15)
will be converted to

λl,1UT
1 Φ(x, t)+λl,2UT

2 Φ(x, t)=GT
l Φ(x, t)+Φ

T (x, t)Kl,1Ũ1QΦ(x, t)+Φ
T (x, t)Kl,2Ũ2QΦ(x, t), l = 1,2.

By setting Λl,s = Kl,sŨsQ for l,s = 1,2 and applying the operational vector introduced in (10), we obtain

λl,1UT
1 Φ(x, t)+λl,2UT

2 Φ(x, t) = GT
l Φ(x, t)+ Λ̂

T
l,1Φ(x, t)+ Λ̂

T
l,2Φ(x, t), l = 1,2.

Thus we have
λl,1U1 +λl,2U2− Λ̂l,1− Λ̂l,2 = Gl, l = 1,2,

which is a system of 2N2M2 equations with the same number of unknowns that can be solved by any
iterative mehod.

4 Error analysis

This section is devoted to the estimation of an error bound for the approximate solution of Eq. (1) based
on two-dimensional hybrid of block-pulse functions and Legendre polynomials. Suppose that

Ω =
⋃

1≤i1,i2≤N

Ωi1i2 ,

where
Ωi1i2 = [

i1−1
N

,
i1
N
)× [

i2−1
N

,
i2
N
).

We assume that the functions kl,s(x, t,y,z) and gl(x, t) for l,s = 1,2 are sufficiently smooth on each
subinterval Ωi1i2 . Using the above assumptions, we have the next theorems.
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Theorem 1. [24] Let gl,N,M(x, t) be the two-dimensional hybrid expansion of real valued functions
gl(x, t)(l = 1,2) defined by (13) and suppose that g1(x, t) and g2(x, t) are sufficiently smooth on each
subinterval Ωi1i2 i1, i2 = 1,2, . . . ,N, then there exist positive constants αl such that

‖gl−gl,N,M‖2 ≤
αl

22M−1NMM!
, l = 1,2. (16)

Theorem 2. [24] Let kl,s,N,M(x, t,y,z) be the two-dimensional hybrid expansion of real valued function
kl,s(x, t,y,z) defined by (14) and suppose that kl,s(x, t,y,z) for l,s = 1,2 are sufficiently smooth on each
subinterval Ωi1,i2×Ωi3,i4 , i1, i2, i3, i4 = 1,2, . . . ,N, then there exist positive constants βl,s such that

‖kl,s− kl,s,N,M‖2 ≤
βl,s

22M−1NMM!
, l,s = 1,2. (17)

Now, consider Eq. (1) with the operator form

ΛU = G+
∫ t

0

∫ x

0
KU dydz.

Let us define the vectors ŪN,M(x, t), GN,M(x, t) and the matrix KN,M(x, t,y,z) in the following form

ŪN,M(x, t) = (ū1,N,M(x, t), ū2,N,M(x, t))T , approximate solution of system (1), (18)

GN,M(x, t) = (g1,N,M(x, t),g2,N,M(x, t))T , hybrid expansion of G(x,t), (19)

KN,M(x, t,y,z) =
[

k1,1,N,M(x, t,y,z) k1,2,N,M(x, t,y,z)
k2,1,N,M(x, t,y,z) k2,2,N,M(x, t,y,z)

]
, hybrid expansion of K(x,t,y,z). (20)

Using the above assumptions we have the following theorem:

Theorem 3. Suppose that U(x, t) is the exact solution of Eq. (1) and ŪN,M(x, t) is its approximate
solution obtained by the proposed method. Also, assume that the following conditions hold:
(1) ‖U‖2 = c1 < ∞, (2) ‖K‖2 = c2 < ∞, (3) ‖Λ−1‖2 = c3 < ∞.
Then there exist positive constans ρ and ς such that

‖U−ŪN,M‖2 ≤

c3ρ

22M−1NMM!
1− c2c3−

c3ς

22M−1NMM!

. (21)

Proof. From Eq. (1), we have

Λ(U(x, t)−ŪN,M(x, t))=G(x, t)−GN,M(x, t)+
∫ t

0

∫ x

0
(K(x, t,y,z)U(y,z)−KN,M(x, t,y,z)ŪN,M(y,z)) dydz.

