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Abstract. In this paper, we introduce the t-extension of the p-Fibonacci matrix and give a Factorization
of the Pascal matrix involving the t-extension of the p-Fibonacci matrix. Also, we obtain some results
on the relations between the Stirling matrix of the second kind and the 1-extension of the p-Fibonacci
matrix.
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1 Introduction

The Fibonacci sequence and generalized Fibonacci sequence are famous sequences in mathematics. Many
authors have studied these sequences (see [1,5,10]). The Fibonacci sequence is defined by the recurrence
relation fn = fn−1 + fn−2,n ≥ 3, with the initial values f1 = f2 = 1. This sequence has been extended
in many ways. Two such extensions that will be used in this paper are the p-Fibonacci sequence and
the t-extension of the p-Fibonacci sequence (see [6, 12]). For p ≥ 0, the p-Fibonacci sequence f p(n),
defined by the following relation:

f p(n) = f p(n−1)+ f p(n− p−1), n > p+1,

with initial terms

f p(1) = f p(2) = · · ·= f p(p) = f p(p+1) = 1.
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Definition 1. For t, p ≥ 1, the t-extension of the p-Fibonacci sequence { f p(t,n)}∞
−∞ is given by the

following recurrence relation:

f p(t,n) =


0, n < 1,
1, n = 1,
t f p(t,n−1)+ f p(t,n− p−1), n > 1.

For example if t = 1 and p = 2, we have f 2(1,n) = f 2(1,n− 1)+ f 2(1,n− 3) and { f 2(1,n)}∞
−∞ =

{. . . ,0,1,1,1,2,3,4,6,9, . . .}.
The n×n lower triangular Pascal matrix, denoted by Pn = [pi j], is defined as follows [2]:

pi j =


(

i−1
j−1

)
, if i≥ j,

0, otherwise.

Now, we define the n×n t-extension of the p-Fibonacci matrix (p≥ 2), denoted by F p
(t,n) = [ f p

(t,i j)], with
f p
(t,i j) = f p(t, i− j+1). For example,

F2
(1,8) =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
2 1 1 1 0 0 0 0
3 2 1 1 1 0 0 0
4 3 2 1 1 1 0 0
6 4 3 2 1 1 1 0
9 6 4 3 2 1 1 1


.

The set of all n× n matrices with real entries is denoted by Mn. Any matrix B ∈ Mn of the form B =
A∗A, A ∈ Mn may be written as B = LL∗ where L ∈ Mn is a lower triangular matrix with nonnegative
diagonal entries. The factorization of the matrix B = LL∗ is unique if A is nonsingular and A∗ is the
transpose of it. This is called the Cholesky factorization of B. In particular, a matrix B is positive definite
if and only if there exists a nonsingular lower triangular matrix L ∈ Mn with positive diagonal entries
such that B = LL∗. If B is a real matrix, L may be taken to be real.

For n, k ∈ N and n≥ k, the Stirling number of the second kind S(n,k) is defined as follows (see [3])

S(n,k) =
1
k!

k−1

∑
i=0

(−1)i
(

k
i

)
(k− i)n. (1)

Definition 2. The Stirling matrix of the second kind, denoted by ζn(2) = [ιi j], is defined by:

ιi j =

{
S(i, j), i≥ j,
0, otherwise.

The Pascal matrix and its factorizations were studied by many authors (see [4,7,11]). Also, in [8,9],
the authors gave some results about the p-Fibonacci matrix for p = 1. Here, for t = 1, p≥ 2, we consider
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the t-extension of the p-Fibonacci matrix and define the Pascal matrix. Then, in Section 2, we obtain a
Factorization of the Pascal matrix. In Section 3, using the product of the 1-extension of the p-Fibonacci
matrix and its transpose, we give the Cholesky factorization of Sp

n . Section 4 is devoted to obtaining some
results on the relations between the Stirling matrix of the second kind and 1-extension of the p-Fibonacci
matrix. In Section 5, we will generalize the notion of the t-extension of the p-Fibonacci matrix (t ≥ 2)
and study some properties of the t-extension of the p-Fibonacci matrix.

Remark 1. Throughout this paper, we set f p(n) := f p(1,n) and F p
n := F p

(1,n) .

2 Factorization of the Pascal matrix

In this section, we obtain the inverse of the 1-extension of the p-Fibonacci matrix F p
n . Also, we give a

factorization of the 1-extension of the p-Fibonacci matrix. We first get the inverse of the 1-extension of
the p-Fibonacci matrix. For this, we need to define the matrix U p

n . The n×n matrix U p
n = [up

i j] is defined
by:

up
i j =


f p(i), if j = 1,
1, if i = j,
0, otherwise,

that is

U p
n =


1 0 0 . . . 0

f P(2) 1 0 . . . 0
...

