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Abstract. Micromagnetics is a continuum theory describing magnetization patterns inside ferromag-
netic media. The dynamics of a ferromagnetic material are governed by the Landau-Lifshitz equation.
This equation is highly nonlinear and has a non-convex constraint. In this work, a finite element ap-
proximation of a current-induced magnetization dynamics model is proposed. The model consists of a
modified Landau-Lifshitz-Gilbert (LLG) equation incorporating spin transfer torque. The scheme pre-
serves a non-convex constraint, requires only a linear solver at each time step and is easily applicable
to the limiting cases. As the time and space steps tend to zero, a proof of convergence of the numerical
solution to a (weak) solution of the modified LLG equation is given. Numerical results are presented to
show the effect of the injected current on magnetization switching.
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1 Introduction

It has been recently shown, both theoretically and experimentally, that a spin polarized current when
passing through a small magnetic conductor can affect its magnetization state. The interaction between
spin polarized current and magnetization in small ferromagnetic bodies can produce steady state preces-
sional magnetization dynamics, that is self-oscillating behavior, or even the switching of magnetization
direction [7,35]. Both types of dynamical behavior have potential applications in magnetic storage tech-
nology and spintronics. In this respect, it was predicted, and later confirmed, that spin-polarized current
can lead to current-controlled hysteretic switching in magnetic nanostructures. This kind of behavior
may become very important for applications such as current-controlled switching of magnetic random
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access memory elements and stabilization of magnetic hard-disk read heads. Steady precessional oscil-
lations of magnetization due to spin polarized currents have also interesting potential applications for the
realization of current-controlled microwave oscillators integrable with semiconductor electronics. This
kind of oscillators could be used to realize a very new design of clocks for synchronization of electronic
devices. In this work, we investigate magnetization switching under the influence of a spin-polarized cur-
rent through numerical simulations using a generalized LLG equation incorporating spin transfer torque
effect. To describe the model equations we consider Ω a bounded and regular open set of R3. The
generic point of R3 is denoted by x. We assume that a ferromagnetic material occupies the domain Ω.
With a prescribed current density J(t,x), the time evolution of the magnetization vector m(t,x) may be
described by the LLG equation, see for example [20, 35]

∂tm−αm×∂tm=−γm× (He +β (J ·∇)m), (1)

in Q = (0,T )×Ω where T > 0 is fixed and “×” denotes the cross product in R3. The term parameterized
by the positive factor α describes (Gilbert) damping torque. The first term on the right-hand side accounts
for torque by the effective field He which is given by

He(m) =4m+∇ϕ,

where ϕ satisfies the stray field equation

div(∇ϕ +m) = 0 in (0,T )×R3.

The term parameterized by the positive constant β expresses current-induced torques on m. This
torque is most commonly termed non-adiabatic and β characterizes its strength. The parameter γ > 0 is
a gyroscopic ratio. The initial data satisfied by the magnetization is

m(0,x) =m0(x), |m0(x)|2 = 1 a.e. in Ω.

Equation (1) should be solved together with appropriate boundary conditions for the magnetization. We
consider homogeneous Neumann boundary condition

∂nm= 0 on (0,T )×∂Ω. (2)

Equation (1) without injected current (β = 0) have already been substantially studied in the literature
and solutions have been found:

• either in a strong sense [8] but only locally in time, or globally but for initial data of small energy
and in 2D;

• either in a weak sense [3] and [38]. In that case, solutions are shown to be global in time but may
not be unique (explicit cases of nonuniqueness are provided in [3]).

Global existence of weak solutions for the problem (1) was addressed by Tilioua [37]. Recently, a
generalization of (1) to adiabatic spin torque is considered by Melcher-Ptashnyk [27]. This torque takes
the formm× J ·∇m and is added to effective field.
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Since we will focus on only the effects of the injected current and for the sake of simplicity we shall
neglect here the demagnetizing field ∇ϕ and we refer for example to [22] for some computational aspects
of this field. However, we note that this simplification does not limit the proposed analysis.

