
Journal of Algebra and Related Topics

Vol. 9, No 2, (2021), pp 29-37

BZS RINGS, II

M. FARAG ∗ AND R. P. TUCCI

Abstract. An associative ring R, not necessarily commutative
and not necessarily with identity, is called Boolean-zero square or
BZS if every element of R is either idempotent or nilpotent of
index 2. We continue our investigation of the structure of finite
BZS rings.

1. Introduction

This paper continues the study of Boolean-zero square or BZS rings,
those rings in which every element is either idempotent or nilpotent of
index 2, initiated by the authors in [4]. BZS rings generalize both the
well-known class of Boolean rings, in which all elements are idempotent,
and zero square rings, in which every nonzero element is nilpotent of
index two. See [7] and [8] for more information about Boolean rings
and zero square rings, respectively. BZS rings are a special case of
BZS near-rings, which are studied in [3], and BZS near-rings are in
turn a special case of the Malone trivial near-rings introduced in [6]
and studied, inter alia, in [1]. A proper BZS ring is a BZS ring that is
neither a Boolean ring nor a zero square ring.

Throughout the paper, R denotes a BZS ring, N denotes the set of
nilpotent elements of R, and E denotes the set of idempotent elements
of R. We focus mainly on the case when R is a finite, proper BZS ring.
In the next section, we summarize some relevant semigroup definitions
and results. Then we count the number of isomorphism classes of finite
BZS rings of a given size, and we illustrate our results when R has sizes
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4 and 8. Next we show that N2 = {0} when R is finite, and use this to
obtain results related to one-sided cyclic ideals generated by a nilpotent
element of R. Finally, we prove some results on one-sided cyclic ideals
generated by an idempotent element of R.

2. Semigroup Preliminaries

The following definitions and results are standard. They can be
found in [2] or [5].

Definition 2.1. A semigroup consisting of idempotents is a band.

Definition 2.2. A semigroup S is completely simple if S is simple and
all idempotents are minimal under the partial order e ≤ f if and only
if e = ef .

Definition 2.3. A semigroup S is left zero if ab = a for all a, b ∈ S.
A semigroup S is right zero if ab = b for all a, b ∈ S.

Definition 2.4. A rectangular band S is a direct product of a left zero
semigroup LZS and a right zero semigroup RZS. We denote this direct
product by S = LZS×RZS, or simply S = LZ×RZ if S is understood.

Note that if S is a rectangular band and (x, y), (z, w) ∈ LZ × RZ,
then (x, y)(z, w) = (x,w).

Theorem 2.5.
(a) A finite simple semigroup is completely simple.
(b) A band S is completely simple if and only S is a rectangular band.

3. Counting Finite BZS Rings

In this section we count the number of non-isomorphic proper BZS
rings R of any finite size. The key idea is that the idempotents com-
pletely determine the structure of R.

The next Lemma contains results from [4] that will be used in the
sequel. We denote the size of a set X by |X|.

Lemma 3.1. Let R be a BZS ring. Let e, f ∈ E, x ∈ N . Then

(1) 2r = 0 for all r ∈ R:
(2) |E| = |N |;
(3) e+ f ∈ N ;
(4) e+ x ∈ E;
(5) x = ex+ xe;
(6) exe = 0;
(7) xex = 0;
(8) if R is a proper finite BZS ring, |R| = 2n for some n.
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Lemma 3.2. In a proper BZS ring, the idempotents form a completely
simple semigroup under multiplication.

Proof. Let e, f ∈ E. We show that efe = e. From Lemma 3.1(3) we
have that (e + f)2 = 0. From Lemma 3.1(1) it follows that e + f =
ef + fe. Multiply on the left by e to get e + ef = ef + efe. Hence
e = efe. �

Lemma 3.3. In a proper finite BZS ring, every nilpotent element is
the sum of two idempotents.

