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Abstract. In this paper, the exact expressions as well as recurrence relations for single and product
moments of the generalized lower record values from generalized inverse Weibull distribution are ob-
tained. Further, the characterization of the given distribution is carried out through recurrence relations
and conditional moment.
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1 Introduction

For the past decade, many authors have studied the several distributions by adding the parameters as a
combination (mixture) of distributions or make generalizations, modifications or extensions of the tradi-
tional two or three parameter distributions, because one or two parameters distribution lacks the ability
in adequately modeling the given data set. New parameters are implemented to the Weibull distribu-
tion, all in order to extend its properties for better performances in fitting the data set. The mixtures
of two inverse Weibull distribution and generalizations of Weibull distribution are defined in Gusmão
et al. [13] which are more flexible than classical Weibull distribution. Several models of generaliza-
tions of Weibull distribution families are exponentiated Weibull [24, 25, 33], extended Weibull [21, 36],
modified Weibull [16, 20, 27, 35], odd Weibull [6] and so on.

A random variale X is said to have a generalized inverse Weibull distribution [13], if its probability
density function (pd f ) is given by

f (x) = γ β α
β x−(β+1) exp

[
− γ
(α

x

)β
]
, x > 0, α > 0, β > 0, γ > 0, (1)

and the corresponding distribution function (d f ) is
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F(x) = exp
[
− γ
(α

x

)β
]
, x > 0, α > 0, β > 0, γ > 0. (2)

The relation between pd f and d f can be seen as

x f (x) = γ β α
β F(x) = β [− lnF(x)]F(x). (3)

This new distribution is much more flexible than the inverse Weibull distribution and could have
increasing, decreasing and unimodal hazard rates. Moreover, this distribution demonstrates a more rea-
sonable fit than the other competitive distributions as Weibull and inverse Weibull distributions.

An observation is called a record if its value is greater (or lesser) than all the previous observa-
tions (Chandler [7]). Record values are used in several real life problems involving weather, economic
studies, sports, industrial stress testing, meteorological analysis, hydrology, seismology, mining sur-
veys. Prediction about future record values are very important such as intensity of the next earthquake,
highest(record) level of water dam hold or discharge, extreme point of market index. For a survey on
important results in this area one may refer to [1,2,4,15]. Dziubdziela and Kopcoinski [9] have general-
ized the concept of record values of Chandler [7] by random variables of a more generalized nature and
called them the k-th record values. Later, Minimol and Thomas [22] called the record values defined by
Dziubdziela and Kopcoinski [9] as the generalized record values, since the k-th member of the sequence
of the ordinary record values is also known as the k-th record value. By setting k = 1, we obtain ordinary
record values.

Let {Xn, n ≥ 1} be a sequence of independent and identical distributed (iid) continuous random
variables with d f F(x) and pd f f (x). For a fixed positive integer k, we define the sequence {Lk(n),n≥ 1}
of k-th lower record times of {Xn, n≥ 1} as follows:

Lk(1) = 1,

Lk(n+1) = min{ j > Lk(n) : Xk:Lk(n)+k−1 > Xk: j+k−1}.

The sequence {Z(k)
n , n ≥ 1} with Z(k)

n = Xk:Lk(n)+k−1, n = 1,2, . . . , is called the sequence of k-th lower

record values of {Xn, n ≥ 1}. Suppose Z(k)
0 = 0, then for k = 1, we have Zn

(1) = XL(n), n ≥ 1, i.e. the

lower record values of {Xn, n≥ 1}. The pdf of Z(k)
n and the joint pd f of Z(k)

m and Z(k)
n are defined as

f
Z(k)

n
(x) =

kn

(n−1)!
[− lnF(x)]n−1[F(x)]k−1 f (x), n≥ 1, (4)

f
Z(k)

m ,Z(k)
n
(x,y) =

kn

(m−1)!(n−m−1)!
[− lnF(x)]m−1 f (x)

F(x)

×[lnF(x)− lnF(y)]n−m−1[F(y)]k−1 f (y), y < x, 1≤ m < n, n≥ 2, (5)

respectively by Pawlas and Szynal [29].
The conditional pd f of Z(k)

n given Z(k)
m = x, is

f
Z(k)

n |Z(k)
m
(y|x) = kn−m

(n−m−1)!
[lnF(x)− lnF(y)]n−m−1×

[F(y)
F(x)