Since 0≤ x, t ≤ 1 and detΛ 6= 0, by tacking L2-norm in the above equation we have

‖U−ŪN,M‖2 ≤ ‖Λ−1‖2‖G−GN,M‖2 +‖Λ−1‖2‖KU−KN,MŪN,M‖2. (22)

It is clear that

K(x, t,y,z)U(y,z)−KN,M(x, t,y,z)ŪN,M(y,z) = K(x, t,y,z)(U(y,z)−ŪN,M(y,z))

+(K(x, t,y,z)−KN,M(x, t,y,z))(U(y,z)−ŪN,M(y,z))+(K(x, t,y,z)−KN,M(x, t,y,z))U(y,z),
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which leads to

‖KU−KN,MŪN,M‖2 ≤ ‖K‖2‖U−ŪN,M‖2 +‖K−KN,M‖2‖U−ŪN,M‖2 +‖K−KN,M‖2‖U‖2. (23)

From Eqs. (22) and (23), we obtain

‖U−ŪN,M‖2 ≤‖Λ−1‖2‖G−GN,M‖2 +‖Λ−1‖2‖K‖2‖U−ŪN,M‖2

+‖Λ−1‖2‖K−KN,M‖2‖U−ŪN,M‖2 +‖Λ−1‖2‖K−KN,M‖2‖U‖2.

Using the assumptions 1–3 and the above inequality we have

‖U−ŪN,M‖2 ≤
c3‖G−GN,M‖2

1− c2c3− c3‖K−KN,M‖2
. (24)

Now consider definitions (19) and (20). It follows from Theorems 1 and 2 that

‖G−GN,M‖2 =

(
2

∑
l=1
‖gl−gl,N,M‖2

2

) 1
2

≤

(
2

∑
l=1

(
αl

22M−1NMM!

)2
) 1

2

=
ρ

22M−1NMM!
,

in which ρ =
(
α2

l +α2
2
) 1

2 , and

‖K−KN,M‖2 =

(
2

∑
l=1

2

∑
s=1
‖kl,s− kl,s,N,M‖2

2

) 1
2

≤

(
2

∑
l=1

2

∑
s=1

(
βl,s

22M−1NMM!

)2
) 1

2

=
ς

22M−1NMM!
,

in which ς =
(

β 2
1,1 +β 2

1,2 +β 2
2,1 +β 2

2,2

) 1
2
. From inequalities (24), (25) and (25), we obtain

‖U−ŪN,M‖2 ≤

c3ρ

22M−1NMM!
1− c2c3−

c3ς

22M−1NMM!

,

which completes the proof.

Remark 1. It is obvious in the case that c2c3 6= 1 the right hand side of the inequality (21) tends to zero
as N,M→ ∞, so U−ŪN,M → 0and this proves convergence of the proposed method.

5 Numerical results

In this section, some numerical examples are provided to indicate the accuracy and effectiveness of
the hybrid functions method. In order to analyze the error of the method, we introduce the following
functions:

el,N,M(x, t) = |ul(x, t)− ūl,N,M(x, t)| , (x, t) ∈Ω, l = 1,2,

where ul(x, t) for l = 1,2 denote the exact solutions of Eq. (1) and ūl,N,M(x, t) for l = 1,2 are the
approximate solutions obtained by the proposed method. All of the computations have been done using
MATHEMATICA 11 on a personal computer.
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Example 1. Cconsider the following system of 2-DVIEs [17]:
u1(x, t)−u2(x, t) = g1(x, t)+

∫ t

0

∫ x

0

(
zxu1(y,z)+ e−zu2(y,z)

)
dydz,

−u2(x, t) = g2(x, t)+
∫ t

0

∫ x

0

(
y2z3u1(y,z)+ ztu2(y,z)

)
dydz,

K(x, t,y,z) =
[

k1,1(x, t,y,z) k1,2(x, t,y,z)
k2,1(x, t,y,z) k2,2(x, t,y,z)

]
=

[
zx e−z

y2z3 zt

]
, Λ =

[
1 −1
0 −1

]
,

where

g1(x, t) =
1

12
x
(
4x2e−t (t3 +3t2 +6t +6

)
−3
(
x2−1

)
et −3x

(
7x+4t3)) ,

g2(x, t) =−
1
16

x4 (et (t ((t−3) t +6)−6)+6
)
− 1

15
x3t6− x2t3.

The exact solutions of this system are u1(x, t) = 1
4 xet and u2(x, t) = x2t3.