The study of the solutions of the nonlinear PDEs are significant and a vital topic in real life, due
to its enormous contribution to science and technology. In the past, the development of mathematical
algorithms to seek these solutions very difficult, but with the development of science it became possible.
An operational matrix-based spectral computational method coupled with the Picard technique and suc-
cessfully employed to seek the solutions to a family of nonlinear evolution differential equations and the
nonlinear oscillatory fractional order differential equations [10–13]. The soliton based algorithms are
also promising techniques to analyze the solutions of various nonlinear real-world problems [14]. The
Monte Carlo algorithm, finite-difference scheme, finite element method, mixed finite element method
and the neural network approximation give a good results to solve nonlinear PDEs, stochastic PDEs and
the PDEs in the high dimension, see [17–19, 25, 26, 28–33, 39]. In this study we use the finite element
method to solve our problem because it has a lot of avantages for examples:

• Modeling. FEM allows for easier modeling of complex geometrical and irregular shapes. Because
the designer is able to model both the interior and exterior, he or she can determine how critical
factors might affect the entire structure and why failures might occur.

• Adaptability. FEM can be adapted to meet certain specifications for accuracy in order to decrease
the need for physical prototypes in the design process. Creating multiple iterations of initial pro-
totypes is usually a costly and timely process. Instead of spending weeks on hard prototyping, the
designer can model different designs and materials in hours via software.

• Accuracy. While modeling a complex physical problem by hand can be impractical, a computer
using FEM can solve the problem with a high degree of accuracy.

• Time-dependent simulation. FEM is highly useful for certain time-dependent simulations, such
as crash simulations, in which deformations in one area depend on deformation in another area.

• Boundaries. With FEM, designers can use boundary conditions to define to which conditions the
model needs to respond. Boundary conditions can include point forces, distributed forces, thermal
effects (such as temperature changes or applied heat energy), and positional constraints.

• Visualization. Engineers can easily spot any vulnerability in design with the detailed visualiza-
tions FEM produces, then use the new data to make a new design.

Before dealing with the finite elements discretization of the problem (1)-(2), let us first review some
previous results. We limit ourselves to mention a handful of references concerning numerical aspects and
we refer to the survey [21] for a more detailed bibliographical account. The general framework (although
without injected current, i.e. the case β = 0) has been established in earlier papers. For instance Banas et
al. [4] has proposed an implicit nonlinear scheme to solve problem (1), and prove that the finite element
solution converges to a weak global solution of the problem. Their method requires a condition on the
time step k and space step h (namely k = o(h2)) for the convergence of the nonlinear system of equations
resulting from the discretization. This method gives an approximated sequence of solutions converging
to a global solution of the problem. Next, following the idea developed by Alouges and Jaisson [2] (see
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also Alouges [1]) for the LLG equation (1), Le and Tran [23] proposed a θ -linear finite element scheme
to find a weak global solution to (1) always with β = 0, but coupled to magnetostatic approximation of
the magnetic field. It is proved that the numerical solutions converge to a weak solution of the problem
with no condition imposed on time step and space step as θ ∈ (1/2,1]. It is required that k = o(h2) when
θ ∈ [0,1/2), and k = o(h) when θ = 1/2. In this work, we shall adapt the scheme proposed in [4] to deal
with non-adiabatic spin transfer torque model (1).

The paper is organized as follows. Weak solutions of the modified LLG equations are defined in
Section 2 in which we also recall a global existence result. Following Alouges [1], Le [23] and Tran
[24], we introduce in section 3 the θ -linear finite element scheme. Section 4 is devoted to convergence
of the finite element solutions to a weak solution of the LLG equations. The main ingredient of the
convergence proof is the Lemma 3 which provides L2-bounds for the discrete solutions. In order to show
the effect of the injected current on magnetization dynamics, a set of numerical experiments is provided
in Section 5. We conclude the paper in the last section by giving some comments and directions for
future development.

Throughout, we make use of the following notations. Ł2(Ω) = (L2(Ω))3 and H1(Ω) = (H1(Ω))3 are
the vector-valued Hilbert spaces equipped with the norm | · |Ω and ‖·‖, respectively. (L∞(Ω))3 is denoted
by Ł∞(Ω) with norm | · |∞. We denote 〈·, ·〉

ω
:= 〈·, ·〉L2(ω) .

2 Weak formulation and global existence result

We first state the definition of weak solutions to problem (1).

