

# Factorization of the *t*-extension of the *p*-Fibonacci and the Pascal matrices

#### Mansour Hashemi, Elahe Mehraban\*

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran Email(s): m\_hashemi@guilan.ac.ir, e.mehraban.math@gmail.com

Abstract. In this paper, we introduce the *t*-extension of the *p*-Fibonacci matrix and give a Factorization of the Pascal matrix involving the *t*-extension of the *p*-Fibonacci matrix. Also, we obtain some results on the relations between the Stirling matrix of the second kind and the 1-extension of the *p*-Fibonacci matrix.

*Keywords*: Pascal matrix, *t*-extension of the *p*-Fibonacci matrix, factorization of a matrix. *AMS Subject Classification 2010*: 15A36, 11C20, 11B39.

#### **1** Introduction

The Fibonacci sequence and generalized Fibonacci sequence are famous sequences in mathematics. Many authors have studied these sequences (see [1,5,10]). The Fibonacci sequence is defined by the recurrence relation  $f_n = f_{n-1} + f_{n-2}$ ,  $n \ge 3$ , with the initial values  $f_1 = f_2 = 1$ . This sequence has been extended in many ways. Two such extensions that will be used in this paper are the p-Fibonacci sequence and the *t*-extension of the *p*-Fibonacci sequence (see [6, 12]). For  $p \ge 0$ , the p-Fibonacci sequence  $f^p(n)$ , defined by the following relation:

$$f^{p}(n) = f^{p}(n-1) + f^{p}(n-p-1), \quad n > p+1,$$

with initial terms

$$f^{p}(1) = f^{p}(2) = \dots = f^{p}(p) = f^{p}(p+1) = 1.$$

\*Corresponding author.

Received: 19 January 2021/ Revised: 13 April 2021 / Accepted: 13 May 2021 DOI: 10.22124/jmm.2021.18678.1597

© 2022 University of Guilan

**Definition 1.** For  $t, p \ge 1$ , the t-extension of the p-Fibonacci sequence  $\{f^p(t,n)\}_{-\infty}^{\infty}$  is given by the following recurrence relation:

$$f^{p}(t,n) = \begin{cases} 0, & n < 1, \\ 1, & n = 1, \\ tf^{p}(t,n-1) + f^{p}(t,n-p-1), & n > 1. \end{cases}$$

For example if t = 1 and p = 2, we have  $f^2(1,n) = f^2(1,n-1) + f^2(1,n-3)$  and  $\{f^2(1,n)\}_{-\infty}^{\infty} = \{\dots, 0, 1, 1, 1, 2, 3, 4, 6, 9, \dots\}$ .

The  $n \times n$  lower triangular Pascal matrix, denoted by  $P_n = [p_{ij}]$ , is defined as follows [2]:

$$p_{ij} = \begin{cases} \binom{i-1}{j-1}, & \text{if } i \ge j, \\ 0, & \text{otherwise} \end{cases}$$

Now, we define the  $n \times n$  *t*-extension of the *p*-Fibonacci matrix  $(p \ge 2)$ , denoted by  $F_{(t,n)}^p = [f_{(t,ij)}^p]$ , with  $f_{(t,ij)}^p = f^p(t, i - j + 1)$ . For example,

$$F_{(1,8)}^{2} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 3 & 2 & 1 & 1 & 1 & 0 & 0 & 0 \\ 4 & 3 & 2 & 1 & 1 & 1 & 0 & 0 \\ 6 & 4 & 3 & 2 & 1 & 1 & 1 & 0 \\ 9 & 6 & 4 & 3 & 2 & 1 & 1 & 1 \end{bmatrix}$$

The set of all  $n \times n$  matrices with real entries is denoted by  $M_n$ . Any matrix  $B \in M_n$  of the form  $B = A^*A$ ,  $A \in M_n$  may be written as  $B = LL^*$  where  $L \in M_n$  is a lower triangular matrix with nonnegative diagonal entries. The factorization of the matrix  $B = LL^*$  is unique if A is nonsingular and  $A^*$  is the transpose of it. This is called the Cholesky factorization of B. In particular, a matrix B is positive definite if and only if there exists a nonsingular lower triangular matrix  $L \in M_n$  with positive diagonal entries such that  $B = LL^*$ . If B is a real matrix, L may be taken to be real.

