# Factorization of the $t$-extension of the $p$-Fibonacci and the Pascal matrices 

Mansour Hashemi, Elahe Mehraban*<br>Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran<br>Email(s): m_hashemi@guilan.ac.ir, e.mehraban.math@gmail.com


#### Abstract

In this paper, we introduce the $t$-extension of the $p$-Fibonacci matrix and give a Factorization of the Pascal matrix involving the $t$-extension of the $p$-Fibonacci matrix. Also, we obtain some results on the relations between the Stirling matrix of the second kind and the 1 -extension of the $p$-Fibonacci matrix.


Keywords: Pascal matrix, $t$-extension of the $p$-Fibonacci matrix, factorization of a matrix.
AMS Subject Classification 2010: 15A36, 11C20, 11B39.

## 1 Introduction

The Fibonacci sequence and generalized Fibonacci sequence are famous sequences in mathematics. Many authors have studied these sequences (see $[1,5,10]$ ). The Fibonacci sequence is defined by the recurrence relation $f_{n}=f_{n-1}+f_{n-2}, n \geq 3$, with the initial values $f_{1}=f_{2}=1$. This sequence has been extended in many ways. Two such extensions that will be used in this paper are the p-Fibonacci sequence and the $t$-extension of the $p$-Fibonacci sequence (see [6,12]). For $p \geq 0$, the p-Fibonacci sequence $f^{p}(n)$, defined by the following relation:

$$
f^{p}(n)=f^{p}(n-1)+f^{p}(n-p-1), \quad n>p+1
$$

with initial terms

$$
f^{p}(1)=f^{p}(2)=\cdots=f^{p}(p)=f^{p}(p+1)=1 .
$$

[^0](c) 2022 University of Guilan
http://jmm.guilan.ac.ir

Definition 1. For $t, p \geq 1$, the $t$-extension of the $p$-Fibonacci sequence $\left\{f^{p}(t, n)\right\}_{-\infty}^{\infty}$ is given by the following recurrence relation:

$$
f^{p}(t, n)= \begin{cases}0, & n<1 \\ 1, & n=1 \\ t f^{p}(t, n-1)+f^{p}(t, n-p-1), & n>1\end{cases}
$$

For example if $t=1$ and $p=2$, we have $f^{2}(1, n)=f^{2}(1, n-1)+f^{2}(1, n-3)$ and $\left\{f^{2}(1, n)\right\}_{-\infty}^{\infty}=$ $\{\ldots, 0,1,1,1,2,3,4,6,9, \ldots\}$.

The $n \times n$ lower triangular Pascal matrix, denoted by $P_{n}=\left[p_{i j}\right]$, is defined as follows [2]:

$$
p_{i j}= \begin{cases}\binom{i-1}{j-1}, & \text { if } i \geq j \\ 0, & \text { otherwise }\end{cases}
$$

Now, we define the $n \times n t$-extension of the $p$-Fibonacci matrix $(p \geq 2)$, denoted by $F_{(t, n)}^{p}=\left[f_{(t, i j)}^{p}\right]$, with $f_{(t, i j)}^{p}=f^{p}(t, i-j+1)$. For example,

$$
F_{(1,8)}^{2}=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
3 & 2 & 1 & 1 & 1 & 0 & 0 & 0 \\
4 & 3 & 2 & 1 & 1 & 1 & 0 & 0 \\
6 & 4 & 3 & 2 & 1 & 1 & 1 & 0 \\
9 & 6 & 4 & 3 & 2 & 1 & 1 & 1
\end{array}\right] .
$$

The set of all $n \times n$ matrices with real entries is denoted by $M_{n}$. Any matrix $B \in M_{n}$ of the form $B=$ $A^{*} A, A \in M_{n}$ may be written as $B=L L^{*}$ where $L \in M_{n}$ is a lower triangular matrix with nonnegative diagonal entries. The factorization of the matrix $B=L L^{*}$ is unique if $A$ is nonsingular and $A^{*}$ is the transpose of it. This is called the Cholesky factorization of $B$. In particular, a matrix $B$ is positive definite if and only if there exists a nonsingular lower triangular matrix $L \in M_{n}$ with positive diagonal entries such that $B=L L^{*}$. If $B$ is a real matrix, $L$ may be taken to be real.