Definition 1. Given m0 ∈ H1(Ω) such that |m0| = 1 a.e in Ω, we call m(t,x) a weak solution to the
LLG equation (1) if for all T > 0, there hold

1. For all T > 0,m ∈H1(Q) andm satisfies the saturation constraint |m(t,x)|= 1 for a.e in Q.

2. m(0, ·) =m0(·) in the trace sense.

3. For allG ∈ (C ∞(Q))3, there holds

〈∂tm,G〉Q−α 〈m×∂tm,G〉Q =−γ 〈∇m,∇(m×G)〉Q

− γβ 〈m× (J ·∇m),G〉Q .

4. For all t ≥ 0, we have

E (t)+
α

γ

∫ t

0

∫
Ω

|∂tM|2 dxdt ≤ E (0)(1+ I(t)exp(I(t))),

where
E (t) = |∇m(t)|2Ω,

and

I(t) =
γβ 2

α

∫ t

0
|J|2∞ds,

for all t ∈ (0,T ).
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We have the following global existence result (see Tilioua [37]).

Theorem 1. Let T > 0 be fixed and m0 ∈H1(Ω) be such that |m0(x)|2 = 1 a.e. Assume that J belongs
to L2(0,T ;Ł∞(Ω)). Then there exists a global weak solution m of the problem (1)-(2) in the sense of
Definition 1.

3 The finite elements discretization

In the spirit of [1], see also [5, 23], we introduce a θ -linear finite element scheme which approximates a
weak solutionm defined in Definition 1. Let Th be a regular triangulation of the domain Ω parameterized
by mesh-size h. We denote by Nh := {x1, . . . ,xN} the set of vertices, they are not distinct and by
Mh := {e1, . . . ,eM} the set of edges.

To discretize the LLG equation (1), we introduce the finite element space Vh ⊂ H1(Ω) which is the
space of all continuous piecewise linear functions on Th. A basis for Vh can be chosen to be (φn)1≤n≤N ,
where φn(xm) = δn,m. Here δn,m stands for the Kronecker symbol. The interpolation operator from
C 0(Ω,R3) onto Vh is denoted by IVh ,

IVh(v) =
N

∑
n=1
v(xn)φn(x) ∀v ∈ C 0(Ω,R3).

Fixing a positive integer M, we choose the time step k to be k = T/M and define t j = jk, j = 0, . . . ,M.
For j = 1,2, . . . ,M, the functionsm(t j, ·) is approximated bym( j)

h ∈ Vh.
We define the space W( j)

h by

W( j)
h :=

{
w ∈ Vh |w(xn) ·m( j)

h (xn) = 0, n = 1, . . . ,N
}
.

The finite elements scheme we propose is the following.

Algorithm 1.

Step 1. Set j = 0. Choosem(0)
h = IVhm0.

Step 2. Find v( j+1)
h ∈W( j)

h satisfying

α

〈
v
( j+1)
h ,w

( j)
h

〉
Ω

+
〈
m

( j)
h ×v

( j+1)
h ,w

( j)
h

〉
Ω

=−γ

〈
∇(m

( j)
h + kθv

( j+1)
h ),∇w

( j)
h

〉
Ω

+ γβ

〈
J( j)

h ·∇m
( j)
h ,w

( j)
h

〉
Ω

, (3)

for all w( j)
h ∈W( j)

h .

Step 3. Define

m
( j+1)
h (x) :=

N

∑
n=1

m
( j)
h (xn)+ kv( j+1)

h (xn)

|m( j)
h (xn)+ kv( j+1)

h (xn)|
φn(x).

Step 4. Set j = j+1, and return to Step 2 if j < M. Stop if j = M.
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The parameter θ in (3) can be chosen arbitrarily in [0,1]. The method is explicit when θ = 0 and
semi-implicit when θ = 1.

By the Lax–Milgram theorem, for each j > 0 there exists a unique solution v( j+1)
h ∈W( j)

h of equa-
tions (3) (see [1]). Since |m( j)

h (xn)|= 1 and v( j+1)
h (xn) ·m( j)

h (xn) = 0 for all n = 1, . . . ,N, there holds

|m( j)
h (xn)+ kv( j+1)

h (xn)| ≥ 1. (4)

Therefore, the algorithm is well defined. There also holds |m( j+1)
h (xn)|= 1 for n = 1, . . . ,N.