...
. . .

...
f P(n) 0 0 . . . 1

 .
By using a simple calculation, we get

F p
n =U p

n × (I1⊕U p
n−1)× (I2⊕U p

n−2)×·· ·× (In−2⊕U p
2 ),

where I j is an j× j identity matrix. For example,

F2
4 =U2

4 × (I1⊕U2
3 )× (I2⊕U2

2 )

=


1 0 0 0
1 1 0 0
1 0 1 0
2 0 0 1




1 0 0 0
0 1 0 0
0 1 1 0
0 1 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

=


1 0 0 0
1 1 0 0
1 1 1 0
2 1 1 1

 .
Hence, we have

(U p
n )
−1 =


f p(1) 0 0 . . . 0
− f p(2) 1 0 . . . 0

...
...

. . .
...

− f p(n) 0 0 . . . 1

 ,
and

(Ik⊕U p
n−k)

−1 = Ik⊕ (U p
n−k)

−1.
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So, we get
(F p

n )
−1 = (In−2⊕ (U p

2 )
−1)×·· ·× (I1⊕ (U p

n−1)
−1)× (U p

n )
−1. (2)

From (2), we have (F p
n )−1 = [ f

′p
i j ]n×n, where

f
′p
i j =


1, if i = j,
−1, if j = i−1 or j = i− (p+1),
0, otherwise.

(3)

For example

(F3
7 )
−1 =



1 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 −1 1 0 0 0 0
0 0 −1 1 0 0 0
−1 0 0 −1 1 0 0
0 −1 0 0 −1 1 0
0 0 −1 0 0 −1 1


.

Here, we give a factorization of the 1-extension of the p-Fibonacci matrix. First, we introduce the matrix
Lp

n .

Definition 3. Entries of the n×n matrix Lp
n = [lp

i j] are defined as

lp
i j =

(
i−1
j−1

)
−
(

i−2
j−1

)
−
(

i− (p+2)
j−1

)
. (4)

For i, j ≥ 2, using relation (4), we can write lp
i j = lp

i−1, j−1 + lp
i−1, j, where lp

11 = 1, lp
1 j = 0, j ≥ 2.

For p = 2 and n = 5, we have

L2
5 =


1 0 0 0 0
0 1 0 0 0
0 −1 1 0 0
−1 1 2 1 0
−1 0 3 3 1

 .

By the above information, we prove the following theorem.

Theorem 1. For the Pascal matrix Pn, we have Pn = F p
n Lp

n .

Proof. The matrix F p
n is invertible. If we get (F p

n )−1Pn = Lp
n , then Theorem is proved. Let (F p

n )−1Pn =Bn

where Bn = (bi, j)1≤i, j≤n, i.e.,

bi, j =
i

∑
k= j

f
′p
i,kPk, j.
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Since (F p
n )−1 and Pn are lower triangular matrices, by the definition of (F p

n )−1, we have

bi, j =
i

∑
k= j

f
′p
i,k

(
k−1
j−1

)
= f

′p
i,i−(p+1)

(
i− (p+2)

j−1

)
+ f

′p
i,i−1

(
i−2
j−1

)
+ f

′p
i,i

(
i−1
j−1

)
=

(
i−1
j−1

)
−
(

i−2
j−1

)
−
(

i− (p+2)
j−1

)
= (li, j)1≤i, j≤n.

Corollary 1. For s,n ∈ N,(
n−1
s−1

)
= Pn,s =

n

∑
k=s

f p
n,klk,s = f p

n,1l1,s + f p
n,2l2,s + · · ·+ f p

n,n−1ln−1,s + f p
n,nln,s.

For s = 1, we have

Pn,1 =
n

∑
k=s

f p
n,klk,s = f p

n,1l1,1 + f p
n,2l2,1 + · · ·+ f p

n,n−1ln−1,1 + f p
n,nln,1.

Proof. From Theorem 1, we have Pn = F p
n Lp

n . Hence,

Pn = l11 + f p(n−1)l21 + · · ·+ f p(2)ln−1,1 + f p(1)ln1.

Let s = 1. Since

li1 =


1, if i = 1,
0, if i≤ p+1,
−1, if i≤ p+1,

(5)

we have the result.

Now, in the following theorem, we obtain the inverse of the matrix Lp
n = [l

′p
i j ].

