تعداد نشریات | 31 |
تعداد شمارهها | 741 |
تعداد مقالات | 7,029 |
تعداد مشاهده مقاله | 10,087,301 |
تعداد دریافت فایل اصل مقاله | 6,773,495 |
بررسی اثرات کاربرد مصالح ریزدانه و درشتدانهی بازیافتی حاصل از بتن ضایعاتی به روی خصوصیات بتن خودتراکم | ||
تحقیقات بتن | ||
مقاله 1، دوره 14، شماره 4 - شماره پیاپی 36، دی 1400، صفحه 101-116 اصل مقاله (783.2 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jcr.2021.20347.1510 | ||
نویسندگان | ||
سمیه ملایی* 1؛ روژین ناصح2 | ||
1استادیار گروه مهندسی عمران، دانشگاه بناب، بناب، ایران | ||
2گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه بناب، بناب، آذربایجان شرقی، ایران | ||
چکیده | ||
در اینجا امکان استفاده از سنگدانههای بتن بازیافتی، که به صورت تصادفی از بتنهای ضایعاتی مختلف در سطح استان کرمانشاه جمعآوری شده، در تهیه بتن خودتراکم بررسی شدهاست. نمونههای بتن خودتراکم شامل درصدهای مختلف درشتدانه بازیافتی، ریزدانه بازیافتی و ترکیبی از هر دو در طرح اختلاطهای مختلف تهیهگردید. طبق نتایج، طرحهایی که با استفاده از مصالح درشتدانهی بازیافتی تهیه شد دارای مشخصات مکانیکی بهتری نسبت به مخلوطهای تهیهشده از ریزدانهی بازیافتی بود؛ بطوری که، مقاومت فشاری با جایگزینی صفر تا 100 درصد از سنگدانهها با مصالح بازیافتی از 425 تا 256 kg/cm2 کاهش داشته است. این کاهش در مخلوطهای تهشه شده از ریزدانه و درشتدانهی بازیافتی به طور همزمان، حدود 21-6 درصد نسبت به مخلوطهایی که در آنها از درشتدانه و ریزدانه به طور مجزا استفاده گردید بیشتر بود. برای نتایج مقاومت کششی و خمشی نیز روند مشابهی مشاهده شد. همچنین، با افزایش مقدار ریزدانه و درشتدانه بازیافتی خواص رئولوژیکی بتن تازه نسبت به حالت استفاده از سنگدانههای طبیعی افت داشت؛ بطوری که، ریزدانهی بازیافتی تاثیر بیشتری در افت خواص بتن تازه در مقایسه با درشتدانهی بازیافتی داشت. در نمونههایی که بیش از 80% سنگدانه با مصالح بازیافتی جایگزین شده بود، اسلامپ حدود 400 mm بدست آمد که نشان میدهد بتن خواص خودتراکمی خود را از دست داده است. | ||
کلیدواژهها | ||
بتنخودتراکم؛ سنگدانه بازیافتی؛ بتن تازه؛ بتن سختشده | ||
مراجع | ||
[1] Meyer, C., The greening of the concrete industry. Cement Conc. Compos, 2009. 31(8): p.601–605.
[2] Liu, J., E. Gong, D. Wang, X. Lai, and J. Zhu, Attitudes and behaviour towards construction waste minimization: a comparative analysis between China and the USA. Environmental Science and Pollution Research, 2019. 26(14): p. 13681-13690.
[3] Ostyakova, A., and D. Mazurin, Management of the waste of construction and demolition. in: IOP Conference Series; Materials Science and Engineering, IOP Publishing, 2021. p. 012103.
[4] برنجیان، ج.، ا. لطفی عمران، ا. مرزآرا، و م. حسن نژاد، بررسی خواص بتن مقاومت بالا با سنگدانههای بازیافتی. سومین کنگره بین المللی عمران ، معماری و توسعه شهری، 1394. تهران.
[5] Pacheco-Torgal, F., Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Construction and building materials, 2014. 51: p. 151-162.
[6] Silva, R.V., J.De Brito, and R.K.Dhir, Properties and composition recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 2014. 65: p. 201-217.
[7] Hansen, T.C., (Editor), Recycling of Demolition and Masonry. 1992: CRC Press.
[8] Hubertova, M., Self-Compacting Light Concrete with Liapor Aggregates. In: Young Researchers' Forum: Proceedings of the International Conference held at the University of Dundee, Scotland, UK, 2005. p. 103-112
[9] نادری، م.، تحقیقات در بتن خودمتراکم. 1390: انتشارات نگاران نور.
[10] Muller, H.S., and M. Haist, First General Technical Approval Self Compacting Lightweight Concrete. Bundesverband Leichtzuschlang Industrie e.V.Gerhard Koch Straβe 2. Ostfildem, 2004.
[11] Makul, N., Modified Cost-Benefit Analysis of the Production of Ready-Mixed Self-Consolidating Concrete Prepared with a Recycled Concrete Aggregate. Journal of Construction Engineering and Management, 2021. 147(4): p. 04021021.
[12] Wang, Y., K. Zhang, Y. Geng, Q. Wang, and S. Zhang, Prediction of the elastic modulus and the splitting tensile strength of concrete incorporating both fine and coarse recycled aggregate. Journal of Construction and Building Materials, 2019. 215. Pp 332–346.