4 Convergence to weak solutions

We start by recalling the following lemma proved in [6].

Lemma 1. If there holds∫
Ω

∇φi ·∇φ j dx≤ 0 for all i, j ∈ {1,2, . . . ,M} and i 6= j, (5)

then for all u ∈ Vh satisfying |u(xl)| ≥ 1, l = 1,2, . . . ,M, there holds∫
Ω

|∇Ih

(
u

|u|

)
|2 dx≤

∫
Ω

|∇u|2 dx.

Condition (5) holds if all dihedral angles of the tetrahedra in Th are less than or equal to π/2, see [6]. In
the sequel we assume that (5) holds.

Lemma 2. The solutions (m( j)
h ,v

( j+1)
h ), j = 0,1, . . . ,M, obtained from Algorithm 1 satisfy

|
m

( j+1)
h (xn)−m( j)

h (xn)

k
| ≤ |v( j+1)

h (xn)|, ∀n = 1,2, · · · ,N, j = 0, . . . ,M. (6)

Proof. For the proof, see [23].

Now, we will show that our numerical solution converges to a weak solution of the problem (1). The
next lemma provides a bound in the L2-norm for the discrete solutions.

Lemma 3. The sequence
{(
m

( j)
h ,v

( j+1)
h

)}
j=0,1,...,M

produced by Algorithm 1 satisfies

E
( j)

h +C
j−1

∑
i=0

k|v(i+1)
h |2Ω ≤ E

(0)
h

(
1+

j−1

∑
i=0

kβ 2|J(i)h |2∞
αγ−1 exp(

i−1

∑
s=0

kβ 2|J(s)h |2∞
αγ−1 )

)
,

where
E

( j)
h = |∇m( j)

h |
2
Ω,

and

C =


αγ−1− (1−2θ)C1kh−2, θ ∈ [0,

1
2
),

αγ−1, θ ∈ [
1
2
,1],

in which C1 is a positive constant which is independent of j, k and h.
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Proof. Choosing w( j)
h = v

( j+1)
h in (3), we obtain

α

γ
|v( j+1)

h |2Ω =−
〈

∇(m
( j)
h + kθv

( j+1)
h ),∇v

( j+1)
h

〉
Ω

+β

〈
J( j)

h ·∇m
( j)
h ,v

( j+1)
h

〉
Ω

,

which we write
α

γ
|v( j+1)

h |2Ω + kθ |∇v( j+1)
h |2Ω =−

〈
∇m

( j)
h ,∇v

( j+1)
h

〉
Ω

+β

〈
J( j)

h ·∇m
( j)
h ,v

( j+1)
h

〉
Ω

. (7)

Sincem( j)
h + kv( j+1)

h ∈ Vh and

m
( j+1)
h = Ih

( m( j)
h + kv( j+1)

h

|m( j)
h + kv( j+1)

h |

)
,

it follows from (4) and Lemma 1 that

|∇m( j+1)
h |2Ω ≤ |∇(m

( j)
h + kv( j+1)

h )|2Ω.

Consequently, we have

|∇m( j+1)
h |2Ω ≤ |∇m

( j)
h |

2
Ω + k2|∇v( j+1)

h |2Ω +2k
〈

∇m
( j)
h ,∇v

( j+1)
h

〉
Ω

. (8)

Multiplying both sides of (7) by 2k, we deduce

2kγ
−1

α|v( j+1)
h |2Ω +2k2

θ |∇v( j+1)
h |2Ω =−2k

〈
∇m( j)

h ,∇v
( j+1)
h

〉
Ω

+2kβ

〈
J( j)

h ·∇m
( j)
h ,v

( j+1)
h

〉
Ω

, (9)

Equality (8) is used to obtain from (9) the following inequality

|∇m( j+1)
h |2Ω ≤ |∇m

( j)
h |

2
Ω− k2(2θ −1)|∇v( j+1)

h |2Ω +2kβ

〈
J( j)

h ·∇m
( j)
h ,v

( j+1)
h

〉
Ω

−2αkγ
−1|v( j+1)

h |2Ω.