Corollary 2. Let (Lp
n)−1 = [l

′p
i j ]. Then

l
′p
i j =

i

∑
s= j

(
i−1
s−1

)
× (−1)i+s f p(s).

Proof. Since P−1
n F p

n = (Lp
n)−1, we have the result.

Corollary 3. For p = 2, we get

f 2(n) = 1+
n

∑
j=4

(−1) j
(

n−1
j−1

)
f 2( j−1).
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Proof. We have f 2(n) =
n

∑
j=1

pn jl
′2
j1. Hence, from Corollary 2,

l
′2
11 = 1, l

′2
21 = l

′2
31 = 0, l

′2
41 = 1

and l
′2
i1 = (−1)i f 2(i−1). Consequently,

f 2(n) = pn1 +
n

∑
j=4

(−1) j f 2( j−1)pn j = 1+
n

∑
j=4

(−1) j
(

n−1
j−1

)
f 2( j−1).

3 The Cholesky factorization of a symmetric 1-extension of the p-Fibonacci
matrix

Here, we define a symmetric 1-extension of the p-Fibonacci matrix Sp
n . Then using the prouduct of the

1-extension of the p -Fibonacci matrix F p
n and its transpose F p

n , we get the Cholesky factorization of Sp
n .

First, we need the following definition.

Definition 4. A symmetric 1-extension of the p-Fibonacci matrix, denoted by Sp
n = [s(p)i j] for i, j =

1,2, . . . ,n, is defined as follows:

s(p)i j = s(p) ji =


i

∑
k=1

( f p(n))2, if i = j,

s(p)i, j−1 + s(p)i, j−(p+1), if i+1≤ j,
(6)

where j ≤ p+1,s(p)i, j = 0.

For example,

S3
10 =



1 1 1 1 2 3 4 5 7 10
1 2 2 2 3 5 7 9 12 17
1 2 3 3 4 6 9 12 16 22
1 2 3 4 5 7 10 14 19 26
2 3 4 5 8 11 15 20 28 39
3 5 6 7 11 17 23 30 41 58
4 7 9 10 15 23 33 43 58 81
5 9 12 14 20 30 43 58 78 108
7 12 16 19 28 41 58 78 107 148

10 17 22 26 39 58 81 108 148 207


.

Remark 2. By Definition 4, we have
(

n−1
s−1

)
= pns = f p(n),

s(p)1 j = f p( j), j ≥ 1,

s(p)2 j = f p(2) f P( j)+ f p(1) f p( j−1), j ≥ 2,

s(p)3 j = f p(3) f p( j)+ f p(2) f p( j−1)+ f p(1) f p( j−2), j ≥ 3.
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So, for j ≥ i, by an induction on i, we get

s(p)i j = f p(i) f p( j)+ f p(i−1) f p( j−1)+ f p(i−2) f p( j−2)+ · · ·+ f p(1) f p( j− i+1). (7)

Lemma 1. For j ≥ i, s(p)i, j = s(p)i−1, j + s(p)i−(p+1), j + f p( j− i+1).

Proof. By the relation (7), we have

s(p)i−1, j = f p(i−1) f p( j)+ f p(i−2) f p( j−1)+ · · ·+ f p(1) f p( j− i).

s(p)i−(p+1), j = f p(i− (p+1)) f p( j)+ f p(i− (p+1)−1) f p( j−1)+ · · ·
+ f p(1) f p( j− i+(p+2)).

Hence,

s(p)i−1, j + s(p)i−(p+1), j = f p(i−1) f p( j)+ f p(i−2) f p( j−1)+ · · ·+ f p(1) f p( j− i)

+ f p(i− (p+1)) f p( j)+ f p(i− (p+1)−1) f p( j−1)+ · · ·
+ f p(1) f p( j− i+(p+2))

= ( f p(i−1)+ f p(i− (p+1))) f p( j)+( f p(i−2)

+ f p(i− (p+1)−1)) f p( j−1)+ · · ·+( f p( j− i)

+ f p( j− i+(p+2))) f p(1).

By Definition 1, we have

f p(n) = f p(n−1)+ f p(n− p−1), f p(1) = f p(2) = · · ·= f p(p) = f p(p+1) = 1.

Therefore s(p)i−1, j + s(p)i−(p+1), j + f p( j− i+1) = s(p)i j.

Theorem 2. For n ∈ N, the Cholesky factorization of Sp
n is given by Sp

n = F p
n (F

p
n )T .