[13] Aslani, F., G. Ma, D. Yim Wan, and G. Muselin, Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules. Journal of Cleaner Production, 2018. 182: p. 553-566.
[14] Abed, M., R. Names, and B. Tayeh, Properties of self-compacting high-strength concrete containing multiple use of recycled aggregate. Journal of King Saud University–Engineering Sciences, 2018.
[15] Zhu, P., Y. Hao, H. Liu, D. Wei, S. Liu, and L. Gu, Durability evaluation of three generations of 100% repeatedly recycled coarse aggregate concrete. Journal of Construction and Building Materials, 2019. 210: p. 442–450.
[16] Hama, S., and N. Hilal, Fresh properties of self-compacting concrete with plastic waste as partial replacement of sand. International Journal of Sustainable Built Environment, 2017. 6: p. 299–308
[17] Manzi, S., C. Mazzotti, and M.C. Bignozzi, Self-compacting Concrete with Recycled Concrete Aggregate: Study of the Long-Term Properties. Construction and Building Materials, 2017. 157: p. 582-590.
[18] Bui, N., T. Satomi, and H. Takahashi, Improvement of mechanical properties of recycled aggregate concrete basing on a new combination method between recycled aggregate and natural aggregate. Journal of Construction and Building Materials, 2017. 148: p. 376–385.
[19] Radevic, A., A. Durekovic, D. Zakic, and D. Mladenovic, Effects of recycled concrete aggregate on stiffness and rutting resistance of asphalt concrete. Construction and Building Materials, 2017. 136: p. 386-393.
[20] شربی نیازی, ح., ا. خلیل زاده وحیدی, بررسی خواص بتن حاوی سنگدانههای بازیافتی و لاستیک ضایعاتی و میکروسیلیس. نشریه مهندسی عمران امیرکبیر، 1400. پذیرفته شده برای انتشار.
[21] طاهرخانی، ح.، و ح. سازگار، بررسی خصوصیات مکانیکی بتن غلتکی روسازی حاوی سنگدانه های بتن بازیافتی. نشریه مهندسی حمل و نقل، 1398. 10(4): ص. 806-787.
[22] اسفندی سرافراز, م.، بررسی نأثیر نانوسیلیس و الیاف پلی وینیل الکل بر بهبود مشخصات مکانیکی و ریزساختار بتن ساخته شده از سنگدانههای بازیافتی. تحقیقات بتن, 1399. 13(2): ص. 105-117.
[23] احمدی، ج.، بیگدلو، و م. سلیمانیراد، نأثیر استفاده از زئولیت، میکروسیلیس ومتاکائولن برکارایی ومقاومت بتن خودتراکم. نشریه مهندسی عمران ومحیط زیست، 1396. 47(3): ص. 7-1.
[24] اسماعیلنیاعمران, م., و فریدی, رابط مقاومت فشاری با مقاومت کششی و ضریب کشسانی دربتن خودتراکم حاوی سنگدانه بازیافتی و زئولیت طبیعی. تحقیقات بتن، 1393. 7(1): 22-7.
[25] EFNARC., Specification and Guidelines for self-compacting concrete. Association House, Surrey, 2002.
[26] EFNARC., Specification Guidelines for Self-Compacting Concrete. Uk: European Federation of Producers and Contractors of Specialist Products for Structures, 2001.
[27] EFNARC. The European guidelines for self-compacting concrete: specification, production and use. European Federation of Specialist Construction and Concrete Systems, 2005.
[28] ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute, Farmington Hills, MI, 2019.
[29] ASTM C33. Standard Specification for Concrete Aggregates. ASTM International, West Conshohocken, 2018.
[30] استاندارد ملی ایران شماره 4977. آزمایش دانه بندی سنگدانه های ریز و درشت. سازمان ملی استاندارد ایران، 1393.
[31] ... پایان نامه کارشناسی ارشد ... ، 1400.
[32] استاندارد ملی ایران شماره 302. ویژگی های سنگدانه های بتن. سازمان ملی استاندارد ایران، 1394.
[33] EN 12350-8. Testing fresh concrete- Part 8: Self-compacting concrete - Slump-flow. European Committee for Standardization, 2019.
[34] EN 12350-10. Testing fresh concrete. Self-compacting concrete. L-box test. European Committee for Standardization, 2010.
[35] صالحی مبین، ج. رساله دکتری: بررسی آزمایشگاهی رفتار اتصالات تیر به ستون بتنی درجا با بتن خودتراکم تحت بارگذاری رفت و برگشتی. 1395: دانشکده مهندسی عمران، دانشگاه صنعتی شریف، به راهنمایی م.ت. کاظمی.
[36] EN 12390-3. Testing hardened concrete. Compressive strength of test specimens. European Committee for Standardization, 2010.
[37] ASTM C 496. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, 2004.
[38] ASTM C293. Standard Test Method for Flexural Strength of Concrete. ASTM International, West Conshohocken, 2004.
[39] ASTM C469. Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. ASTM International, West Conshohocken, 2014.
[40] ASTM C192. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, West Conshohocken, 2019.
[41] Silva, R. V., De Brito, J., and Dhir, R. K., Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete. Journal of Cleaner Production, 2016. 112: 2171-2186. | ||
آمار تعداد مشاهده مقاله: 777 تعداد دریافت فایل اصل مقاله: 468 |