Hence

|∇m( j+1)
h |2Ω + k2(2θ −1)|∇v( j+1)

h |2Ω +2αkγ
−1|v( j+1)

h |2Ω
≤ |∇m( j)

h |
2
Ω +2kβ

〈
J( j)

h ·∇m
( j)
h ,v

( j+1)
h

〉
Ω

. (10)

We have
2kβ

〈
J( j)

h ·∇m
( j)
h ,v

( j+1)
h

〉
Ω

≤ 2kβ |J( j)
h |∞|∇m

( j)
h |Ω|v

( j+1)
h |Ω.

By Young inequality, we get

2kβ |J( j)
h |∞|∇m

( j)
h |Ω|v

( j+1)
h |Ω ≤

kβ 2|J( j)
h |2∞|∇m

( j)
h |2Ω

αγ−1 + kαγ
−1|v( j+1)

h |2Ω.

Hence (10) gives

|∇m( j+1)
h |2Ω+k2(2θ −1)|∇v( j+1)

h |2Ω +αkγ
−1|v( j+1)

h |2Ω ≤ |∇m
( j)
h |

2
Ω +

kβ 2|J( j)
h |2∞|∇m

( j)
h |2Ω

αγ−1 .
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Replacing j by i in the above inequality and summing over i from 0 to j−1 yields

|∇m( j)
h |

2
Ω + k2(2θ −1)

j−1

∑
i=0
|∇v(i+1)

h |2Ω +αγ
−1k

j−1

∑
i=0
|v(i+1)

h |2Ω

≤ |∇m(0)
h |

2
Ω +

kβ 2

αγ−1

j−1

∑
i=0
|J(i)h |

2
∞|∇m

(i)
h |

2
Ω. (11)

When θ ∈ [
1
2
,1], the term k2(2θ −1)∑

j−1
i=0 |∇v

(i+1)
h |2

Ω
is nonnegative. So

|∇m( j)
h |

2
Ω +αγ

−1
j−1

∑
i=0

k|v(i+1)
h |2Ω ≤ |∇m

(0)
h |

2
Ω +

kβ 2

αγ−1

j−1

∑
i=0
|J(i)h |

2
∞|∇m

(i)
h |

2
Ω.

Therefore

|∇m(i)
h |

2
Ω ≤ |∇m

(0)
h |

2
Ω +

kβ 2

αγ−1

i−1

∑
s=0
|J(i)h |

2
∞|∇m

(s)
h |

2
Ω.

The discrete version of Gronwall’s lemma allows to get

|∇m(i)
h |

2
Ω ≤ |∇m

(0)
h |

2
Ω exp(

i−1

∑
s=0

kβ 2|J(s)h |2∞
αγ−1 ).

Thus

|∇m( j)
h |

2
Ω +αγ

−1
j−1

∑
i=0

k|v(i+1)
h |2Ω ≤ |∇m(0)

h |
2
Ω +

kβ 2

αγ−1

j−1

∑
i=0
|J(i)h |

2
∞|∇m

(0)
h |

2
Ω exp(

i−1

∑
s=0

kβ 2|J(s)h |2∞
αγ−1 ).

Then, we have

|∇m( j)
h |

2
Ω +C

j−1

∑
i=0

k|v(i+1)
h |2Ω ≤ |∇m

(0)
h |

2
Ω

(
1+

j−1

∑
i=0

kβ 2|J(i)h |2∞
αγ−1 exp(

i−1

∑
s=0

kβ 2|J(s)h |2∞
αγ−1 )

)
.

When θ ∈ [0,
1
2
), we use the following inverse estimate (see for example [16]). On regular sequences of

triangulations, there exists C > 0 such that for all v ∈ Vh,

|∇v(i)h |
2
Ω ≤Ch−2|v(i)h |

2
Ω.

Applying the last inequality, we obtain

C1K2h−2(2θ −1)
j−1

∑
i=0

k|v(i+1)
h |2Ω ≤ k2(2θ −1)

j−1

∑
i=0
|∇v(i+1)

h |2Ω,

where C1 is a positive constant which is independent of j, k and h. Hence from inequality (11), we obtain

|∇m( j)
h |

2
Ω +

(
αγ
−1−C1k2h−2(1−2θ)

) j−1

∑
i=0

k|v(i+1)
h |2Ω ≤ |∇m

(0)
h |

2
Ω +

kβ 2

αγ−1

j−1

∑
i=0
|J(i)h |

2
∞|∇m

(i)
h |

2
Ω.
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The additional condition k = o(h2) assures us that C = αγ−1−C1K2h−2(1−2θ) is positive when h and
k are sufficiently small. Hence

|∇m( j)
h |

2
Ω +C

j−1

∑
i=0

k|v(i+1)
h |2Ω ≤ |∇m

(0)
h |

2
Ω +

kβ 2

αγ−1

j−1

∑
i=0
|J(i)h |

2
∞|∇m

(i)
h |

2
Ω.