Proof. By the relations (2) and (3), it is sufficient that to prove (F p
n )−1Sp

n = (F p
n )T . Let X = [x(p)i j] =

(F p
n )−1Sp

n . We have

x(p)i j =
i

∑
k=1

f
′
i,kSk, j = f

′

i,i−(p+1)Si−(p+1), j + f
′
i,i−1Si−1, j + f

′
i,iSi,i,

and by (3)

x(p)i j =−Si−(p+1), j−Si−1, j +Si,i =


f p( j), if i = 1,
f p( j−1), if i = 2,
f p( j+ i−1), otherwise.

Furthermore XT = F p
n . This completes the proof.

By Theorem 2, the proof of the following corollary is trivial. So, we omit the proof.
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Corollary 4. For (Sp
n)−1 = [s′(p)i j] where (Sp

n)−1 = (FP
n × (F p

n )T )−1, we have
(i) if i = j, then

s′(p)ii =


1, if i = n,
2, if n− p≤ i≤ n−1,
3, otherwise.

(ii) For i 6= j, we get

s′(p)i j = s′(p) ji =

{
−1, if j = i+1 or j = p+ i+1,

1, if j = i+ p.

For example,

(S3
8)
−1 =



3 −1 0 1 −1 0 0 0
−1 3 −1 0 1 −1 0 0
0 −1 3 −1 0 1 −1 0
1 0 −1 3 −1 0 1 −1
−1 1 0 −1 2 −1 0 0
0 −1 1 0 −1 2 −1 0
0 0 −1 1 0 −1 2 −1
0 0 0 −1 0 0 −1 1


.

4 The Stirling matrix of the second kind

We get some results on the relationships between the Stirling matrix of the second kind and the 1-
extension of the p-Fibonacci matrix. For this, using the Stirling number of the second kind, we start with
the following definition.

Definition 5. A n×n matrix H p
n = [hp

i j] is defined as follows:

hp
i j = S(i, j)−S(i−1, j)−S(i− (p+1), j),

where S(m,k) is the Stirling number of the second kind.

By Definition 5, we see that hp
11 = 1, hp

1 j = 0, j ≥ 2, hp
2 j = 0, j 6= 2 and

hp
i, j = hp

i−1, j−1 + jhp
i−1, j.

Theorem 3. For the Stirling matrix ζn(2) and F p
n , we have ζn(2) = F p

n H p
n .

Proof. The matrix F p
n is invertible. If we get (F p

n )−1ζn(2)=H p
n , then Theorem is proved. Let (F p

n )−1ζn(2)=
Cn where Cn = (ci, j)1≤i, j≤n, i.e.,

ci, j =
i

∑
k= j

f
′p
i,kS(k, j).
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Since (F p
n )−1 and ζn(2) are lower triangular matrices, by the defniton of (F p

n )−1, we have

ci, j =
i

∑
k= j

f
′p
i,kS(k, j)

= f
′p
i,i−(p+1)S(i− (p+1), j)+ f

′p
i,i−1S(i−1, j)+ f

′p
i,i S(i, j)

=−S(i− (p+1), j)−S(i−1, j)+S(i, j) = (hp
i, j)1≤i, j≤n.

So, we get the result.

Corollary 5. For 1≤ t ≤ n,

S(n, t) =
n

∑
i=t

f P(n− i+1)

(
1
t!

t−1

∑
l=0

(−1)l
(

t
l

)(
(t−1)i− (t−1)i−1− (t−1)i−(p+1)

))
.

Proof. For i > p+1, by Definition 5 and relation (1), we have

hp
it =

1
t!

t−1

∑
l=0

(−1)l
(

t
l

)(
(t−1)i− (t−1)i−1− (t−1)i−(p+1)

)
.

On the other hand, S(n, t) =
t
∑

k=1
f p
nkhp

kt , So, we get

S(n, t) =
n

∑
i=t

f p(n− i+1)

(
1
t!

t−1

∑
l=0

(−1)l
(

t
l

)(
(t−1)i− (t−1)i−1− (t−1)i−(p+1)

))
.

Lemma 2. Let ζn−1(2) be the Stirling matrix. Then,

H p
n = Lp

n([1]⊕ζn−1(2)).

Proof. Suppose Cp
n = [cp

i j] = Lp
n ([1]⊕ζn−1(2)). We prove that cp

i j = hp
i j. For i = 1, we have

lp
11 = 1 = hp

11, lp
21 = 0 = hp

21, lp
22 = 1 = hp

22.

So, for i = 1 and 2, we obtain cp
i j = hp

i j. For i≥ 3,

cp
i j =

i−1

∑
l= j−1

[(
i−1

l

)
S(l, j−1)−

(
i−2

l

)
S(l, j−1)−

(
i− (p+2)

l

)
S(l, j−1)

]
.