]k−1 f (y)
F(x)

, y < x. (6)

For some recent developments on generalized record values with reference to those arising from the
different distributions out by [3, 5, 11, 12, 17, 18, 23, 28–32, 34].
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The paper is organized as follow: Section 2 contains some auxiliary results in the form of lemmas,
which are subsequently needed for studying the moment properties of generalized lower record values
from the generalized inverse Weibull distribution. In Section 3, the exact expressions as well as the
recurrence relations for single moment are obtained whereas Section 4 deals with product moments of
generalized lower record values. Section 5 is devoted to characterization of the said distribution by the
recurrence relations and conditional expectation. Finally, the whole study concluded in Section 6.

2 Auxiliary results

Here, we shall present some auxiliary results which are needed in the following sections:

Lemma 1. For a fixed positive integer k ≥ 1 and distribution as given in (1)

E(Z(k)
1 ) j = (k α

β
γ) j/β

Γ(1− j
β
). (7)

Proof. In view of (4), for n = 1, we have

E(Z(k)
1 ) j = k

∫
∞

0
x j [F(x)]k−1 f (x)dx. (8)

Now from (1) and (2)

E(Z(k)
1 ) j = k α

β
γ

∫
∞

0
x j−β−1 exp

[
− k γ

(
α

x

)β]
dx.

Consider t = x−β , we get the result given in (7).

Lemma 2. Fix a positive integer k ≥ 1, for 1≤ m≤ n−2 and i, j = 0,1, . . . ,

E[(Z(k)
m+1)

i(Z(k)
n ) j]−E[(Z(k)

m )i(Z(k)
n ) j] = − i kn

m!(n−m−1)!

∫
β

α

∫
β

y
xi−1 y j

×[− lnF(x)]m[lnF(x)− lnF(y)]n−m−1[F(y)]k−1 f (y)dxdy. (9)

Proof. From (5), we have

E[(Z(k)
m+1)

i(Z(k)
n ) j]−E[(Z(k)

m )i(Z(k)
n ) j]

=
kn

(m−1)!(n−m−1)!
×
∫

β

α

∫
β

y
xi y j[− lnF(x)]m−1 f (x)

F(x)
[lnF(x)− lnF(y)]n−m−2

×[F(y)]k−1 f (y)
{
[− lnF(x)]

(n−m−1)
m

− [lnF(x)− lnF(y)]
}

dxdy. (10)

Let

h(x,y) =
1
m
[lnF(x)− lnF(y)]n−m−1[− lnF(x)]m,

∂

∂x
h(x,y) = [− lnF(x)]m−1 f (x)

F(x)
[lnF(x)− lnF(y)]n−m−2

×
{
[− lnF(x)]

(n−m−1)
m

− [lnF(x)− lnF(y)]
}
. (11)

Taking into account the value of (11) in (10) and simplifying, we get the required result.
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Lemma 3. For the generalized inverse Weibull distribution given in (1). Fix a positive integer k ≥ 1, for
1≤ m≤ n−1 and i, j = 0,1, . . . ,

E[(Z(k)
1 )i(Z(k)

3 ) j] = (k α
β

γ)
i+ j
β

1

∑
a=0

(−1)a

1+a− i
β

(
1
a

)
Γ(3− (i+ j)/β ). (12)

Proof. In the view of (5), we have

E[(Z(k)
1 )i(Z(k)

3 ) j] = k3
∫

∞

0

∫
∞

y
xiy j[lnF(x)− lnF(y)]

f (x)
F(x)

[F(y)]k−1 f (y)dxdy

= k3
1

∑
a=0

(−1)a
(

1
a

)∫
∞

0
y j[− lnF(y)]1−a[F(y)]k−1 f (y)I(y)dy, (13)

where

I(y) =
∫

∞

y
xi [− lnF(x)]a

f (x)
F(x)

dx.