For $n, k \in \mathbb{N}$ and $n \geq k$, the Stirling number of the second kind $S(n, k)$ is defined as follows (see [3])

$$
\begin{equation*}
S(n, k)=\frac{1}{k!} \sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i}(k-i)^{n} . \tag{1}
\end{equation*}
$$

Definition 2. The Stirling matrix of the second kind, denoted by $\zeta_{n}(2)=\left[t_{i j}\right]$, is defined by:

$$
\boldsymbol{l}_{i j}= \begin{cases}S(i, j), & i \geq j, \\ 0, & \text { otherwise }\end{cases}
$$

The Pascal matrix and its factorizations were studied by many authors (see [4, 7, 11]). Also, in [8, 9], the authors gave some results about the $p$-Fibonacci matrix for $p=1$. Here, for $t=1, p \geq 2$, we consider
the $t$-extension of the $p$-Fibonacci matrix and define the Pascal matrix. Then, in Section 2, we obtain a Factorization of the Pascal matrix. In Section 3, using the product of the 1 -extension of the $p$-Fibonacci matrix and its transpose, we give the Cholesky factorization of $S_{n}^{p}$. Section 4 is devoted to obtaining some results on the relations between the Stirling matrix of the second kind and 1 -extension of the $p$-Fibonacci matrix. In Section 5, we will generalize the notion of the $t$-extension of the $p$-Fibonacci matrix $(t \geq 2)$ and study some properties of the $t$-extension of the $p$-Fibonacci matrix.

Remark 1. Throughout this paper, we set $f^{p}(n):=f^{p}(1, n)$ and $F_{n}^{p}:=F_{(1, n)}^{p}$.

## 2 Factorization of the Pascal matrix

In this section, we obtain the inverse of the 1-extension of the $p$-Fibonacci matrix $F_{n}^{p}$. Also, we give a factorization of the 1 -extension of the $p$-Fibonacci matrix. We first get the inverse of the 1 -extension of the $p$-Fibonacci matrix. For this, we need to define the matrix $U_{n}^{p}$. The $n \times n$ matrix $U_{n}^{p}=\left[u_{i j}^{p}\right]$ is defined by:

$$
u_{i j}^{p}= \begin{cases}f^{p}(i), & \text { if } j=1 \\ 1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

that is

$$
U_{n}^{p}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
f^{P}(2) & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \\
f^{P}(n) & 0 & 0 & \ldots & 1
\end{array}\right] .
$$

By using a simple calculation, we get

$$
F_{n}^{p}=U_{n}^{p} \times\left(I_{1} \oplus U_{n-1}^{p}\right) \times\left(I_{2} \oplus U_{n-2}^{p}\right) \times \cdots \times\left(I_{n-2} \oplus U_{2}^{p}\right),
$$

where $I_{j}$ is an $j \times j$ identity matrix. For example,

$$
\begin{aligned}
F_{4}^{2} & =U_{4}^{2} \times\left(I_{1} \oplus U_{3}^{2}\right) \times\left(I_{2} \oplus U_{2}^{2}\right) \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
2 & 1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

Hence, we have

$$
\left(U_{n}^{p}\right)^{-1}=\left[\begin{array}{ccccc}
f^{p}(1) & 0 & 0 & \ldots & 0 \\
-f^{p}(2) & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \\
-f^{p}(n) & 0 & 0 & \ldots & 1
\end{array}\right],
$$

and

$$
\left(I_{k} \oplus U_{n-k}^{p}\right)^{-1}=I_{k} \oplus\left(U_{n-k}^{p}\right)^{-1} .
$$

So, we get

$$
\begin{equation*}
\left(F_{n}^{p}\right)^{-1}=\left(I_{n-2} \oplus\left(U_{2}^{p}\right)^{-1}\right) \times \cdots \times\left(I_{1} \oplus\left(U_{n-1}^{p}\right)^{-1}\right) \times\left(U_{n}^{p}\right)^{-1} . \tag{2}
\end{equation*}
$$

From (2), we have $\left(F_{n}^{p}\right)^{-1}=\left[f_{i j}^{\prime p}\right]_{n \times n}$, where

$$
f_{i j}^{\prime p}= \begin{cases}1, & \text { if } i=j  \tag{3}\\ -1, & \text { if } j=i-1 \text { or } j=i-(p+1) \\ 0, & \text { otherwise }\end{cases}
$$

For example

$$
\left(F_{7}^{3}\right)^{-1}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 1
\end{array}\right] .
$$

Here, we give a factorization of the 1 -extension of the $p$-Fibonacci matrix. First, we introduce the matrix $L_{n}^{p}$.