Proof. Let E = {e1, e2, · · · , ek}. Then the elements {e1 + e1, e1 +
e2, · · · , e1 + ek} are all nilpotent and unique. Since |N | = |E|, this
yields all the nilpotents. �

Theorem 3.4. There are n non-isomorphic finite proper BZS rings of
size 2n.

Proof. From Lemma 3.3 we know that E completely determines the
structure of R. To prove the theorem we need only count the number
of completely simple semigroups E of a given size.

Recall that E = LZ ×RZ and that |E| = 2n−1. Hence the possibil-
ities for |LZ| and |RZ| are
|LZ| = 1 and |RZ| = 2n−1;
|LZ| = 2 and |RZ| = 2n−2;
...
|LZ| = 2n−1 and |RZ| = 1.
There are n possibilities. This completes the proof. �

Theorem 3.5. Let R and S be two finite proper BZS rings of the
same size. Let ER = LZR × RZR be the idempotents in R and ES =
LZS ×RZS be the idempotents in S. If |LZR| = |RZS|, then R and S
are anti-isomorphic.

Proof. Let (a, p), (b, q) ∈ R. Let S = {(p, a)|(a, p) ∈ R}. Define an
additive map f : R → S by f((a, p)(b, q)) = (q, b)(p, a) and f(a, p) =
(p, a). Then f((a, p), (b, q)) = f(a, q) = (q, a) and f((a, p), (b, q)) =
f(b, q)f(a, p) = (q, b)(p, a) = (q, a). Since the rings are of the same
size and ES = LZS × RZS, this map is a 1-1 correspondence. This
completes the proof. �

We use these results to give the structure of all proper BZS rings of
size 4 and 8.

3.1. Proper BZS Rings of Size 4. By Theorem 3.4 there are 2
proper BZS rings of size 4. Since |E| = 2 the set E is either a left zero
semigroup or a right zero semigroup.
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Case I. Assume E is left zero. Write E = {e, f}. Letting x = e + f .
we write N = {0, x}. The additive and multiplicative structures of R
are given by

+ 0 e f x
0 0 e f x
e e 0 x f
f f x 0 e
x x f e 0

× 0 e f x
0 0 0 0 0
e 0 e e 0
f 0 f f 0
x 0 x x 0

Case II. E is right zero. In this case the additive structure is the same.
The multiplicative structure is given by the transpose of the table in
Case I. That is, the multiplicative structure of R is

× 0 e f x
0 0 0 0 0
e 0 e f x
f 0 e f x
x 0 0 0 0

3.2. Proper BZS Rings of Size 8. By Theorem 3.4 there are 3
proper BZS rings of size 8. Since |E| = 4 the set E is either a left
zero semigroup, a right zero semigroup, or a product LZ × RZ where
|LZ| = |RZ| = 2 and LZ,RZ are, respectively, a left zero semigroup
and a right zero semigroup.
Case I. E is left zero. Let E = {e, f, g, h}. Then N = {0, e + f, e +
g, e+ h}. Label the nonzero elements of N as x, y, z.

Note that f + g is nilpotent. Then f + g 6= e+ f , f + g 6= e+ g, so
f + g = e+ h. Similar arguments yield the following identities.
x = e+ f = g + h, y = e+ g = f + h, z = e+ h = f + g.
The additive and multiplicative structures of R are given by

+ 0 e f g h x y z
0 0 e f g h x y z
e e 0 x y z f g h
f f x 0 z y e h g
g g y z 0 x h e f
h h z y x 0 g f e
x x f e h g 0 z y
y y g h e f z 0 x
z z h g f e y x 0

× 0 e f g h x y z
0 0 0 0 0 0 0 0 0
e 0 e e e e 0 0 0
f 0 f f f f 0 0 0
g 0 g g g g 0 0 0
h 0 h h h h 0 0 0
x 0 x x x x 0 0 0
y 0 y y y y 0 0 0
z 0 z z z z 0 0 0
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Case II. E = LZ × RZ where |LZ| = |RZ| = 2 and LZ,RZ are,
respectively, a left zero semigroup and a right zero semigroup.