In view of (1) and (2), we get

I(y) =
α i γ

i
β

1+a− i
β

[− lnF(y)]1+a− i
β . (14)

Now by putting (14) in (13), we get

E[(Z(k)
1 )i(Z(k)

3 ) j] = k3
α
(i+ j)

γ
i+ j
β

1

∑
a=0

(−1)a

1+a− i
β

(
1
a

)∫
∞

0
[− lnF(y)]2−

(i+ j)
β [F(y)]k

f (y)
F(y)

dy. (15)

Setting [− lnF(y)] = z in (15), we get

E[(Z(k)
1 )i(Z(k)

3 ) j] = k3
α
(i+ j)

γ
i+ j
β

1

∑
a=0

(−1)a

1+a− i
β

(
1
a

)∫
∞

0
z2− (i+ j)

β exp(−kz)dz,

which leads to the result given in (12).

3 Main results for single moments

Theorem 1. For the generalized inverse Weibull distribution as given in (1). Fix a positive integer k≥ 1.
Then for n≥ 1 and j = 0,1, . . .

E(Z(k)
n+1)

j =
(

1− j
nβ

)
E(Z(k)

n ) j, (16)

and subsequently

E(Z(k)
n ) j = (k α

β
γ) j/β

Γ(n− j
β
)

Γ(n)
. (17)
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Proof. In view of (3) and (4), we have

E(Z(k)
n ) j =

β kn

(n−1)!

∫
∞

0
x j−1 [− lnF(x)]n[F(x)]k dx. (18)

Integrating (18) by parts, treating x j−1 for integration and the rest of the integrand for differentiation, we
get

E(Z(k)
n ) j =

β kn n
(n−1)! j

∫
∞

0
x j [− lnF(x)]n−1[F(x)]k−1 f (x)dx

− β kn+1

(n−1)! j

∫
∞

0
x j [− lnF(x)]n[F(x)]k−1 f (x)dx

=
nβ

j
[E(Z(k)

n ) j−E(Z(k)
n+1)

j].

Now by arranging the above expression, we get the relation given in (16). The relation (17) can be
obtained by writing (16) recursively and using Lemma 1.

Remark 1.

• At k = 1 in (16), we get the recurrence relation for the single moments of lower records from
generalized inverse Weibull distribution obtained by Khan and Zia [19].

• By setting k = 1 and γ = 1 in (17), we get the expression for exact moments of lower records from
the inverse Weibull distribution as obtained by Nigm and Khalil [26], with shape parameter α = 1.

• By setting k = 1 in (17), we get the expression for exact moments of lower records from the gener-
alized inverse Weibull distribution as obtained by Khan and Zia [19].

3.1 Numerical computations

The distributional properties of generalized lower record values in terms of mean, variance, skewness
and kurtosis with the different values of parameters of generalized the inverse Weibull distribution for
different k are tabulated below in Table 1 to 4. All computations here we performed using Mathematica.
Mathematica like other algebraic manipulation packages allow for arbitrary precisions, so the accuracy
of the given values is not an issue. For any fixed j increase in sample size n leads to decrease in variance,
which is universally true.

4 Main results for product moments

Theorem 2. For 1≤ m≤ n−2 and i, j = 0,1, . . . ,

E[(Z(k)
m+1)

i(Z(k)
n ) j] =

(
1− i

mβ

)
E[(Z(k)

m )i(Z(k)
n ) j]. (19)

For m≥ 1 and i, j = 0,1, . . . ,

E[(Z(k)
m )i(Z(k)

m+1)
j] =

( mβ

mβ − i

)
E[(Z(k)

m+1)
i+ j], (20)
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Table 1: Distribution properties of lower record values

n
α = 0.50, β = 4, γ = 1, k = 1

Mean Variance Skewness Kurtosis
2 0.45953 0.010392179 1.086407821 -1.726798023
3 0.40209 0.004493632 1.045359486 -1.868264909
4 0.36858 0.002618784 1.030715185 -1.913629696
5 0.34555 0.001755197 1.023156112 -1.935948863
6 0.32827 0.001278807 1.018709985 -1.948671767
7 0.31459 0.000993332 1.016013857 -1.957170073
8 0.30335 0.000798978 1.013119971 -1.955381989
9 0.29388 0.000654546 1.011680388 -1.968633844
10 0.28571 0.000549796 1.010247424 -1.972392663