For  $n, k \in \mathbb{N}$  and  $n \ge k$ , the Stirling number of the second kind S(n,k) is defined as follows (see [3])

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k-1} (-1)^i \binom{k}{i} (k-i)^n.$$
(1)

**Definition 2.** The Stirling matrix of the second kind, denoted by  $\zeta_n(2) = [\iota_{ij}]$ , is defined by:

$$\mathbf{l}_{ij} = \begin{cases} S(i,j), & i \ge j, \\ 0, & otherwise \end{cases}$$

The Pascal matrix and its factorizations were studied by many authors (see [4, 7, 11]). Also, in [8, 9], the authors gave some results about the *p*-Fibonacci matrix for p = 1. Here, for t = 1,  $p \ge 2$ , we consider

the *t*-extension of the *p*-Fibonacci matrix and define the Pascal matrix. Then, in Section 2, we obtain a Factorization of the Pascal matrix. In Section 3, using the product of the 1-extension of the *p*-Fibonacci matrix and its transpose, we give the Cholesky factorization of  $S_n^p$ . Section 4 is devoted to obtaining some results on the relations between the Stirling matrix of the second kind and 1-extension of the *p*-Fibonacci matrix. In Section 5, we will generalize the notion of the *t*-extension of the *p*-Fibonacci matrix ( $t \ge 2$ ) and study some properties of the *t*-extension of the *p*-Fibonacci matrix.

**Remark 1.** Throughout this paper, we set  $f^p(n) := f^p(1,n)$  and  $F_n^p := F_{(1,n)}^p$ .

#### 2 Factorization of the Pascal matrix

In this section, we obtain the inverse of the 1-extension of the *p*-Fibonacci matrix  $F_n^p$ . Also, we give a factorization of the 1-extension of the *p*-Fibonacci matrix. We first get the inverse of the 1-extension of the *p*-Fibonacci matrix. For this, we need to define the matrix  $U_n^p$ . The  $n \times n$  matrix  $U_n^p = [u_{ij}^p]$  is defined by:

$$u_{ij}^{p} = \begin{cases} f^{p}(i), & \text{if } j = 1, \\ 1, & \text{if } i = j, \\ 0, & \text{otherwise,} \end{cases}$$

that is

$$U_n^p = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ f^P(2) & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ f^P(n) & 0 & 0 & \dots & 1 \end{bmatrix}$$

By using a simple calculation, we get

$$F_n^p = U_n^p \times (I_1 \oplus U_{n-1}^p) \times (I_2 \oplus U_{n-2}^p) \times \cdots \times (I_{n-2} \oplus U_2^p),$$

where  $I_j$  is an  $j \times j$  identity matrix. For example,

$$F_4^2 = U_4^2 \times (I_1 \oplus U_3^2) \times (I_2 \oplus U_2^2)$$
  
= 
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 1 & 1 \end{bmatrix}$$

Hence, we have

$$(U_n^p)^{-1} = \begin{bmatrix} f^p(1) & 0 & 0 & \dots & 0 \\ -f^p(2) & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \\ -f^p(n) & 0 & 0 & \dots & 1 \end{bmatrix},$$

and

$$(I_k \oplus U_{n-k}^p)^{-1} = I_k \oplus (U_{n-k}^p)^{-1}.$$

So, we get

$$(F_n^p)^{-1} = (I_{n-2} \oplus (U_2^p)^{-1}) \times \dots \times (I_1 \oplus (U_{n-1}^p)^{-1}) \times (U_n^p)^{-1}.$$
 (2)

From (2), we have  $(F_n^p)^{-1} = [f_{ij}'^p]_{n \times n}$ , where

$$f_{ij}^{'p} = \begin{cases} 1, & \text{if } i = j, \\ -1, & \text{if } j = i - 1 \text{ or } j = i - (p+1), \\ 0, & \text{otherwise.} \end{cases}$$
(3)

For example

$$(F_7^3)^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Here, we give a factorization of the 1-extension of the *p*-Fibonacci matrix. First, we introduce the matrix  $L_n^p$ .