Let E = {e, f, g, h}. Write e = (a, p), f = (a, q), g = (b, p), h =
(b, q).

Let N = {0, x, y, z}. Each element of N is the sum of two idempo-
tents. Using the argument from the previous case, we can write the
following:
x = (a, p) + (a, q) = (b, p) + (b, q), y = (a, p) + (b, p) = (a, q) + (b, q),
z = (a, p) + (b, q) = (a, q) + (b, p).

The additive structure of R is the same as that in the previous case,
since (R,+) is a direct sum of copies of Z2. The multiplicative structure
of R is

× 0 e f g h x y z
0 0 0 0 0 0 0 0 0
e 0 e f e f x 0 x
f 0 e f e f x 0 x
g 0 g h g h x 0 x
h 0 g h g h x 0 x
x 0 0 0 0 0 0 0 0
y 0 y y y y 0 0 0
z 0 y y y y 0 0 0

Case III. E is right zero. The ring in this case is anti-isomorphic to
that of case I.

The preceding examples serve as motivation for and illustrate many
of the results in the next two sections.

4. Properties of N

Proposition 4.1. If R is a proper, finite BZS ring, then N2 = {0}.

Proof. Let x, y ∈ N . By Lemma 3.3 we can write x = (a, p) + (b, q)
and y = (a, p) + (c, t). Then

xy = [(a, p) + (b, q)][(a, p) + (c, t)] = (a, p) + (a, t) + (b, p) + (b, t).

Now write y′ = (a, p) + (b, t), and note that y′ ∈ N by Lemma 3.1(3)
since it is a sum of two idempotents. So

xy′ = [(a, p) + (b, q)][(a, p) + (b, t)] = (a, p) + (a, t) + (b, p) + (b, t) = xy
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and since (y′)2 = 0, we also have

xy′ = (x+ y′)y′ = [(b, q) + (b, t)][(a, p) + (b, t)]

= (b, p) + (b, t) + (b, p) + (b, t) = 0.

Thus, xy = 0, as required to show N2 = {0}. �

Corollary 4.2. RNR = {0}.

Proof. By Proposition 4.1 we know that N2 = {0}. Hence we need
only show that ENE = {0}.

Let (a, p), (b, q) ∈ E and let (c, t) + (d, v) ∈ N . Then (a, p)[(c, t) +
(d, v)](b, q) = [(a, t) + (a, v)](b, q) = (a, q) + (a, q) = 0. �

Proposition 4.3. Let R be a proper, finite BZS ring. For x, y ∈ N ,
suppose xR 6= {0}. Then xR = yR if and only if x = f + g and
y = f+g′ for some f, g, g′ ∈ E, with π1(g) = π1(g

′) (here π1 represents
the projection onto the first factor when E is written as LZ ×RZ).

Proof. First suppose xR = yR. Then xR = xE∪{0} = yE∪{0} = yR
by Proposition 4.1. Writing x = (a, p) + (b, q) and y = (a, p) + (c, t),
any nonzero z ∈ xR = yR is expressible as z = xe = ye′ for some
e, e′ ∈ E. Put e = (α, β) and e′ = (α′, β′). Then

z = [(a, p) + (b, q)](α, β) = [(a, p) + (c, t))](α′, β′)

implying (a, β) + (b, β) = (a, β′) + (c, β′). Multiply both sides of this
last equality by e on the right to get