Table 2: Distribution properties of lower record values

n
α = 1, β = 4, γ = 2, k = 1

Mean Variance Skewness Kurtosis
2 1.09296 0.058748438 1.086439345 -1.726752049
3 0.95634 0.025403804 1.045416978 -1.868242104
4 0.87662 0.014857376 1.030679886 -1.913493117
5 0.82185 0.009972578 1.023125564 -1.935687577
6 0.78076 0.007283822 1.018562967 -1.948830644
7 0.74823 0.005611867 1.015499712 -1.957513056
8 0.72150 0.004507752 1.013313048 -1.963686799
9 0.69896 0.003704918 1.011653721 -1.968264062
10 0.67954 0.003135388 1.010360822 -1.971876307

and subsequently

E[(Z(k)
m )i(Z(k)

n ) j] =
(k αβ γ)

i+ j
β

Γ(m)Γ(n−m)

n−m−1

∑
a=0

(−1)a

m+a− i
β

(
n−m−1

a

)
Γ(n− (i+ j)/β ). (21)

Proof. From Lemma 2, we have

E[(Z(k)
m+1)

i(Z(k)
n ) j]−E[(Z(k)

m )i(Z(k)
n ) j] = − i kn

m!(n−m−1)!

∫
β

α

∫
β

y
xi−1 y j[− lnF(x)]m

×[lnF(x)− lnF(y)]n−m−1[F(y)]k−1 f (y)dxdy. (22)

Now using the relation (3) in (22) and re-arranging the terms, we get the expression given in (19). Now
putting n = m+ 1 in (19) and noting that E[(Z(k)

m )i(Z(k)
m ) j] = E[(Z(k)

m )i+ j], the recurrence relation given
in (20) can be easily established. The relation (21) can be obtained by writing (19) recursively and using
the Lemma 3.
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Table 3: Distribution properties of lower record values.

n
α = 0.50, β = 4, γ = 1, k = 3

Mean Variance Skewness Kurtosis
2 0.604777 0.017992781 1.086433362 -1.726763671
3 0.529180 0.007779528 1.045420181 -1.868234374
4 0.485082 0.004537453 1.030687867 -1.913500469
5 0.454764 0.003051704 1.023141997 -1.935676464
6 0.432026 0.002229535 1.018569016 -0.656299715
7 0.414025 0.001719299 1.015506098 -1.957501924
8 0.399238 0.001378019 1.013309340 -1.963669262
9 0.386762 0.001136155 1.011656738 -1.968275482

10 0.376019 0.000957712 1.010365124 -1.971852726

Table 4: Distribution properties of lower record values.

n
α = 1, β = 4, γ = 2, k = 3

Mean Variance Skewness Kurtosis
2 1.43841 0.101776672 1.086438364 -1.726756041
3 1.25861 0.044000868 1.045423396 -1.868227591
4 1.15373 0.025657087 1.030685139 -1.913498488
5 1.08162 0.017258176 1.023137048 -1.935678712
6 1.02754 0.012601548 1.018573961 -1.948810611
7 0.984722 0.009728583 1.015504895 -1.957503803
8 0.949554 0.007795201 1.013308124 -1.963671217
9 0.919880 0.006428786 1.011654531 -1.968278557

10 0.894328 0.005417428 1.010367731 -1.971845744

Identity 1. For 1≤ m < n,

n−m−1

∑
a=0

(−1)a

(m+a)

(
n−m−1

a

)
=

Γ(m)Γ(n−m)

Γ(n)
. (23)

Proof. Putting i = j = 0 in (21), we get the required result.

Remark 2.

• When j = 0, we get the result for single moment as given in Theorem 1.

• By setting i = 0 in (21) and using relation (23), we get the exact expression for single moment of
the generalized inverse Weibull distribution as obtained in (17).

• When k = 1, the Theorem 2 reduces to the recurrence relations for product moments of lower
record values from the generalized inverse Weibull distribution as obtained by Khan and Zia [19].
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Table 5: Product moments of lower record values.
(α = 0.50, γ = 1, β = 4, k = 1)

n
m 2 3 4 5 6 7 8 9
1 0.29541 0.25321 0.23019 0.21484 0.20353 0.19469 0.18747 0.18143
2 0.18991 0.17264 0.16113 0.15265 0.14601 0.14061 0.13607
3 0.15106 0.14099 0.13357 0.12776 0.12303 0.11906
4 0.12924 0.12244 0.11712 0.11278 0.10914
5 0.11479 0.10980 0.10573 0.10232
6 0.10431 0.10044 0.09720
7 0.09626 0.09315
8 0.08983