Again, by the discrete version of Gronwall’s lemma, we get

|∇m( j)
h |2Ω +C

j−1

∑
i=0

k|v(i+1)
h |2Ω ≤ |∇m

(0)
h |

2
Ω

(
1+

j−1

∑
i=0

kβ 2|J(i)h |2∞
αγ−1 exp(

i−1

∑
s=0

kβ 2|J(s)h |2∞
αγ−1 )

)
.

This completes the proof of the lemma.

Remark 1. The constant C in the above lemma is positive when θ ∈ [1/2,1]. When θ ∈ [0,1/2) and the
additional condition k

h2 tends to zero as h and k go to 0 assures us that C is positive. This condition will
be required later in the following lemma and theorem.

Remark 2. Note that in the approximation of the spin transfer torque (β -term) in (3) one may consider
∇(m

( j)
h + kθv

( j+1)
h ) instead of ∇m

( j)
h but this choice seems to present some difficulty to get bound for

approximate solutions.

The discrete solutions m( j)
h and v( j+1)

h constructed via Algorithm 1 are interpolated in time in the
following definition.

Definition 2. For each t ∈ [0,T ], let j ∈ {0, . . . ,M} be such that t ∈ [t j, t j+1). We define for t ∈ [0,T ] and
x ∈Ω

mh,k(t,x) :=
t− t j

k
m

( j+1)
h (x)+

t j+1− t
k

m
( j)
h (x),

m−h,k(t,x) :=m( j)
h (x),

vh,k(t,x) := v( j+1)
h (x).

The following lemma shows that {mh,k}, {m−h,k} and {vh,k} converge (up to the extraction of sub-
sequences) as h and k tend to 0.

Lemma 4. Assume that h and k go to 0 with a further condition k = o(h2) when θ ∈ [0,1/2) and no
condition otherwise. There existsm ∈H1(Q) such that

mh,k→m strongly in L2(Q),

∂tmh,k ⇀ ∂tm weakly in L2(Q),

vh,k ⇀ ∂tm weakly in L2(Q),

m−h,k→m strongly in L2(Q),

|m|= 1 a.e. in Q.
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Proof. From Lemma 2, we have

|
m

( j+1)
h (xn)−m( j)

h (xn)

k
| ≤ |v( j+1)

h (xn)| ∀n = 1,2, . . . ,N, j = 0, . . . ,M,

and since there exists c > 0 such that for all 1≤ p <+∞ and all φh ∈ Vh holds

1
c
‖φh‖p

Lp(Ω) ≤ hd
∑

i

∣∣∣φh

(
xh

i

)∣∣∣p ≤ c‖φh‖p
Lp(Ω) ,

we obtain that ∥∥∥∥∥m
( j+1)
h (x)−m( j)

h (x)

k

∥∥∥∥∥
L2

≤ c2∥∥v j+1(x)
∥∥

L2 .

Hence, from the bound

E
( j)

h +C
j−1

∑
i=0

k|v(i+1)
h |2Ω ≤ E

(0)
h

(
1+

j−1

∑
i=0

kβ 2|J(i)h |2∞
αγ−1 exp(

i−1

∑
s=0

kβ 2|J(s)h |2∞
αγ−1 )

)
,

mh,k is uniformly bounded in H1 (Q), and vh,k is bounded in L2 (Q). Extracting possibly subsequences,
there exist m ∈ H1 (Q) and v ∈ L2 (Q) such that

mh,k→(h,k)→0 m weakly in H1 (Q) ,

mh,k→(h,k)→0 m strongly in L2 (Q) ,

vh,k→(h,k)→0 v weakly in L2 (Q) .