Definition 3. Entries of the $n \times n$ matrix $L_{n}^{p}=\left[l_{i j}^{p}\right]$ are defined as

$$
\begin{equation*}
l_{i j}^{p}=\binom{i-1}{j-1}-\binom{i-2}{j-1}-\binom{i-(p+2)}{j-1} \tag{4}
\end{equation*}
$$

For $i, j \geq 2$, using relation (4), we can write $l_{i j}^{p}=l_{i-1, j-1}^{p}+l_{i-1, j}^{p}$, where $l_{11}^{p}=1, l_{1 j}^{p}=0, j \geq 2$.
For $p=2$ and $n=5$, we have

$$
L_{5}^{2}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
-1 & 1 & 2 & 1 & 0 \\
-1 & 0 & 3 & 3 & 1
\end{array}\right]
$$

By the above information, we prove the following theorem.
Theorem 1. For the Pascal matrix $P_{n}$, we have $P_{n}=F_{n}^{p} L_{n}^{p}$.
Proof. The matrix $F_{n}^{p}$ is invertible. If we get $\left(F_{n}^{p}\right)^{-1} P_{n}=L_{n}^{p}$, then Theorem is proved. Let $\left(F_{n}^{p}\right)^{-1} P_{n}=B_{n}$ where $B_{n}=\left(b_{i, j}\right)_{1 \leq i, j \leq n}$, i.e.,

$$
b_{i, j}=\sum_{k=j}^{i} f_{i, k}^{\prime p} P_{k, j} .
$$

Since $\left(F_{n}^{p}\right)^{-1}$ and $P_{n}$ are lower triangular matrices, by the definition of $\left(F_{n}^{p}\right)^{-1}$, we have

$$
\begin{aligned}
b_{i, j} & =\sum_{k=j}^{i} f_{i, k}^{\prime p}\binom{k-1}{j-1} \\
& =f_{i, i-(p+1)}^{\prime p}\binom{i-(p+2)}{j-1}+f_{i, i-1}^{\prime p}\binom{i-2}{j-1}+f_{i, i}^{\prime p}\binom{i-1}{j-1} \\
& =\binom{i-1}{j-1}-\binom{i-2}{j-1}-\binom{i-(p+2)}{j-1}=\left(l_{i, j}\right)_{1 \leq i, j \leq n} .
\end{aligned}
$$

Corollary 1. For $s, n \in \mathbb{N}$,

$$
\binom{n-1}{s-1}=P_{n, s}=\sum_{k=s}^{n} f_{n, k}^{p} l_{k, s}=f_{n, 1}^{p} l_{1, s}+f_{n, 2}^{p} l_{2, s}+\cdots+f_{n, n-1}^{p} l_{n-1, s}+f_{n, n}^{p} l_{n, s} .
$$

For $s=1$, we have

$$
P_{n, 1}=\sum_{k=s}^{n} f_{n, k}^{p} l_{k, s}=f_{n, 1}^{p} l_{1,1}+f_{n, 2}^{p} l_{2,1}+\cdots+f_{n, n-1}^{p} l_{n-1,1}+f_{n, n}^{p} l_{n, 1} .
$$

Proof. From Theorem 1, we have $P_{n}=F_{n}^{p} L_{n}^{p}$. Hence,

$$
P_{n}=l_{11}+f^{p}(n-1) l_{21}+\cdots+f^{p}(2) l_{n-1,1}+f^{p}(1) l_{n 1} .
$$

Let $s=1$. Since

$$
l_{i 1}=\left\{\begin{align*}
1, & \text { if } i=1  \tag{5}\\
0, & \text { if } i \leq p+1 \\
-1, & \text { if } i \leq p+1
\end{align*}\right.
$$

we have the result.
Now, in the following theorem, we obtain the inverse of the matrix $L_{n}^{p}=\left[l_{i j}^{p}\right]$.
Corollary 2. Let $\left(L_{n}^{p}\right)^{-1}=\left[l_{i j}^{p}\right]$. Then

$$
l_{i j}^{p}=\sum_{s=j}^{i}\binom{i-1}{s-1} \times(-1)^{i+s} f^{p}(s) .
$$

Proof. Since $P_{n}^{-1} F_{n}^{p}=\left(L_{n}^{p}\right)^{-1}$, we have the result.
Corollary 3. For $p=2$, we get

$$
f^{2}(n)=1+\sum_{j=4}^{n}(-1)^{j}\binom{n-1}{j-1} f^{2}(j-1) .
$$

Proof. We have $f^{2}(n)=\sum_{j=1}^{n} p_{n j} l_{j 1}^{\prime 2}$. Hence, from Corollary 2,

$$
l_{11}^{\prime 2}=1, l_{21}^{\prime 2}=l_{31}^{\prime 2}=0, l_{41}^{\prime 2}=1
$$

and $l_{i 1}^{\prime 2}=(-1)^{i} f^{2}(i-1)$. Consequently,

$$
f^{2}(n)=p_{n 1}+\sum_{j=4}^{n}(-1)^{j} f^{2}(j-1) p_{n j}=1+\sum_{j=4}^{n}(-1)^{j}\binom{n-1}{j-1} f^{2}(j-1) .
$$