Expanding the functions gl(x, t) and kl,s(x, t,y,z) for l,s= 1,2 with respect to two-dimensional hybrid
of block-pulse functions and Legendre polynomials and substituting in the above system, we obtain

UT
1 Φ(x, t)−UT

2 Φ(x, t) =GT
1 Φ(x, t)+Φ

T (x, t)K1,1

∫ t

0

∫ x

0
Φ(y,z)ΦT (y,z)U1 dydz

+Φ
T (x, t)K1,2

∫ t

0

∫ x

0
Φ(y,z)ΦT (y,z)U2 dydz,

−UT
2 Φ(x, t) =GT

2 Φ(x, t)+Φ
T (x, t)K2,1

∫ t

0

∫ x

0
Φ(y,z)ΦT (y,z)U1 dydz

+Φ
T (x, t)K2,2

∫ t

0

∫ x

0
Φ(y,z)ΦT (y,z)U2 dydz,

in which Gl(l = 1,2) are N2M2× 1 vectors introduced in (4), and Kl,s(l,s = 1,2) are N2M2×N2M2

matrices introduced in (7). Making use of the operational matrix of integration (8) and the product
operational matrix (9), the above equations will be reduced to

UT
1 Φ(x, t)−UT

2 Φ(x, t) = GT
1 Φ(x, t)+Φ

T (x, t)K1,1Ũ1QΦ(x, t)+Φ
T (x, t)K1,2Ũ2QΦ(x, t),

−UT
2 Φ(x, t) = GT

2 Φ(x, t)+Φ
T (x, t)K2,1Ũ1QΦ(x, t)+Φ

T (x, t)K2,2Ũ2QΦ(x, t).

By setting Λl,s = Kl,sŨsQ for l,s = 1,2 and applying the operational vector introduced in (10), we have

U1−U2− Λ̂1,1− Λ̂1,2 = G1,

−U2− Λ̂2,1− Λ̂2,2 = G2,

which is a system of 2(NM)2 equations in terms of unknown vectors U1 and U1. The Newton iteration
method with zero vector as the initial guess was used to solve this nonlinear system. Absolute values of
the errors are reported in Table 1 for N = 2 and M = 2,3,5. The results of our method and the Legendre
Wavelet method [17] are compared in Table 2. The number of basic functions in our method is 2(NM)2

and for Legendre wavelet method is 2
(
2kM

)2 . By comparing the results, we can conclude that the
hybrid functions method gives better results by using fewer basic functions.
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Table 1: Absolute errors for Example 1.

(x, t) (e1,2,2(x, t),e2,2,2(x, t)) (e1,2,3(x, t),e2,2,3(x, t)) (e1,2,5(x, t),e2,2,5(x, t))
(0,0) (8.97×10−6,1.03×10−3) (7.36×10−8,1.92×10−7) (4.29×10−10,1.67×10−11)
(0.1,0.1) (2.77×10−5,3.13×10−5) (1.16×10−5,2.25×10−5) (5.60×10−9,3.82×10−10)
(0.2,0.2) (6.16×10−4,8.46×10−4) (1.94×10−5,7.00×10−5) (2.27×10−8,1.69×10−9)
(0.3,0.3) (8.40×10−4,2.16×10−3) (2.68×10−5,1.57×10−4) (2.29×10−8,5.61×10−9)
(0.4,0.4) (3.45×10−4,3.86×10−5) (4.95×10−5,3.59×10−4) (1.09×10−8,2.30×10−8)
(0.5,0.5) (4.86×10−3,2.36×10−2) (2.71×10−5,1.56×10−3) (3.75×10−7,9.44×10−8)
(0.6,0.6) (9.52×10−5,2.42×10−3) (1.09×10−4,8.05×10−4) (1.24×10−7,6.35×10−8)
(0.7,0.7) (3.39×10−3,2.63×10−2) (1.06×10−4,8.53×10−4) (1.80×10−7,5.48×10−8)
(0.8,0.8) (3.28×10−3,3.71×10−3) (1.23×10−4,1.12×10−3) (4.35×10−8,7.70×10−8)
(0.9,0.9) (2.22×10−3,3.92×10−3) (1.66×10−4,1.80×10−3) (1.36×10−7,1.84×10−7)

Table 2: Absolute errors for Example 1.