**Definition 3.** *Entries of the*  $n \times n$  *matrix*  $L_n^p = [l_{ij}^p]$  *are defined as* 

$$l_{ij}^{p} = \binom{i-1}{j-1} - \binom{i-2}{j-1} - \binom{i-(p+2)}{j-1}.$$
(4)

For  $i, j \ge 2$ , using relation (4), we can write  $l_{ij}^p = l_{i-1,j-1}^p + l_{i-1,j}^p$ , where  $l_{11}^p = 1$ ,  $l_{1j}^p = 0$ ,  $j \ge 2$ .

For p = 2 and n = 5, we have

$$L_5^2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ -1 & 1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 3 & 1 \end{bmatrix}$$

By the above information, we prove the following theorem.

**Theorem 1.** For the Pascal matrix  $P_n$ , we have  $P_n = F_n^p L_n^p$ .

*Proof.* The matrix  $F_n^p$  is invertible. If we get  $(F_n^p)^{-1}P_n = L_n^p$ , then Theorem is proved. Let  $(F_n^p)^{-1}P_n = B_n$  where  $B_n = (b_{i,j})_{1 \le i,j \le n}$ , i.e.,

$$b_{i,j} = \sum_{k=j}^{i} f_{i,k}^{\prime p} P_{k,j}.$$

Since  $(F_n^p)^{-1}$  and  $P_n$  are lower triangular matrices, by the definition of  $(F_n^p)^{-1}$ , we have

$$b_{i,j} = \sum_{k=j}^{i} f_{i,k}^{'p} \binom{k-1}{j-1}$$
  
=  $f_{i,i-(p+1)}^{'p} \binom{i-(p+2)}{j-1} + f_{i,i-1}^{'p} \binom{i-2}{j-1} + f_{i,i}^{'p} \binom{i-1}{j-1}$   
=  $\binom{i-1}{j-1} - \binom{i-2}{j-1} - \binom{i-(p+2)}{j-1} = (l_{i,j})_{1 \le i,j \le n}.$ 

**Corollary 1.** *For*  $s, n \in \mathbb{N}$ *,* 

$$\binom{n-1}{s-1} = P_{n,s} = \sum_{k=s}^{n} f_{n,k}^{p} l_{k,s} = f_{n,1}^{p} l_{1,s} + f_{n,2}^{p} l_{2,s} + \dots + f_{n,n-1}^{p} l_{n-1,s} + f_{n,n}^{p} l_{n,s}$$

For s = 1, we have

$$P_{n,1} = \sum_{k=s}^{n} f_{n,k}^{p} l_{k,s} = f_{n,1}^{p} l_{1,1} + f_{n,2}^{p} l_{2,1} + \dots + f_{n,n-1}^{p} l_{n-1,1} + f_{n,n}^{p} l_{n,1}$$

*Proof.* From Theorem 1, we have  $P_n = F_n^p L_n^p$ . Hence,

$$P_n = l_{11} + f^p(n-1)l_{21} + \dots + f^p(2)l_{n-1,1} + f^p(1)l_{n1}.$$

Let s = 1. Since

$$l_{i1} = \begin{cases} 1, & \text{if } i = 1, \\ 0, & \text{if } i \le p + 1, \\ -1, & \text{if } i \le p + 1, \end{cases}$$
(5)

we have the result.

Now, in the following theorem, we obtain the inverse of the matrix  $L_n^p = [l_{ij}^{\prime p}]$ .

**Corollary 2.** Let  $(L_n^p)^{-1} = [l_{ij}^{'p}]$ . Then

$$l_{ij}^{'p} = \sum_{s=j}^{i} {i-1 \choose s-1} \times (-1)^{i+s} f^{p}(s).$$

*Proof.* Since  $P_n^{-1}F_n^p = (L_n^p)^{-1}$ , we have the result.