## 3 The Cholesky factorization of a symmetric 1-extension of the p-Fibonacci matrix

Here, we define a symmetric 1-extension of the $p$-Fibonacci matrix $S_{n}^{p}$. Then using the prouduct of the 1-extension of the p-Fibonacci matrix $F_{n}^{p}$ and its transpose $F_{n}^{p}$, we get the Cholesky factorization of $S_{n}^{p}$. First, we need the following definition.

Definition 4. A symmetric 1-extension of the p-Fibonacci matrix, denoted by $S_{n}^{p}=\left[s(p)_{i j}\right]$ for $i, j=$ $1,2, \ldots, n$, is defined as follows:

$$
s(p)_{i j}=s(p)_{j i}= \begin{cases}\sum_{k=1}^{i}\left(f^{p}(n)\right)^{2}, & \text { if } i=j  \tag{6}\\ s(p)_{i, j-1}+s(p)_{i, j-(p+1)}, & \text { if } i+1 \leq j\end{cases}
$$

where $j \leq p+1, s(p)_{i, j}=0$.
For example,

$$
S_{10}^{3}=\left[\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 2 & 3 & 4 & 5 & 7 & 10 \\
1 & 2 & 2 & 2 & 3 & 5 & 7 & 9 & 12 & 17 \\
1 & 2 & 3 & 3 & 4 & 6 & 9 & 12 & 16 & 22 \\
1 & 2 & 3 & 4 & 5 & 7 & 10 & 14 & 19 & 26 \\
2 & 3 & 4 & 5 & 8 & 11 & 15 & 20 & 28 & 39 \\
3 & 5 & 6 & 7 & 11 & 17 & 23 & 30 & 41 & 58 \\
4 & 7 & 9 & 10 & 15 & 23 & 33 & 43 & 58 & 81 \\
5 & 9 & 12 & 14 & 20 & 30 & 43 & 58 & 78 & 108 \\
7 & 12 & 16 & 19 & 28 & 41 & 58 & 78 & 107 & 148 \\
10 & 17 & 22 & 26 & 39 & 58 & 81 & 108 & 148 & 207
\end{array}\right] .
$$

Remark 2. By Definition 4, we have $\binom{n-1}{s-1}=p_{n s}=f^{p}(n)$,

$$
\begin{aligned}
& s(p)_{1 j}=f^{p}(j), \quad j \geq 1, \\
& s(p)_{2 j}=f^{p}(2) f^{P}(j)+f^{p}(1) f^{p}(j-1), \quad j \geq 2, \\
& s(p)_{3 j}=f^{p}(3) f^{p}(j)+f^{p}(2) f^{p}(j-1)+f^{p}(1) f^{p}(j-2), \quad j \geq 3 .
\end{aligned}
$$

So, for $j \geq i$, by an induction on $i$, we get

$$
\begin{equation*}
s(p)_{i j}=f^{p}(i) f^{p}(j)+f^{p}(i-1) f^{p}(j-1)+f^{p}(i-2) f^{p}(j-2)+\cdots+f^{p}(1) f^{p}(j-i+1) . \tag{7}
\end{equation*}
$$

Lemma 1. For $j \geq i, s(p)_{i, j}=s(p)_{i-1, j}+s(p)_{i-(p+1), j}+f^{p}(j-i+1)$.
Proof. By the relation (7), we have

$$
\begin{aligned}
s(p)_{i-1, j}= & f^{p}(i-1) f^{p}(j)+f^{p}(i-2) f^{p}(j-1)+\cdots+f^{p}(1) f^{p}(j-i) . \\
s(p)_{i-(p+1), j}= & f^{p}(i-(p+1)) f^{p}(j)+f^{p}(i-(p+1)-1) f^{p}(j-1)+\cdots \\
& +f^{p}(1) f^{p}(j-i+(p+2))
\end{aligned}
$$