Present method with N = 2,M = 3 Method of [17] with k = 2,M = 4
(x, t) (e1,2,3(x, t),e2,2,3(x, t)) (e1(x, t),e2(x, t))
(3

8 ,
5
8) (8.73×10−5,3.83×10−4) (1.12×10−2,1.05×10−2)

(3
8 ,

7
8) (9.36×10−5,3.85×10−4) (1.59×10−2,1.41×10−2)

(5
8 ,

5
8) (1.42×10−4,1.06×10−3) (3.24×10−2,2.80×10−2)

(1
8 ,

7
8) (3.30×10−5,4.49×10−5) (1.72×10−3,1.67×10−3)

(7
8 ,

1
8) (1.18×10−4,2.08×10−3) (1.21×10−2,1.17×10−2)

(3
8 ,

3
8) (5.56×10−5,3.84×10−4) (6.62×10−3,6.44×10−3)

(5
8 ,

3
8) (9.06×10−5,1.06×10−3) (1.88×10−2,1.76×10−2)

(1
8 ,

1
8) (1.79×10−5,4.27×10−5) (2.43×10−4,2.43×10−4)

Example 2. Consider the following system of 2-DVIEs [33]:
u1(x, t) = g1(x, t)+

∫ t

0

∫ x

0

x+ y− t− z
4

u2(y,z)dydz,

u2(x, t) = g2(x, t)+
∫ t

0

∫ x

0

x+ y− t− z
4

u1(y,z)dydz,

K(x, t,y,z) =

 0
x+ y− t− z

4x+ y− t− z
4

0

 , Λ =

[
1 0
0 1

]
,

where

g1(x, t) = xe1−t − e
24

t2 (3+3x−5t + e−x (−3−6x+5t)
)
,

g2(x, t) = te1−x +
e

24
x2 (3−5x+3t + e−t (−3+5x−6t)

)
.
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The exact solutions of this system are u1(x, t) = xe1−t and u2(x, t) = te1−x. Absolute values of errors for
N = 2 and M = 2,3,5 are listed in Table 3. As expected from the theoretical achievements, we obtain
better numerical results by increasing the values M.

Table 3: Absolute errors for Example 2.

(x, t) (e1,2,2(x, t),e2,2,2(x, t)) (e1,2,3(x, t),e2,2,3(x, t)) (e1,2,5(x, t),e2,2,5(x, t))
(0,0) (8.74×10−6,8.77×10−6) (1.02×10−7,1.02×10−7) (1.11×10−7,5.02×10−11)
(0.1,0.1) (9.50×10−5,9.34×10−5) (8.29×10−5,8.29×10−5) (4.90×10−8,3.25×10−8)
(0.2,0.2) (4.02×10−3,4.01×10−3) (1.20×10−4,1.20×10−4) (1.41×10−7,1.34×10−7)
(0.3,0.3) (5.66×10−3,5.65×10−3) (1.91×10−4,1.91×10−4) (2.10×10−7,2.03×10−7)
(0.4,0.4) (1.00×10−3,1.02×10−3) (3.06×10−4,3.05×10−4) (1.53×10−7,1.37×10−7)
(0.5,0.5) (1.41×10−2,1.40×10−2) (6.96×10−4,6.95×10−4) (6.80×10−7,6.80×10−7)
(0.6,0.6) (3.46×10−4,3.39×10−4) (3.02×10−4,3.01×10−4) (1.18×10−7,1.18×10−7)
(0.7,0.7) (8.54×10−3,8.51×10−3) (2.55×10−4,2.54×10−4) (2.84×10−7,2.84×10−7)
(0.8,0.8) (9.17×10−3,9.11×10−3) (3.09×10−4,3.09×10−4) (3.29×10−7,3.28×10−7)
(0.9,0.9) (1.35×10−3,1.41×10−3) (4.18×10−4,4.16×10−4) (1.86×10−7,1.87×10−7)

Example 3. Consider the following system of 2-DVIEs:
u1(x, t) = g1(x, t)+

∫ t

0

∫ x

0
(u1(y,z)+u2(y,z)) dydz,

u2(x, t) = g2(x, t)+
∫ t

0

∫ x

0
(u1(y,z)−u2(y,z)) dydz,

where

g1(x, t) =−
t2

2
+

1
2

t2 cosx+ t sinx− 1
2

t2 sinx,

g2(x, t) =−
t2

2
+

1
2

t2 cosx+ t cosx+
1
2

t2 sinx.