**Corollary 3.** For p = 2, we get

$$f^{2}(n) = 1 + \sum_{j=4}^{n} (-1)^{j} {\binom{n-1}{j-1}} f^{2}(j-1).$$

*Proof.* We have  $f^2(n) = \sum_{j=1}^n p_{nj} l_{j1}^{\prime 2}$ . Hence, from Corollary 2,

$$l_{11}^{\prime 2} = 1, \ l_{21}^{\prime 2} = l_{31}^{\prime 2} = 0, \ l_{41}^{\prime 2} = 1$$

and  $l_{i1}^{'2} = (-1)^i f^2(i-1)$ . Consequently,

$$f^{2}(n) = p_{n1} + \sum_{j=4}^{n} (-1)^{j} f^{2}(j-1) p_{nj} = 1 + \sum_{j=4}^{n} (-1)^{j} {\binom{n-1}{j-1}} f^{2}(j-1).$$

## **3** The Cholesky factorization of a symmetric 1-extension of the *p*-Fibonacci matrix

Here, we define a symmetric 1-extension of the *p*-Fibonacci matrix  $S_n^p$ . Then using the prouduct of the 1-extension of the p -Fibonacci matrix  $F_n^p$  and its transpose  $F_n^p$ , we get the Cholesky factorization of  $S_n^p$ . First, we need the following definition.

**Definition 4.** A symmetric 1-extension of the p-Fibonacci matrix, denoted by  $S_n^p = [s(p)_{ij}]$  for i, j = 1, 2, ..., n, is defined as follows:

$$s(p)_{ij} = s(p)_{ji} = \begin{cases} \sum_{k=1}^{i} (f^p(n))^2, & \text{if } i = j, \\ s(p)_{i,j-1} + s(p)_{i,j-(p+1)}, & \text{if } i+1 \le j, \end{cases}$$
(6)

*where*  $j \le p + 1, s(p)_{i,j} = 0.$ 

For example,

$$S_{10}^{3} = \begin{bmatrix} 1 & 1 & 1 & 1 & 2 & 3 & 4 & 5 & 7 & 10 \\ 1 & 2 & 2 & 2 & 3 & 5 & 7 & 9 & 12 & 17 \\ 1 & 2 & 3 & 3 & 4 & 6 & 9 & 12 & 16 & 22 \\ 1 & 2 & 3 & 4 & 5 & 7 & 10 & 14 & 19 & 26 \\ 2 & 3 & 4 & 5 & 8 & 11 & 15 & 20 & 28 & 39 \\ 3 & 5 & 6 & 7 & 11 & 17 & 23 & 30 & 41 & 58 \\ 4 & 7 & 9 & 10 & 15 & 23 & 33 & 43 & 58 & 81 \\ 5 & 9 & 12 & 14 & 20 & 30 & 43 & 58 & 78 & 108 \\ 7 & 12 & 16 & 19 & 28 & 41 & 58 & 78 & 107 & 148 \\ 10 & 17 & 22 & 26 & 39 & 58 & 81 & 108 & 148 & 207 \end{bmatrix}.$$

**Remark 2.** By Definition 4, we have  $\binom{n-1}{s-1} = p_{ns} = f^p(n)$ ,

$$s(p)_{1j} = f^{p}(j), \quad j \ge 1,$$
  

$$s(p)_{2j} = f^{p}(2)f^{P}(j) + f^{p}(1)f^{p}(j-1), \quad j \ge 2,$$
  

$$s(p)_{3j} = f^{p}(3)f^{p}(j) + f^{p}(2)f^{p}(j-1) + f^{p}(1)f^{p}(j-2), \quad j \ge 3.$$

So, for  $j \ge i$ , by an induction on i, we get

$$s(p)_{ij} = f^p(i)f^p(j) + f^p(i-1)f^p(j-1) + f^p(i-2)f^p(j-2) + \dots + f^p(1)f^p(j-i+1).$$
(7)