Hence,

$$
\begin{aligned}
s(p)_{i-1, j}+s(p)_{i-(p+1), j}= & f^{p}(i-1) f^{p}(j)+f^{p}(i-2) f^{p}(j-1)+\cdots+f^{p}(1) f^{p}(j-i) \\
& +f^{p}(i-(p+1)) f^{p}(j)+f^{p}(i-(p+1)-1) f^{p}(j-1)+\cdots \\
& +f^{p}(1) f^{p}(j-i+(p+2)) \\
= & \left(f^{p}(i-1)+f^{p}(i-(p+1))\right) f^{p}(j)+\left(f^{p}(i-2)\right. \\
& \left.+f^{p}(i-(p+1)-1)\right) f^{p}(j-1)+\cdots+\left(f^{p}(j-i)\right. \\
& \left.+f^{p}(j-i+(p+2))\right) f^{p}(1) .
\end{aligned}
$$

By Definition 1, we have

$$
f^{p}(n)=f^{p}(n-1)+f^{p}(n-p-1), f^{p}(1)=f^{p}(2)=\cdots=f^{p}(p)=f^{p}(p+1)=1 .
$$

Therefore $s(p)_{i-1, j}+s(p)_{i-(p+1), j}+f^{p}(j-i+1)=s(p)_{i j}$.
Theorem 2. For $n \in \mathbb{N}$, the Cholesky factorization of $S_{n}^{p}$ is given by $S_{n}^{p}=F_{n}^{p}\left(F_{n}^{p}\right)^{T}$.
Proof. By the relations (2) and (3), it is sufficient that to prove $\left(F_{n}^{p}\right)^{-1} S_{n}^{p}=\left(F_{n}^{p}\right)^{T}$. Let $X=\left[x(p)_{i j}\right]=$ $\left(F_{n}^{p}\right)^{-1} S_{n}^{p}$. We have

$$
x(p)_{i j}=\sum_{k=1}^{i} f_{i, k}^{\prime} S_{k, j}=f_{i, i-(p+1)}^{\prime} S_{i-(p+1), j}+f_{i, i-1}^{\prime} S_{i-1, j}+f_{i, i}^{\prime} S_{i, i},
$$

and by (3)

$$
x(p)_{i j}=-S_{i-(p+1), j}-S_{i-1, j}+S_{i, i}= \begin{cases}f^{p}(j), & \text { if } i=1, \\ f^{p}(j-1), & \text { if } i=2, \\ f^{p}(j+i-1), & \text { otherwise } .\end{cases}
$$

Furthermore $X^{T}=F_{n}^{p}$. This completes the proof.
By Theorem 2, the proof of the following corollary is trivial. So, we omit the proof.

Corollary 4. For $\left(S_{n}^{p}\right)^{-1}=\left[s^{\prime}(p)_{i j}\right]$ where $\left(S_{n}^{p}\right)^{-1}=\left(F_{n}^{P} \times\left(F_{n}^{p}\right)^{T}\right)^{-1}$, we have
(i) if $i=j$, then

$$
s^{\prime}(p)_{i i}= \begin{cases}1, & \text { if } i=n \\ 2, & \text { if } n-p \leq i \leq n-1 \\ 3, & \text { otherwise }\end{cases}
$$

(ii) For $i \neq j$, we get

$$
s^{\prime}(p)_{i j}=s^{\prime}(p)_{j i}=\left\{\begin{aligned}
-1, & \text { if } j=i+1 \text { or } j=p+i+1 \\
1, & \text { if } j=i+p
\end{aligned}\right.
$$

For example,

$$
\left(S_{8}^{3}\right)^{-1}=\left[\begin{array}{cccccccc}
3 & -1 & 0 & 1 & -1 & 0 & 0 & 0 \\
-1 & 3 & -1 & 0 & 1 & -1 & 0 & 0 \\
0 & -1 & 3 & -1 & 0 & 1 & -1 & 0 \\
1 & 0 & -1 & 3 & -1 & 0 & 1 & -1 \\
-1 & 1 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 1 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 0 & 0 & -1 & 1
\end{array}\right]
$$

## 4 The Stirling matrix of the second kind

We get some results on the relationships between the Stirling matrix of the second kind and the 1 extension of the $p$-Fibonacci matrix. For this, using the Stirling number of the second kind, we start with the following definition.