Table 6: Product moments of lower record values.
(α = 1.0, β = 4, γ = 1, k = 1)

n
m 2 3 4 5 6 7 8 9
1 1.67109 1.43236 1.30214 1.21533 1.15137 1.10131 1.06052 1.02631
2 1.07427 0.97661 0.91150 0.86353 0.82598 0.79539 0.76973
3 0.85453 0.79756 0.75559 0.72273 0.69597 0.67352
4 0.73110 0.69262 0.66251 0.63797 0.61739
5 0.64933 0.62110 0.59810 0.57880
6 0.59004 0.56819 0.54986
7 0.54452 0.52695
8 0.50813

4.1 Numerical computations

The product moments (m < n) of generalized lower record values with the different parameters of the
generalized inverse Weibull distribution and various k are tabulated below in Table 5 to 8.

5 Characterization

Theorem 3. Let X be a non-negative random variable having an absolutely continuous d f F(x) with
0 < F(x)< 1 for all x > 0, then

E(Z(k)
n ) j =

nβ

j

[
E(Z(k)

n ) j−E(Z(k)
n+1)

j
]
, (24)

if and only if

F(x) = exp
[
− γ
(α

x

)β
]
, x > 0, α > 0, β > 0, γ > 0. (25)
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Table 7: Product moments of lower record values.
(α = 0.50, β = 4, γ = 1, β = 4, k = 3)

n
m 2 3 4 5 6 7 8 9
1 0.51166 0.43857 0.39870 0.37212 0.35253 0.33721 0.32472 0.31424
2 0.32893 0.29902 0.27909 0.26440 0.25290 0.24354 0.23568
3 0.26165 0.24420 0.23135 0.22129 0.21309 0.20622
4 0.22385 0.21207 0.20285 0.19534 0.18904
5 0.19882 0.19017 0.18313 0.17722
6 0.18066 0.17397 0.16836
7 0.16672 0.16134
8 0.15558

Table 8: Product moments of lower record values.
(α = 1.0, β = 4, γ = 2, k = 3)

n
m 2 3 4 5 6 7 8 9
1 2.89441 2.48092 2.25538 2.10502 1.99423 1.90753 1.83688 1.77762
2 1.86069 1.69154 1.57877 1.49567 1.43064 1.37766 1.33322
3 1.48009 1.38142 1.30871 1.25181 1.20545 1.16656
4 1.26630 1.19965 1.14750 1.10500 1.06935
5 1.12468 1.07578 1.03593 1.00252
6 1.02199 0.98414 0.95239
7 0.94313 0.91271
8 0.88011

Proof. The necessary part can be seen in view of (16). To prove sufficiency part, we have Bieniek and
Szynal [5]

E(Z(k)
n ) j−E(Z(k)

n−1)
j =− jkn−1

(n−1)!

∫
∞

−∞

x j−1 [− lnF(x)]n−1[F(x)]k dx. (26)

Therefore,

kn

(n−1)!

∫
∞

0
x j [− lnF(x)]n−1[F(x)]k−1 f (x)dx =

β kn

(n−1)!

∫
∞

−∞

x j−1 [− lnF(x)]n[F(x)]k dx,

which becomes

kn

(n−1)!

∫
∞

0
x j−1 [− lnF(x)]n−1[F(x)]k−1

{
x f (x)−β [− lnF(x)][F(x)]

}
dx = 0. (27)

Now applying the generalization of Muntz-Szasz Theorem (see for example Hwang and Lin [14]) in
(27), we get

x f (x) = β [− lnF(x)][F(x)],

which proves that f (x) has the form as given in (1).
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Theorem 4. For a positive integer k, i and j be a non-negative integer, a necessary and sufficient condi-
tion for a random variable X to be distributed with pdf given by (1), is that

E[(Z(k)
m+1)

i(Z(k)
n ) j] =

(
1− i

mβ

)
E[(Z(k)

m )i(Z(k)
n ) j]. (28)

Proof. The necessary part can be seen in view of Theorem 2. To prove sufficiency part, we have

E[(Z(k)
m+1)

i(Z(k)
n ) j]−E[(Z(k)

m )i(Z(k)
n ) j] =− i

mβ
E[(Z(k)

m )i(Z(k)
n ) j]. (29)

Now in view of Lemma 2, we get

− i kn

m!(n−m−1)!