**Lemma 1.** For  $j \ge i$ ,  $s(p)_{i,j} = s(p)_{i-1,j} + s(p)_{i-(p+1),j} + f^p(j-i+1)$ .

*Proof.* By the relation (7), we have

$$s(p)_{i-1,j} = f^{p}(i-1)f^{p}(j) + f^{p}(i-2)f^{p}(j-1) + \dots + f^{p}(1)f^{p}(j-i).$$

$$s(p)_{i-(p+1),j} = f^{p}(i-(p+1))f^{p}(j) + f^{p}(i-(p+1)-1)f^{p}(j-1) + \cdots + f^{p}(1)f^{p}(j-i+(p+2)).$$

Hence,

$$\begin{split} s(p)_{i-1,j} + s(p)_{i-(p+1),j} &= f^p(i-1)f^p(j) + f^p(i-2)f^p(j-1) + \dots + f^p(1)f^p(j-i) \\ &\quad + f^p(i-(p+1))f^p(j) + f^p(i-(p+1)-1)f^p(j-1) + \dots \\ &\quad + f^p(1)f^p(j-i+(p+2)) \\ &= (f^p(i-1) + f^p(i-(p+1)))f^p(j) + (f^p(i-2) \\ &\quad + f^p(i-(p+1)-1))f^p(j-1) + \dots + (f^p(j-i) \\ &\quad + f^p(j-i+(p+2)))f^p(1). \end{split}$$

By Definition 1, we have

$$f^{p}(n) = f^{p}(n-1) + f^{p}(n-p-1), \ f^{p}(1) = f^{p}(2) = \dots = f^{p}(p) = f^{p}(p+1) = 1.$$

Therefore  $s(p)_{i-1,j} + s(p)_{i-(p+1),j} + f^p(j-i+1) = s(p)_{ij}$ .

**Theorem 2.** For  $n \in \mathbb{N}$ , the Cholesky factorization of  $S_n^p$  is given by  $S_n^p = F_n^p (F_n^p)^T$ .

*Proof.* By the relations (2) and (3), it is sufficient that to prove  $(F_n^p)^{-1}S_n^p = (F_n^p)^T$ . Let  $X = [x(p)_{ij}] = (F_n^p)^{-1}S_n^p$ . We have

$$x(p)_{ij} = \sum_{k=1}^{i} f'_{i,k} S_{k,j} = f'_{i,i-(p+1)} S_{i-(p+1),j} + f'_{i,i-1} S_{i-1,j} + f'_{i,i} S_{i,i},$$

and by (3)

$$x(p)_{ij} = -S_{i-(p+1),j} - S_{i-1,j} + S_{i,i} = \begin{cases} f^p(j), & \text{if } i = 1, \\ f^p(j-1), & \text{if } i = 2, \\ f^p(j+i-1), & \text{otherwise.} \end{cases}$$

Furthermore  $X^T = F_n^p$ . This completes the proof.

By Theorem 2, the proof of the following corollary is trivial. So, we omit the proof.

**Corollary 4.** For  $(S_n^p)^{-1} = [s'(p)_{ij}]$  where  $(S_n^p)^{-1} = (F_n^P \times (F_n^p)^T)^{-1}$ , we have *(i) if i = j, then* 

$$s'(p)_{ii} = \begin{cases} 1, & if \ i = n, \\ 2, & if \ n - p \le i \le n - 1, \\ 3, & otherwise. \end{cases}$$

(*ii*) For  $i \neq j$ , we get

$$s'(p)_{ij} = s'(p)_{ji} = \begin{cases} -1, & \text{if } j = i+1 \text{ or } j = p+i+1, \\ 1, & \text{if } j = i+p. \end{cases}$$

For example,

$$(S_8^3)^{-1} = \begin{bmatrix} 3 & -1 & 0 & 1 & -1 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 1 & -1 & 0 & 0 \\ 0 & -1 & 3 & -1 & 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & 3 & -1 & 0 & 1 & -1 \\ -1 & 1 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 1 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 1 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & -1 & 1 \end{bmatrix}.$$

## 4 The Stirling matrix of the second kind

We get some results on the relationships between the Stirling matrix of the second kind and the 1extension of the *p*-Fibonacci matrix. For this, using the Stirling number of the second kind, we start with the following definition.