Now, since for all j = 0, · · · ,J and all t ∈ [ jk,( j+1)k)∣∣∣mh,k(x, t)−m−h,k(x, t)
∣∣∣= ∣∣∣∣(t− jk)

(
m j+1(x)−m j(x)

k

)∣∣∣∣≤ k |∂tmh,k(x, t)| ,

we get ∥∥∥mh,k−m−h,k
∥∥∥

L2(Q)
≤ k‖∂tmh,k‖L2(Q)→(h,k)→0 0.

Therefore
m−h,k→(h,k)→0 m strongly in L2 (Q) .

Moreover, on any triangle (tetrahedron in 3D) K of Th, and any u ∈Mh one has, xh
i being any vertex of

K
||u(x)|− |u

(
xh

i

)
‖2 ≤Ch2|∇u|2,

(recall that ∇u is constant on K), from which one deduces (since
∣∣∣m−h,k (xh

i
)∣∣∣= 1 )∫

QT

|1−|m−h,k||
2 ≤Ch2||∇m−h,k‖

2
L2(Q),

which shows that
|m(x, t)|= 1 a.e. (x, t) ∈ Q.

Hence, the proof is completed.
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We are now ready to state the result of the convergence to weak solutions. Most of the arguments
follow the same lines as in [1] and [23] to get:

Theorem 2. Assume that h and k go to 0 with the following conditions
k = o(h2), when 0≤ θ < 1/2,
k = o(h), when θ = 1/2,
no condition, when 1/2 < θ ≤ 1.

Then the limitm given by Lemma 4 is a weak solution of the LLG Equation (1).

5 Numerical experiments

For numerical experiments, we choose one dimensional geometry but the analysis can be performed for
two or three dimensions. The one-dimensional spatial domain Ω = (0,1) is uniformly discretized with
xi = ih and the mesh size h = 1/10. We set the values for the other parameters in (1) as α = 1, γ = 0.2
and β = 1. We choose the time step k = 10−3 and the parameter θ in Algorithm 1 to be 0.7. For the basis
functions of the space W( j)

h , we make use of the construction proposed by Le-Tran [24]. At each iteration
we need to solve a linear system of size 2(N +1)×2(N +1), where N is the number of nodes. As initial
condition, we choose m0(x) = (cosπx,sinπx,0). The current J is assumed to flow with constant value
to choose arbitrarily. The code is written in MATLABr.

In a first set of experiments, Figure 1 shows the evolution of magnetization component averages.
Switching is accompanied by oscillations which are the result of the magnetization precession around
the effective field in the switching process. The amplitude of these oscillations tends to zero with an
increasing number of averages. Note that for J = 0 (no injected current), magnetization field tends to
align parallel to the nanowire axis (X-axis) while for the case with injected current magnetization tends
to be in the XY plane between the X and Y axes. The simulations predict that large injected current favors
alignement of magnetization with respect to Y axis.

In a second set of experiments to observe the boundedness of discrete energies, we solved the problem
with a fixed value of h and smaller values of k. In Figure 2, we plotted t 7→ |∇mh,k(t)|Ω and the trajectory
of the magnetization of a single domain particle on a large time scale (T = 0.09). Theoretically, the
energy decay as time goes by. This is confirmed numerically indicating the energy relaxation. The time
evolution of the energy is showed in Fig. 2 which seems to suggest that this energy approaches 0 for
large time.

Figure 2 also shows the effect of the injected current in reaching equilibrium for magnetization field.
We expect that increasing the current density shortens the switching time. We also remark that the
magnetization approaches the final state faster in the presence of a spin transfer torque.

To demonstrate the dependence of the numerical approximations on the Gilbert damping, we tested
the sensitivity of the solutions with respect to damping parameter. Figure 3 depicts for J = 0.7 the
temporal evolution of the energy for α = 0.1, α = 0.4 and α = 0.8. Figure 3 shows that as the damping
increases the time needed by magnetization to reach equilibrium decreases.

To study the performance of the numerical scheme, we use the equivalent form equation of (1)

∂tm=−ζm× (4m+β (J ·∇)m)−µm× (m× (4m+β (J ·∇)m), (12)
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Figure 1: Averages of magnetization components 〈mx〉,〈my〉 and 〈mz〉 for different values of J.