∫
∞

0

∫
∞

y
xi−1 y j[− lnF(x)]m[lnF(x)− lnF(y)]n−m−1[F(y)]k−1 f (y)dxdy

=− i kn

m!(n−m−1)!β

∫
∞

0

∫
∞

y
xiy j [− lnF(x)]m−1

× f (x)
F(x)

[lnF(x)− lnF(y)]n−m−1 [F(y)]k−1 f (y)dxdy. (30)

This gives
kn

(m−1)!(n−m−1)!

∫
∞

0

∫
∞

y
xi−1 y j[− lnF(x)]m−1 f (x)

F(x)

× [lnF(x)− lnF(y)]n−m−1[F(y)]k−1 f (y)
{F(x)

f (x)
[− lnF(x)]− x

β

}
dxdy = 0. (31)

Now applying the generalization of Müntz-Szász Theorem (see for example Hwang and Lin [14]) to
(31), we get

x f (x) = β [F(x)][− lnF(x)], (32)

which leads to the form of pd f given in (1).

Theorem 5. Let X be a non-negative random variable having an absolutely continuous d f F(x) and
pd f f (x) over the support (0,∞) and let h(x) be a continuous and differentiable function of x, the for
two consecutive value of m and m+1, then

E[F(Z(k)
n )|(Z(k)

l ) = x] = gn|l(x) = F(x)
( k

k+1

)n−l
, l = m, m+1, m≥ k, (33)

if and only if

F(x) = exp
[
− γ
(α

x

)β
]
, x > 0, α > 0, β > 0, γ > 0.

Proof. In view of (6), we have

E[F(Z(k)
n )|(Z(k)

m ) = x] =
kn−m

(n−m−1)!

∫ x

0
F(y)[lnF(x)− lnF(y)]n−m−1

[F(y)
F(x)

]k−1 f (y)
F(x)

dy. (34)
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Setting F(y)
F(x) = u in (34), we get

E[F(Z(k)
n )|(Z(k)

m ) = x] =
kn−m

(n−m−1)!
F(x)

∫ 1

0
uk [− lnu]n−m−1du. (35)

We have the Gradshteyn and Ryzhik [10]∫ 1

0
xν−1 [− lnx]µ−1 dx =

Γµ

νµ
. (36)

Now on using (36) in (35) gives the result given in (33). To prove sufficient part, we have

kn−m

(n−m−1)!

∫ x

0
F(y)[lnF(x)− lnF(y)]n−m−1[F(x)]k−1 f (y)dy = [F(x)]k gn|m(x), (37)

where

gn|m(x) = F(x)
( k

k+1

)n−m
. (38)

Differentiating (36) both sides with respect to x, we get

kn−m f (x)
(n−m−2)!F(x)

∫ x

0
F(y)[lnF(x)− lnF(y)]n−m−2[F(x)]k−1 f (y)dy

= g
′

n|m(x) [F(x)]k + k gn|m(x)[F(x)]k−1 f (x)

or
k gn|m+1(x)[F(x)]k−1 f (x) = g

′

n|m(x) [F(x)]k + k gn|m(x)[F(x)]k−1 f (x).

Therefore,

f (x)
F(x)

=
g
′

n|m(x)

k[gn|m+1(x)−gn|m(x)]
,

where

g
′

n|m(x) = γ β α
β x−(β+1) exp

[
− γ
(α

x

)β
]( k

k+1

)n−m

gn|m+1(x)−gn|m(x) = exp
[
− γ
(α

x

)β
]1

k

( k
k+1

)n−m
.

Thus,
f (x)
F(x)

= γ β α
β x−(β+1),

which implying that

F(x) = exp
[
− γ
(α

x

)β
]
.

Hence the sufficiency part is proved.
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6 Conclusion and future work

The current study demonstrate the study of moments of lower generalized record values. The exact
expressions for single and product moments are obtained. The recursive relations for single and product
moments are also developed to make ease of computation of moments. The results obtained are used
to study the distributional properties of lower generalized record values from the generalized inverse
Weibull distribution in terms of mean, variance, skewness and kurtosis and covariance for different values
of parameters for the generalized inverse Weibull distribution. Further, we characterized the generalized
inverse Weibull distribution through recurrence relations and conditional moment. We can explore our
study for dual generalized order statistics which contains several models of order random variates.
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