Definition 5. A $n \times n$ matrix $H_{n}^{p}=\left[h_{i j}^{p}\right]$ is defined as follows:

$$
h_{i j}^{p}=S(i, j)-S(i-1, j)-S(i-(p+1), j),
$$

where $S(m, k)$ is the Stirling number of the second kind.
By Definition 5, we see that $h_{11}^{p}=1, h_{1 j}^{p}=0, j \geq 2, h_{2 j}^{p}=0, j \neq 2$ and

$$
h_{i, j}^{p}=h_{i-1, j-1}^{p}+j h_{i-1, j}^{p} .
$$

Theorem 3. For the Stirling matrix $\zeta_{n}(2)$ and $F_{n}^{p}$, we have $\zeta_{n}(2)=F_{n}^{p} H_{n}^{p}$.
Proof. The matrix $F_{n}^{p}$ is invertible. If we get $\left(F_{n}^{p}\right)^{-1} \zeta_{n}(2)=H_{n}^{p}$, then Theorem is proved. Let $\left(F_{n}^{p}\right)^{-1} \zeta_{n}(2)=$ $C_{n}$ where $C_{n}=\left(c_{i, j}\right)_{1 \leq i, j \leq n}$, i.e.,

$$
c_{i, j}=\sum_{k=j}^{i} f_{i, k}^{\prime p} S(k, j) .
$$

Since $\left(F_{n}^{p}\right)^{-1}$ and $\zeta_{n}(2)$ are lower triangular matrices, by the defniton of $\left(F_{n}^{p}\right)^{-1}$, we have

$$
\begin{aligned}
c_{i, j} & =\sum_{k=j}^{i} f_{i, k}^{\prime p} S(k, j) \\
& =f_{i, i-(p+1)}^{\prime p} S(i-(p+1), j)+f_{i, i-1}^{\prime p} S(i-1, j)+f_{i, i}^{\prime p} S(i, j) \\
& =-S(i-(p+1), j)-S(i-1, j)+S(i, j)=\left(h_{i, j}^{p}\right)_{1 \leq i, j \leq n} .
\end{aligned}
$$

So, we get the result.
Corollary 5. For $1 \leq t \leq n$,

$$
S(n, t)=\sum_{i=t}^{n} f^{P}(n-i+1)\left(\frac{1}{t!} \sum_{l=0}^{t-1}(-1)^{l}\binom{t}{l}\left((t-1)^{i}-(t-1)^{i-1}-(t-1)^{i-(p+1)}\right)\right) .
$$

Proof. For $i>p+1$, by Definition 5 and relation (1), we have

$$
h_{i t}^{p}=\frac{1}{t!} \sum_{l=0}^{t-1}(-1)^{l}\binom{t}{l}\left((t-1)^{i}-(t-1)^{i-1}-(t-1)^{i-(p+1)}\right)
$$

On the other hand, $S(n, t)=\sum_{k=1}^{t} f_{n k}^{p} h_{k t}^{p}$, So, we get

$$
S(n, t)=\sum_{i=t}^{n} f^{p}(n-i+1)\left(\frac{1}{t!} \sum_{l=0}^{t-1}(-1)^{l}\binom{t}{l}\left((t-1)^{i}-(t-1)^{i-1}-(t-1)^{i-(p+1)}\right)\right) .
$$

Lemma 2. Let $\zeta_{n-1}(2)$ be the Stirling matrix. Then,

$$
H_{n}^{p}=L_{n}^{p}\left([1] \oplus \zeta_{n-1}(2)\right) .
$$

Proof. Suppose $C_{n}^{p}=\left[c_{i j}^{p}\right]=L_{n}^{p}\left([1] \oplus \zeta_{n-1}(2)\right)$. We prove that $c_{i j}^{p}=h_{i j}^{p}$. For $i=1$, we have

$$
l_{11}^{p}=1=h_{11}^{p}, l_{21}^{p}=0=h_{21}^{p}, l_{22}^{p}=1=h_{22}^{p} .
$$

So, for $i=1$ and 2, we obtain $c_{i j}^{p}=h_{i j}^{p}$. For $i \geq 3$,

$$
c_{i j}^{p}=\sum_{l=j-1}^{i-1}\left[\binom{i-1}{l} S(l, j-1)-\binom{i-2}{l} S(l, j-1)-\binom{i-(p+2)}{l} S(l, j-1)\right] .
$$

Hence, by the relation (1), we get

$$
c_{i j}^{p}=S(i, j)-S(i-1, j)+S(i-(p+1), j) .
$$

Therefore, $c_{i j}^{P}=h_{i j}^{p}$.
Using Lemma 2, we have the following corollary.
Corollary 6. For $n \geq 2, \zeta_{n}(2)=F_{n}^{p} L_{n}^{p}\left([1] \oplus \zeta_{n-1}(2)\right)$.