Hence, by the relation (1), we get

cp
i j = S(i, j)−S(i−1, j)+S(i− (p+1), j).

Therefore, cP
i j = hp

i j.

Using Lemma 2, we have the following corollary.

Corollary 6. For n≥ 2, ζn(2) = F p
n Lp

n ([1]⊕ζn−1(2)) .
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5 Factorization of the t-extension of the p-Fibonacci matrix

In this section, for t ≥ 2, first we obtain the inverse of the t-extension of the p-Fibonacci matrix F p
(t,n).

Then, by this we give a factorization of it.

Theorem 4. For the inverse of the t-extension of the p-Fibonacci matrix, denoted by (F p
(t,n))

−1 = [ f
′p
(t,i j)],

we have

f
′p
(t,i j) =


1, if i = j,
−t, if j = i−1,
−1, if j = i− (p+1),

0, otherwise.

Proof. To find the inverse of the t-extension of the p-Fibonacci matrix, we define the n×n matrix U p
(t,n) =

[up
t,i j] as follows:

up
t,i j =


f p(t,1) 0 0 · · · 0
f p(t,2) 1 0 · · · 0

...
...

. . .
...

f p(t,n) 0 0 · · · 1

 .
Clearly, U p

(t,n) is invertible and

(U p
(t,n))

−1 =


f P(t,1) 0 0 · · · 0
− f P(t,2) 1 0 · · · 0

...
...

. . .
...

− f P(t,n) 0 0 · · · 1

 .
Hence,

F p
(t,n) =U p

(t,n)× (I1⊕U p
(t,n−1))× (I2⊕U p

(t,n−2))×·· ·× (In−2⊕U p
(2,2)),

where I j is an identity matrix. Since (Ik⊕U p
(t,n−k))

−1 = Ik⊕ (U p
(t,n−k))

−1, we have

(F p
(t,n))

−1 = (In−2⊕ (U p
(t,2))

−1)×·· ·× (I1⊕ (U p
(t,n−1))

−1)× (U p
(t,n))

−1.

Therefore,

f
′p
(t,i j) =


1, if i = j,
−t, if j = i−1,
−1, if j = i− (p+1),
0, otherwise.
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Example 1. For p = 2 and n = 4, we have

F2
(t,4) =


1 0 0 0
t 1 0 0
t2 t 1 0
t3 t2 t 1

 , U2
(t,4) =


1 0 0 0
t 1 0 0
t2 0 1 0
t3 0 0 1

 ,

I1⊕U2
(t,3) =


1 0 0 0
0 1 0 0
0 t 1 0
0 t2 0 1

 , I2⊕U2
(t,2) =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 t 1

 .
Then,

F2
(t,4) =U2

(t,4)(I1⊕U2
(t,3))(I2⊕U2

(t,2)).

So, for t ≥ 2,

(F2
(t,4))

−1 =


1 0 0 0
−t 1 0 0
0 −t 1 0
−1 0 −t 1

 .
In the following, we obtain a factorization of the t-extension of the p-Fibonacci matrix. First, we

introduce the matrix Lp
(t,n).

Definition 6. The n×n matrix Lp
(t,n) = [lp

t,i j] is defined as:

lp
t,i j =

(
i−1
j−1

)
− t
(

i−2
j−1

)
−
(

i− (p+2)
j−1

)
.

By the above information, we prove the following theorem.

Theorem 5. For the Pascal matrix Pn, we have Pn = F p
(t,n)L

p
(t,n).

Proof. The matrix F p
(t,n) is invertible. If we get (F p

(t,n))
−1Pn = Lp

(t,n), then the theorem is proved. Let
(F p

(t,n))
−1Pn = B(t,n) where B(t,n) = (bi, j)1≤i, j≤n, i.e.,

bi, j =
i

∑
k= j

f
′p
(t,ik)Pk, j.

Since (F p
n )−1 and Pn are lower triangular matrices, by the definition of (F p

n )−1, we have

bi, j =
i

∑
k= j

f
′p
(t,ik)

(
k−1
j−1

)
= f

′p
(t,ii−(p+1))

(
i− (p+2)

j−1

)
+ f

′p
(t,ii−1)

((
i−1
j−1

)(
i−2
j−1

))
+ f

′p
(t,ii)

(
i−1
j−1

)
=

(
i−1
j−1

)
− t
(

i−2
j−1

)
−
(

i− (p+2)
j−1

)
= (lt,i j)1≤i, j≤n.
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