The exact solutions of this system are u1(x, t) = t sinx and u2(x, t) = t cosx. The absolute errors of this
example for N = 2 and M = 2,3,5 are shown in Table 4.

Example 4. Consider the following system of 2-DVIEs:
u1(x, t) = g1(x, t)+

∫ t

0

∫ x

0
xz(u1(y,z)+u2(y,z)) dydz,

u2(x, t) = g2(x, t)+
∫ t

0

∫ x

0
(xt + yz)u2(y,z)dydz,

K(x, t,y,z) =
[

xz xz
0 xt + yz

]
, Λ =

[
1 0
0 1

]
,

where g1(x, t) and g2(x, t) are defined in such a way that

u1(x, t) =

{
xt + x, 0≤ x < 1

2 ,0≤ t < 1,
x+ t, 1

2 ≤ x < 1,0≤ t < 1,
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Table 4: Absolute errors for Example 3.

(x, t) (e1,2,2(x, t),e2,2,2(x, t)) (e1,2,3(x, t),e2,2,3(x, t)) (e1,2,5(x, t),e2,2,5(x, t))
(0,0) (2.65×10−5,1.47×10−5) (3.74×10−9,1.00×10−9) (2.85×10−12,5.38×10−12)
(0.1,0.1) (6.01×10−5,7.05×10−5) (3.65×10−5,7.78×10−6) (1.51×10−8,4.23×10−9)
(0.2,0.2) (3.88×10−4,1.78×10−3) (5.61×10−5,1.56×10−5) (6.14×10−8,1.59×10−8)
(0.3,0.3) (7.75×10−4,2.62×10−3) (8.46×10−5,1.99×10−5) (9.21×10−8,2.32×10−8)
(0.4,0.4) (1.20×10−4,4.01×10−4) (1.43×10−4,4.26×10−5) (6.08×10−8,1.49×10−8)
(0.5,0.5) (6.82×10−3,7.92×10−3) (3.92×10−4,3.33×10−4) (3.85×10−7,3.38×10−7)
(0.6,0.6) (6.71×10−4,2.16×10−4) (1.70×10−4,1.46×10−4) (6.76×10−8,6.37×10−8)
(0.7,0.7) (4.12×10−3,4.81×10−3) (1.45×10−4,1.37×10−4) (1.61×10−7,1.50×10−7)
(0.8,0.8) (5.21×10−3,5.17×10−3) (1.74×10−4,1.60×10−4) (1.86×10−7,1.74×10−7)
(0.9,0.9) (6.29×10−5,8.12×10−4) (2.35×10−4,2.38×10−4) (1.06×10−7,9.94×10−8)

and

u2(x, t) =

{
xt + t, 0≤ x < 1

2 ,0≤ t < 1,
x− t, 1

2 ≤ x < 1,0≤ t < 1,

to be the exact solutions. Absolute values of the errors are reported in Table 5 for different values of
N And M. The results Confirm proficiency of the hybrid functions method in dealing with non-smooth
solutions. Also, the graphical representation of the error functions el,N,M(x, t) for l = 1,2, N = 2 and
M = 2,3 are illustrated in Figures 1 and 2.

Table 5: Absolute errors for Example 4.

(x, t) (e1,1,3(x, t),e2,1,3(x, t)) (e1,2,2(x, t),e2,2,2(x, t)) (e1,2,3(x, t),e2,2,3(x, t))
(0,0) (4.60×10−4,9.28×10−2) (5.22×10−5,5.22×10−5) (1.16×10−10,2.28×10−10)
(0.1,0.1) (4.68×10−3,2.78×10−2) (7.30×10−6,7.26×10−6) (4.36×10−11,8.28×10−11)
(0.2,0.2) (8.80×10−3,1.48×10−2) (1.52×10−5,1.53×10−5) (5.69×10−12,1.02×10−11)
(0.3,0.3) (3.48×10−2,6.04×10−2) (2.83×10−5,2.79×10−5) (4.87×10−12,9.99×10−12)
(0.4,0.4) (6.76×10−2,1.70×10−1) (1.23×10−4,1.22×10−4) (4.37×10−11,8.30×10−11)
(0.5,0.5) (1.48×10−1,3.98×10−1) (3.49×10−4,5.62×10−4) (1.02×10−12,7.09×10−12)
(0.6,0.6) (1.09×10−1,3.51×10−1) (1.11×10−4,54.8×10−4) (7.61×10−14,5.22×10−13)
(0.7,0.7) (5.93×10−2,2.45×10−1) (6.60×10−6,2.22×10−4) (1.06×10−13,1.87×10−13)
(0.8,0.8) (4.31×10−3,7.42×10−2) (3.77×10−6,2.26×10−4) (5.10×10−15,1.08×10−12)
(0.9,0.9) (5.10×10−2,1.64×10−1) (1.19×10−4,8.61×10−4) (1.92×10−13,4.73×10−13)