**Definition 5.** A  $n \times n$  matrix  $H_n^p = [h_{ij}^p]$  is defined as follows:

$$h_{ii}^p = S(i, j) - S(i - 1, j) - S(i - (p + 1), j),$$

where S(m,k) is the Stirling number of the second kind.

By Definition 5, we see that  $h_{11}^p = 1$ ,  $h_{1j}^p = 0$ ,  $j \ge 2$ ,  $h_{2j}^p = 0$ ,  $j \ne 2$  and

$$h_{i,j}^p = h_{i-1,j-1}^p + jh_{i-1,j}^p.$$

**Theorem 3.** For the Stirling matrix  $\zeta_n(2)$  and  $F_n^p$ , we have  $\zeta_n(2) = F_n^p H_n^p$ .

*Proof.* The matrix  $F_n^p$  is invertible. If we get  $(F_n^p)^{-1}\zeta_n(2) = H_n^p$ , then Theorem is proved. Let  $(F_n^p)^{-1}\zeta_n(2) = C_n$  where  $C_n = (c_{i,j})_{1 \le i,j \le n}$ , i.e.,

$$c_{i,j} = \sum_{k=j}^{i} f_{i,k}^{\prime p} S(k,j)$$

Since  $(F_n^p)^{-1}$  and  $\zeta_n(2)$  are lower triangular matrices, by the definiton of  $(F_n^p)^{-1}$ , we have

$$\begin{split} c_{i,j} &= \sum_{k=j}^{l} f_{i,k}^{'p} S(k,j) \\ &= f_{i,i-(p+1)}^{'p} S(i-(p+1),j) + f_{i,i-1}^{'p} S(i-1,j) + f_{i,i}^{'p} S(i,j) \\ &= -S(i-(p+1),j) - S(i-1,j) + S(i,j) = (h_{i,j}^p)_{1 \leq i,j \leq n}. \end{split}$$

So, we get the result.

**Corollary 5.** For  $1 \le t \le n$ ,

$$S(n,t) = \sum_{i=t}^{n} f^{P}(n-i+1) \left( \frac{1}{t!} \sum_{l=0}^{t-1} (-1)^{l} \binom{t}{l} \left( (t-1)^{i} - (t-1)^{i-1} - (t-1)^{i-(p+1)} \right) \right).$$

*Proof.* For i > p + 1, by Definition 5 and relation (1), we have

$$h_{it}^{p} = \frac{1}{t!} \sum_{l=0}^{t-1} (-1)^{l} \binom{t}{l} \left( (t-1)^{i} - (t-1)^{i-1} - (t-1)^{i-(p+1)} \right).$$

On the other hand,  $S(n,t) = \sum_{k=1}^{t} f_{nk}^{p} h_{kt}^{p}$ , So, we get

$$S(n,t) = \sum_{i=t}^{n} f^{p}(n-i+1) \left( \frac{1}{t!} \sum_{l=0}^{t-1} (-1)^{l} {t \choose l} \left( (t-1)^{i} - (t-1)^{i-1} - (t-1)^{i-(p+1)} \right) \right).$$

**Lemma 2.** Let  $\zeta_{n-1}(2)$  be the Stirling matrix. Then,

 $H_n^p = L_n^p([1] \oplus \zeta_{n-1}(2)).$ 

*Proof.* Suppose  $C_n^p = [c_{ij}^p] = L_n^p([1] \oplus \zeta_{n-1}(2))$ . We prove that  $c_{ij}^p = h_{ij}^p$ . For i = 1, we have

$$l_{11}^p = 1 = h_{11}^p, \ l_{21}^p = 0 = h_{21}^p, \ l_{22}^p = 1 = h_{22}^p.$$

So, for i = 1 and 2, we obtain  $c_{ij}^p = h_{ij}^p$ . For  $i \ge 3$ ,

$$c_{ij}^{p} = \sum_{l=j-1}^{i-1} \left[ \binom{i-1}{l} S(l,j-1) - \binom{i-2}{l} S(l,j-1) - \binom{i-(p+2)}{l} S(l,j-1) \right].$$

Hence, by the relation (1), we get

$$c_{ij}^{p} = S(i,j) - S(i-1,j) + S(i-(p+1),j).$$

Therefore,  $c_{ij}^P = h_{ij}^p$ .