## 5 Factorization of the $t$-extension of the $p$-Fibonacci matrix

In this section, for $t \geq 2$, first we obtain the inverse of the $t$-extension of the $p$-Fibonacci matrix $F_{(t, n)}^{p}$. Then, by this we give a factorization of it.

Theorem 4. For the inverse of the $t$-extension of the $p$-Fibonacci matrix, denoted by $\left(F_{(t, n)}^{p}\right)^{-1}=\left[f_{(t, i j)}^{\prime p}\right]$, we have

$$
f_{(t, i j)}^{\prime p}=\left\{\begin{aligned}
1, & \text { if } i=j, \\
-t, & \text { if } j=i-1 \\
-1, & \text { if } j=i-(p+1), \\
0, & \text { otherwise. }
\end{aligned}\right.
$$

Proof. To find the inverse of the $t$-extension of the $p$-Fibonacci matrix, we define the $n \times n$ matrix $U_{(t, n)}^{p}=$ $\left[u_{t, i j}^{p}\right]$ as follows:

$$
u_{t, i j}^{p}=\left[\begin{array}{ccccc}
f^{p}(t, 1) & 0 & 0 & \cdots & 0 \\
f^{p}(t, 2) & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \\
f^{p}(t, n) & 0 & 0 & \cdots & 1
\end{array}\right]
$$

Clearly, $U_{(t, n)}^{p}$ is invertible and

$$
\left(U_{(t, n)}^{p}\right)^{-1}=\left[\begin{array}{ccccc}
f^{P}(t, 1) & 0 & 0 & \cdots & 0 \\
-f^{P}(t, 2) & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \\
-f^{P}(t, n) & 0 & 0 & \cdots & 1
\end{array}\right]
$$

Hence,

$$
F_{(t, n)}^{p}=U_{(t, n)}^{p} \times\left(I_{1} \oplus U_{(t, n-1)}^{p}\right) \times\left(I_{2} \oplus U_{(t, n-2)}^{p}\right) \times \cdots \times\left(I_{n-2} \oplus U_{(2,2)}^{p}\right),
$$

where $I_{j}$ is an identity matrix. Since $\left(I_{k} \oplus U_{(t, n-k)}^{p}\right)^{-1}=I_{k} \oplus\left(U_{(t, n-k)}^{p}\right)^{-1}$, we have

$$
\left(F_{(t, n)}^{p}\right)^{-1}=\left(I_{n-2} \oplus\left(U_{(t, 2)}^{p}\right)^{-1}\right) \times \cdots \times\left(I_{1} \oplus\left(U_{(t, n-1)}^{p}\right)^{-1}\right) \times\left(U_{(t, n)}^{p}\right)^{-1} .
$$

Therefore,

$$
f_{(t, i j)}^{p}= \begin{cases}1, & \text { if } i=j \\ -t, & \text { if } j=i-1 \\ -1, & \text { if } j=i-(p+1) \\ 0, & \text { otherwise }\end{cases}
$$

Example 1. For $p=2$ and $n=4$, we have

$$
\begin{aligned}
& F_{(t, 4)}^{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
t & 1 & 0 & 0 \\
t^{2} & t & 1 & 0 \\
t^{3} & t^{2} & t & 1
\end{array}\right], \quad U_{(t, 4)}^{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
t & 1 & 0 & 0 \\
t^{2} & 0 & 1 & 0 \\
t^{3} & 0 & 0 & 1
\end{array}\right], \\
& I_{1} \oplus U_{(t, 3)}^{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & t & 1 & 0 \\
0 & t^{2} & 0 & 1
\end{array}\right], \quad I_{2} \oplus U_{(t, 2)}^{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & t & 1
\end{array}\right] .
\end{aligned}
$$

Then,

$$
F_{(t, 4)}^{2}=U_{(t, 4)}^{2}\left(I_{1} \oplus U_{(t, 3)}^{2}\right)\left(I_{2} \oplus U_{(t, 2)}^{2}\right) .
$$

So, for $t \geq 2$,

$$
\left(F_{(t, 4)}^{2}\right)^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-t & 1 & 0 & 0 \\
0 & -t & 1 & 0 \\
-1 & 0 & -t & 1
\end{array}\right] .
$$