(a, β) + (b, β) = (a, β) + (c, β)

from which it follows that (b, β) = (c, β), so that b = c; i.e., π1(g) =
π1(g

′).
Now suppose x = f + g and y = f + g′ for some f, g, g′ ∈ E with

π1(g) = π1(g
′). Write f = (a, p), g = (b, q), g′ = (b, t). Then for any

e = (α, β) ∈ E,

xe = [(a, p) + (b, q)](α, β) = (a, β) + (b, β)

while

ye = [(a, p) + (b, t)](α, β) = (a, β) + (b, β) = xe

Thus, xE = yE, whence xR = xE ∪ {0} = yE ∪ {0} = yR, as
required. �

Proposition 4.4. Let R be a proper, finite BZS ring, with x, y ∈ N .
Then Rx = yR if and only if Rx = yR = {0}.
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Proof. Write x = (a, p) + (b, q) and y = (a, p) + (c, t), and if Rx = yR
note that Rx = Ex ∪ {0} = yE ∪ {0} = yR since N2 = {0}. Now

(a, p)x = (a, p)[(a, p) + (b, q)] = (a, p) + (a, q) ∈ yR
If (a, p)x = 0, then we must have p = q. Otherwise, (a, p)x ∈ yE, so
there exists (α, β) ∈ E such that

(a, p) + (a, q) = [(a, p) + (c, t)](α, β) = (a, β) + (c, β)

Thus,
(a, p)[(a, p) + (a, q)] = (a, p)[(a, β) + (c, β)]

or
(a, p) + (a, q) = (a, β) + (a, β) = 0

It follows again that p = q, so that in any case x = (a, p) + (b, p). Now
given any (α′, β′) ∈ E,

(α′, β′)x = (α′, β′)[(a, p) + (b, p)] = (α′, p) + (α′, p) = 0

so that Ex = {0}. It follows that Rx = yR = {0}. The other direction
is clear. �

Lemma 4.5. Let R be a proper, finite BZS ring, and suppose e =
(a, p) ∈ E and x = (b1, q1) + (b2, q2) ∈ N . Then ex = 0 if and only if
q1 = q2,

Proof. Let ex = 0. Then 0 = (a, p)[(b1, q1) + (b2, q2)] = (a, q1) + (a, q2).
This is true if and only q1 = q2.

�

Lemma 4.6. Let R be a proper, finite BZS ring, and suppose e ∈ E,
and x ∈ N . If ex = 0, then fx = 0 for all f ∈ E.

Proof. By Lemma 4.5 we can write x as x = (b1, q) + (b2, q). Let f =
(a, p) ∈ E. Then fx = (a, p)[(b1, q) + (b2, q)] = (a, q) + (a, q) = 0. �

Theorem 4.7. Let R be a proper, finite BZS ring, and suppose e ∈ E,
and x ∈ N . The following are equivalent:

(1) ex = 0;
(2) Rx = {0}.

Proof. Let ex = 0. Then fx = 0 for all f ∈ E by Lemma 4.6.
By Proposition 4.1 for any y ∈ N , we have yx = 0, so that Rx = {0}

follows.
The other direction is trivial. �

The dual of the previous theorem is also true and can be proved with
the same argument.
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Theorem 4.8. Let R be a proper, finite BZS ring, and suppose e ∈ E,
and x ∈ N . The following are equivalent:

(1) xe = 0;
(2) xR = {0}.

5. Cyclic One-sided Ideals Generated by Idempotents

Proposition 5.1. Let R be a proper, finite BZS ring. For any e, f ∈ E
we have eR ∩N = fR ∩N .

Proof. Let x ∈ eR ∩ N . Then x = xe + ex = fx + xf . Since x ∈ eR
we have that x = ex, and hence xe = 0. By Theorem 4.7 we have
xR = {0}. In particular xf = 0. Hence x = xf + fx = 0 + fx = fx ∈
fR. �

Proposition 5.2. Let R be a proper, finite BZS ring with e, f ∈ E. If
g ∈ eR ∩ fR for some g ∈ E, then eR = fR.

Proof. Write e = (a, p), f = (b, q), g = (c, t). Then (c, t) = g = eg =
(a, p)(c, t) = (a, t) which implies that c = a. So (a, t) = g = fg =
(b, q)(a, t) = (b, t) which implies that a = b.