Using Lemma 2, we have the following corollary.

**Corollary 6.** For  $n \ge 2$ ,  $\zeta_n(2) = F_n^p L_n^p([1] \oplus \zeta_{n-1}(2))$ .

169

| Γ | ] |  |
|---|---|--|
|   |   |  |
|   |   |  |

## 5 Factorization of the *t*-extension of the *p*-Fibonacci matrix

In this section, for  $t \ge 2$ , first we obtain the inverse of the *t*-extension of the *p*-Fibonacci matrix  $F_{(t,n)}^p$ . Then, by this we give a factorization of it.

**Theorem 4.** For the inverse of the t-extension of the p-Fibonacci matrix, denoted by  $(F_{(t,n)}^p)^{-1} = [f_{(t,ij)}'^p]$ , we have

$$f_{(t,ij)}^{'p} = \begin{cases} 1, & \text{if } i = j, \\ -t, & \text{if } j = i - 1, \\ -1, & \text{if } j = i - (p+1), \\ 0, & \text{otherwise.} \end{cases}$$

*Proof.* To find the inverse of the *t*-extension of the *p*-Fibonacci matrix, we define the  $n \times n$  matrix  $U_{(t,n)}^p = [u_{t,ij}^p]$  as follows:

$$u_{t,ij}^{p} = \begin{bmatrix} f^{p}(t,1) & 0 & 0 & \cdots & 0\\ f^{p}(t,2) & 1 & 0 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ f^{p}(t,n) & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Clearly,  $U_{(t,n)}^p$  is invertible and

$$(U_{(t,n)}^{p})^{-1} = \begin{bmatrix} f^{P}(t,1) & 0 & 0 & \cdots & 0 \\ -f^{P}(t,2) & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \\ -f^{P}(t,n) & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

Hence,

$$F_{(t,n)}^{p} = U_{(t,n)}^{p} \times (I_{1} \oplus U_{(t,n-1)}^{p}) \times (I_{2} \oplus U_{(t,n-2)}^{p}) \times \cdots \times (I_{n-2} \oplus U_{(2,2)}^{p}),$$

where  $I_j$  is an identity matrix. Since  $(I_k \oplus U_{(t,n-k)}^p)^{-1} = I_k \oplus (U_{(t,n-k)}^p)^{-1}$ , we have

$$(F_{(t,n)}^p)^{-1} = (I_{n-2} \oplus (U_{(t,2)}^p)^{-1}) \times \cdots \times (I_1 \oplus (U_{(t,n-1)}^p)^{-1}) \times (U_{(t,n)}^p)^{-1}.$$

Therefore,

$$f_{(t,ij)}^{'p} = \begin{cases} 1, & \text{if } i = j, \\ -t, & \text{if } j = i - 1, \\ -1, & \text{if } j = i - (p+1), \\ 0, & \text{otherwise.} \end{cases}$$

**Example 1.** For p = 2 and n = 4, we have

$$F_{(t,4)}^{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ t & 1 & 0 & 0 \\ t^{2} & t & 1 & 0 \\ t^{3} & t^{2} & t & 1 \end{bmatrix}, \qquad U_{(t,4)}^{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ t & 1 & 0 & 0 \\ t^{2} & 0 & 1 & 0 \\ t^{3} & 0 & 0 & 1 \end{bmatrix},$$
$$I_{1} \oplus U_{(t,3)}^{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & t & 1 & 0 \\ 0 & t^{2} & 0 & 1 \end{bmatrix}, \qquad I_{2} \oplus U_{(t,2)}^{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ t^{3} & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & t & 1 \end{bmatrix}.$$

Then,

$$F_{(t,4)}^2 = U_{(t,4)}^2 (I_1 \oplus U_{(t,3)}^2) (I_2 \oplus U_{(t,2)}^2).$$

So, for  $t \ge 2$ ,

$$(F_{(t,4)}^2)^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -t & 1 & 0 & 0 \\ 0 & -t & 1 & 0 \\ -1 & 0 & -t & 1 \end{bmatrix}.$$

In the following, we obtain a factorization of the t-extension of the p-Fibonacci matrix. First, we introduce the matrix  $L_{(t,n)}^p$ .