Example 5. Consider the following system of 2-DVIEs:
u1(x, t) = g1(x, t)+

∫ t

0

∫ x

0
xz(u1(y,z)+u2(y,z)) dydz,

u2(x, t) = g2(x, t)+
∫ t

0

∫ x

0
xz(u1(y,z)−u2(y,z)) dydz,
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Figure 1: Plote of functions e1,2,2(x, t) and e2,2,2(x, t) for Example 4.

Figure 2: Plote of functions e1,2,3(x, t) and e2,2,3(x, t) for Example 4.

where g1(x, t) and g2(x, t) are defined in such a way that

u1(x, t) =


x+ xt, 0≤ x < 1

3 ,0≤ t < 1,
x− xt, 1

3 ≤ x < 2
3 ,0≤ t < 1,

x+ t, 2
3 ≤ x < 1,0≤ t < 1,

and

u2(x, t) =


1+ xsin t, 0≤ x < 1

3 ,0≤ t < 1,
1− xsin t, 1

3 ≤ x < 2
3 ,0≤ t < 1,

x− t, 2
3 ≤ x < 1,0≤ t < 1,

to be the exact solutions. Absolute values of the errors are reported in Table 6 for N = 2,3 and M = 2,4.
We observe that the values of errors decay as N and M increase. The results indicate that our algorithm
also provides accurate results for discontinuous functions.
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Table 6: Absolute errors for Example 5.

(x, t) (e1,2,2(x, t),e2,2,2(x, t)) (e1,3,2(x, t),e2,3,2(x, t)) (e1,3,4(x, t),e2,3,4(x, t))
(0,0) (5.11×10−5,1.17×10−3) (4.97×10−6,5.68×10−6) (3.41×10−15,4.86×10−13)
(0.1,0.1) (6.66×10−3,6.75×10−3) (1.49×10−6,2.46×10−5) (1.17×10−10,1.75×10−8)
(0.2,0.2) (3.25×10−2,3.24×10−2) (2.53×10−6,1.54×10−4) (5.92×10−10,6.53×10−8)
(0.3,0.3) (1.17×10−1,1.15×10−1) (1.70×10−5,1.99×10−4) (5.61×10−10,1.01×10−7)
(0.4,0.4) (7.09×10−2,6.91×10−2) (5.64×10−6,8.19×10−5) (1.98×10−9,5.65×10−7)
(0.5,0.5) (3.71×10−2,1.15×10−1) (4.59×10−7,1.10×10−3) (2.15×10−11,6.59×10−7)
(0.6,0.6) (2.67×10−1,1.46×10−1) (3.96×10−5,1.18×10−4) (6.62×10−9,8.65×10−7)
(0.7,0.7) (5.15×10−1,3.51×10−1) (2.93×10−4,9.04×10−6) (2.09×10−9,2.07×10−9)
(0.8,0.8) (2.55×10−1,1.54×10−1) (1.00×10−4,2.06×10−5) (7.38×10−9,7.31×10−9)
(0.9,0.9) (8.81×10−2,7.62×10−2) (2.26×10−4,9.29×10−5) (1.21×10−8,1.21×10−8)

6 Concluding remarks

System of two-dimensional integral equations have applications in many branches of science and en-
gineering. This article applied the operational matrices of the two-dimensional hybrid of block-pulse
functions and Legendre polynomials to solve a system of two-dimensional Volterra integral equations of
the second kind. These operational matrices transform the system of integral equations into a system of
algebraic equations. The convergence analysis of the numerical method is considered and an error bound
is obtained. Some numerical examples are provided to show the reliability of the proposed method.
Numerical results indicate that the proposed method is effective to deal with smooth and non-smooth
solutions.
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