In the following, we obtain a factorization of the $t$-extension of the p-Fibonacci matrix. First, we introduce the matrix $L_{(t, n)}^{p}$.
Definition 6. The $n \times n$ matrix $L_{(t, n)}^{p}=\left[l_{t, i j}^{p}\right]$ is defined as:

$$
l_{t, i j}^{p}=\binom{i-1}{j-1}-t\binom{i-2}{j-1}-\binom{i-(p+2)}{j-1} .
$$

By the above information, we prove the following theorem.
Theorem 5. For the Pascal matrix $P_{n}$, we have $P_{n}=F_{(t, n)}^{p} L_{(t, n)}^{p}$.
Proof. The matrix $F_{(t, n)}^{p}$ is invertible. If we get $\left(F_{(t, n)}^{p}\right)^{-1} P_{n}=L_{(t, n)}^{p}$, then the theorem is proved. Let $\left(F_{(t, n)}^{p}\right)^{-1} P_{n}=B_{(t, n)}$ where $B_{(t, n)}=\left(b_{i, j}\right)_{1 \leq i, j \leq n}$, i.e.,

$$
b_{i, j}=\sum_{k=j}^{i} f_{(t, i k)}^{\prime p} P_{k, j} .
$$

Since $\left(F_{n}^{p}\right)^{-1}$ and $P_{n}$ are lower triangular matrices, by the definition of $\left(F_{n}^{p}\right)^{-1}$, we have

$$
\begin{aligned}
b_{i, j} & =\sum_{k=j}^{i} f_{(t, i k)}^{\prime p}\binom{k-1}{j-1} \\
& =f_{(t, i i-(p+1))}^{\prime p}\binom{i-(p+2)}{j-1}+f_{(t, i i-1)}^{\prime p}\left(\binom{i-1}{j-1}\binom{i-2}{j-1}\right)+f_{(t, i i)}^{\prime p}\binom{i-1}{j-1} \\
& =\binom{i-1}{j-1}-t\binom{i-2}{j-1}-\binom{i-(p+2)}{j-1}=\left(l_{t, i j}\right)_{1 \leq i, j \leq n} .
\end{aligned}
$$

## Acknowledgements

The authors would like to thank the referee for helpful comments and suggestions.

## References

[1] M. Basu, B. Prasad, Coding theory on the ( $m, t$ )-extension of the Fibonacci p-numbers, Discrete Math. Algorithms Appl. 3 (2011) 259-267.
[2] R. Brawer, M. Pirovino, The Linear algebra of the Pascal matrix, Linear Algebra Appl. 174 (1992) 13-23.
[3] R.A. Brualdi, Introductory Combinatorics, 2nd Ed. Elsevier, Amsterdam, (1991).
[4] S. Falcon, The k-Fibonacci matrix and the Pascal matrix, Cen. Eur. J. Math. 9 (2011) 1403-1410.
[5] M. Hashemi, E. Mehraban, On the generalized order 2-Pell sequence of some classes of groups, Commun. Algebra 46 (2018) 4104-4119.
[6] E. G. Kocert, N. Tuglub, A. Stakhovc, On the m-extension of the Fibonacci and Lucus p-numbers, Chaos Solitons Fractals 40 (2009) 1890-1906.
[7] G.Y. Lee, J.S. kim, The linear algebra of the k-Fibonacci matrix, Linear Algebra Appl. 373 (2003) 75-87.
[8] G.Y. Lee, J.S. kim, S.H. Cho, Some combinatorial identities via Fibonacci numbers, Discrete Appl. Math. 130 (2003) 527-534.
[9] G.Y. Lee, J.S. kim, S.G. Lee, Factorizations and eigenvalues of Fibonacci and symmertic Fibonacci matrices, Fibonacci Quart. 40 (2002) 203-211.
[10] B. Prasad, A New Gaussian Fibonacci Matrices and its applications, J. Algebra Relat. Top. 7 (2019) 65-72.
[11] D. Tasci, N. Tuglu, M. Asci, On Fibo-Pascal matrix involving k-Fibonacci and k-Pell matrices, Arab. J. Sci. Eng. 36 (2011) 1031-1037.
[12] A.P. Stakhov, Fibonacci Matrices, a Generalization of the Cassini Formula And New Coding Theory, Chaos Solitons Fractals 30 (2006) 56-66.


[^0]:    * Corresponding author.

    Received: 19 January 2021/ Revised: 13 April 2021 / Accepted: 13 May 2021
    DOI: 10.22124/jmm.2021.18678.1597