**Definition 6.** The  $n \times n$  matrix  $L_{(t,n)}^p = [l_{t,ij}^p]$  is defined as:

$$l_{t,ij}^{p} = \binom{i-1}{j-1} - t\binom{i-2}{j-1} - \binom{i-(p+2)}{j-1}.$$

By the above information, we prove the following theorem.

**Theorem 5.** For the Pascal matrix  $P_n$ , we have  $P_n = F_{(t,n)}^p L_{(t,n)}^p$ .

*Proof.* The matrix  $F_{(t,n)}^p$  is invertible. If we get  $(F_{(t,n)}^p)^{-1}P_n = L_{(t,n)}^p$ , then the theorem is proved. Let  $(F_{(t,n)}^p)^{-1}P_n = B_{(t,n)}$  where  $B_{(t,n)} = (b_{i,j})_{1 \le i,j \le n}$ , i.e.,

$$b_{i,j} = \sum_{k=j}^{l} f_{(t,ik)}^{'p} P_{k,j}.$$

Since  $(F_n^p)^{-1}$  and  $P_n$  are lower triangular matrices, by the definition of  $(F_n^p)^{-1}$ , we have

$$b_{i,j} = \sum_{k=j}^{i} f_{(t,ik)}^{'p} \binom{k-1}{j-1}$$
  
=  $f_{(t,ii-(p+1))}^{'p} \binom{i-(p+2)}{j-1} + f_{(t,ii-1)}^{'p} \binom{i-1}{j-1} \binom{i-2}{j-1} + f_{(t,ii)}^{'p} \binom{i-1}{j-1}$   
=  $\binom{i-1}{j-1} - t\binom{i-2}{j-1} - \binom{i-(p+2)}{j-1} = (l_{t,ij})_{1 \le i,j \le n}.$ 

#### Acknowledgements

The authors would like to thank the referee for helpful comments and suggestions.

#### References

- [1] M. Basu, B. Prasad, *Coding theory on the* (m,t)-*extension of the Fibonacci p-numbers*, Discrete Math. Algorithms Appl. **3** (2011) 259–267.
- [2] R. Brawer, M. Pirovino, *The Linear algebra of the Pascal matrix*, Linear Algebra Appl. 174 (1992) 13–23.
- [3] R.A. Brualdi, Introductory Combinatorics, 2nd Ed. Elsevier, Amsterdam, (1991).
- [4] S. Falcon, The k-Fibonacci matrix and the Pascal matrix, Cen. Eur. J. Math. 9 (2011) 1403–1410.
- [5] M. Hashemi, E. Mehraban, On the generalized order 2– Pell sequence of some classes of groups, Commun. Algebra 46 (2018) 4104–4119.
- [6] E. G. Kocert, N. Tuglub, A. Stakhovc, On the m-extension of the Fibonacci and Lucus p-numbers, Chaos Solitons Fractals 40 (2009) 1890–1906.
- [7] G.Y. Lee, J.S. kim, *The linear algebra of the k-Fibonacci matrix*, Linear Algebra Appl. **373** (2003) 75–87.
- [8] G.Y. Lee, J.S. kim, S.H. Cho, Some combinatorial identities via Fibonacci numbers, Discrete Appl. Math. 130 (2003) 527–534.
- [9] G.Y. Lee, J.S. kim, S.G. Lee, *Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices*, Fibonacci Quart. **40** (2002) 203–211.
- [10] B. Prasad, A New Gaussian Fibonacci Matrices and its applications, J. Algebra Relat. Top. 7 (2019) 65–72.
- [11] D. Tasci, N. Tuglu, M. Asci, On Fibo-Pascal matrix involving k-Fibonacci and k-Pell matrices, Arab. J. Sci. Eng. 36 (2011) 1031–1037.
- [12] A.P. Stakhov, Fibonacci Matrices, a Generalization of the Cassini Formula And New Coding Theory, Chaos Solitons Fractals 30 (2006) 56–66.