Figure 2: Temporal evolution of the energy in left and the trajectory of the magnetization of a single
domain particle in right for J = 0, J = 3 and J = 6.

with ζ = γ

1−α2 and µ = αγ

1−α2 see [36]. For ζ = 1 and β = 0, the exact solution of (12) in one-dimensional
space [15] is given by

m(t,x) = (m1(t,x),m2(t,x),m3(t,x)),
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Figure 3: Temporal evolution of the energy for α = 0.1, α = 0.4 and α = 0.8.

Table 1: Explicit method (θ = 0) : L∞ and L2 error and convergence rates with spatial step h, time step
k = 8 ·10−7h2 and time 0.01.

1
h

∥∥m−mh
∥∥

L∞

∥∥m−mh
∥∥

L2

32 8.50e−05 7.40e−04

64 2.06e−05 1.75e−04

128 5.65e−06 4.90e−05

256 1.73e−06 1.19e−05

where

m1(t,x) =
sinϕ cos(kx−φ(x, t,ϕ,k,µ))

d(t,ϕ,k,µ)
,

m2(t,x) =
sinϕ sin(kx−φ(x, t,ϕ,k,µ)

d(t,ϕ,k,µ)
,

m3(t,x) =
exp(k2µt)cosϕ

d(t,ϕ,k,µ)
,

with

d(t,α,k,µ) =
√

sin2
ϕ + exp(2k2µt)cos2 ϕ,

and

φ(x, t,ϕ,k,µ) =
1
µ

log
(d(t,ϕ,k,µ)+ exp(k2µt)cosϕ

1+ cosϕ

)
,

where ϕ = π

24 and k = 2π . For the convergence study, we used an explicit method (θ = 0) and an
implicit method (θ = 0.5). The L∞ and L2 errors were measured relative to an exact solution of the
Landau-Lifshitz equation. The numerical results are summarized in the Tables 1 and 2. Figure 4 shows
the convergence rate of the method, which is first order in the time step k and second order in the mesh
size h.
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Table 2: Implicit method (θ = 1
2) : L∞ and L2 error and convergence rates with spatial step h, time step

k = 8 ·10−7h2 and time 0.01.
1
h

∥∥m−mh
∥∥

L∞

∥∥m−mh
∥∥

L2

32 7.96e−05 7.89e−04

64 3.87e−05 1.58e−04

128 5.78e−06 5.09e−05

256 1.07e−06 0.92e−05

Figure 4: Convergence plot, Left : At time 0.1, Right : At time 0.01.

6 Concluding remarks

The main goal is to understand the behaviour of magnetic moments caused by spin polarized current. We
have considered a mathematical model consisting of a generalized LLG equation incorporating adiabatic
spin torque term expressed as a transport term in the effective field. A finite element approximation is
proposed and the convergence of the approximate solutions to a weak solution is proved. Numerical
experiments are carried out to show the effect of the injected current in reaching equilibrium for magne-
tization field. We expect that the switching time depends on the applied current density which shortens
the time switching. The code developed in this paper may be used especially to describe domain wall
motion in nanowires since a one-dimensional approximation of the magnetostatic field is known, see for
example [9]. In order to complete the study we intend to extend our implementation to higher dimensions
by incorporating all the energetic contributions including the energy of anisotropy and demagnetization.
One may then examine the importance of these energies respectively, by deliberately removing one or
both of them in the magnetization switching process. Note that within the second-order gradient, it is
found in [34] that the LLG equation should be modified by adding to effective field a term of the form
βm×4m. This new field is vertical to the plane defined by the magnetization and the normal spin
stiffness4m [34]. In this case, the LLG equation becomes

∂tm−αm×∂tm=−γm× (He +βm×4m).

Interestingly, the vertical spin stiffness can not be written in terms of the free energy, and therefore, it can
not be derived from the functional derivative of the free energy with respect to the local magnetization.
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This new term can significantly change the domain-wall structure in ferromagnetic materials. It would
be interesting to consider this problem both from the theoretical and numerical points of view.

In the end, we would like to point out that there is no theoretical difficulties to extend this study to the
non-adiabatic torque considered in [27] and the competition between Gilbert damping and spin transfer
torques in magnetization dynamics should be characterized for a good understanding of the switching
process.
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