Now eR, fR contain the same idempotents, namely those of the form
(a, x). Also, eR, fR contain the same elements of N by Proposition 5.1.
Hence eR = fR. �

Proposition 5.3. Let R be a proper, finite BZS ring with e, f ∈ E.
Then eR ∩Rf = {ef, 0}.

Proof. Let x ∈ eR ∩ Rf ∩ N . Then x = ex + xe = ex, so that again
xR = {0}. In particular xf = 0. Since x ∈ Rf this implies that x = 0.

Now let g ∈ eR ∩ Rf ∩ E. Write e = (a, p), f = (b, q), g = (c, t).
Then since g ∈ eR we can write (c, t) = g = eg = (a, p)(c, t) = (a, t) so
that c = a. Since g ∈ Rf we can write (a, t) = g = gf = (a, t)(b, q) =
(a, q) = (a, p)(b, q) = ef . This completes the proof. �

We can obtain sharper results if we assume that E is left zero.

Proposition 5.4. Let R be a proper, finite BZS ring with e ∈ E. The
following are equivalent.

(1) E is left zero;
(2) eN = {0};
(3) eR = {e, 0};
(4) Re = R.

Proof. (1) ⇒ (2) Let x = f + g ∈ N , where f, g ∈ E. Then ex =
ef + eg = e+ e = 0.
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(2) ⇒ (1) Let e+ f ∈ N , where f ∈ E. Then 0 = e(e+ f) = e+ ef so
that e = ef and E is left zero.
(1), (2) ⇒ (3) Since E is left zero, then eE = {e}. Also eN = {0}.
The result now follows.
(3) ⇒ (1) This is immediate.
(1), (2)⇒ (4) Let f ∈ E. Since E is left zero, then f = fe ∈ Re. Also,
recall that if x ∈ N then x = ex + xe for any e ∈ E. Since eN = {0}
then x = xe ∈ Re.
(4) ⇒ (2) Let x ∈ N . Then x = ex + xe But x ∈ Re implies that
x = ye for some y ∈ N . Hence ex = eye = 0. Since x is arbitrary, then
eN = {0}. �

As before, we can obtain the dual of this result.

Proposition 5.5. Let R be a proper, finite BZS ring with e ∈ E. The
following are equivalent.

(1) E is right zero;
(2) Ne = {0};
(3) Re = {e, 0};
(4) eR = R.

References

1. G. A. Cannon, M. Farag, L. Kabza, and K. M. Neuerburg, Centers and general-
ized centers of near-rings without identity defined via Malone-like multiplications,
Math. Pannonica, (2) 25(2015), 3− 23.

2. A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, 2nd ed.,
AMS Press, 1 (1964).

3. M. Farag, BZS Near-rings, (preprint).
4. M. Farag, R. Tucci, BZS Rings, Palestinian J. of Math., 8(2) (2019), 8 - 14.
5. J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, 1995.
6. J. J. Malone, Jr., Near-rings with trivial multiplications, Amer. Math. Monthly,

(9) 74, (1967) 1111− 1112.
7. R. P. Stanley, Zero Square Rings, Pacific J. of Math., (3) 30 (1969), 811− 824.
8. M. H. Stone, The Theory of Representation for Boolean Algebras, Trans. of the

Amer. Math. Soc., (1) 40 (1936), 37− 111.

Mark Farag
Department of Mathematics, Fairleigh Dickinson University, 1000 River Rd, Tea-
neck, NJ, 07666, USA.
Email: mfarag@fdu.edu

Ralph P. Tucci
Department of Mathematics and Computer Science, Loyola University New Or-
leans, New Orleans, LA 70118, USA.
Email: tucci@loyno.edu


	1. Introduction
	2. Semigroup Preliminaries
	3. Counting Finite BZS Rings
	3.1. Proper BZS Rings of Size 4
	3.2. Proper BZS Rings of Size 8

	4. Properties of N
	5. Cyclic One-sided Ideals Generated by Idempotents
	References

