تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,246,161 |
تعداد دریافت فایل اصل مقاله | 6,899,861 |
Discrete cosine transform LSQR methods for multidimensional ill-posed problems | ||
Journal of Mathematical Modeling | ||
دوره 10، شماره 1، فروردین 2022، صفحه 21-37 اصل مقاله (1.14 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22124/jmm.2021.19303.1659 | ||
نویسندگان | ||
Mohamed El Guide1؛ Alaa El Ichi2؛ Khalide Jbilou* 3 | ||
1Centre for Behavioral Economics and Decision Making(CBED), FGSES, Mohammed VI Polytechnic University, Green City, Morocco | ||
2Laboratoire de Mathématiques, Informatique et Applications, Securite de l'Information LABMIA-SI, University Mohamed V, Rabat Morocco; University Littoral Cote d'Oplae, France | ||
3LMPA, 50 rue F. Buisson, ULCO Calais, France; Mohammed VI Polytechnic University, Green City, Morocco | ||
چکیده | ||
We propose new tensor Krylov subspace methods for ill-posed linear tensor problems such as color or video image restoration. Those methods are based on the tensor-tensor discrete cosine transform that gives fast tensor-tensor product computations. In particular, we will focus on the tensor discrete cosine versions of GMRES, Golub-Kahan bidiagonalisation and LSQR methods. The presented numerical tests show that the methods are very fast and give good accuracies when solving some linear tensor ill-posed problems. | ||
کلیدواژهها | ||
Discrete cosine product؛ Golub-Kahan bidiagonalisation؛ GMRES؛ LSQR؛ tensor Krylov subspaces | ||
آمار تعداد مشاهده مقاله: 1,840 تعداد دریافت فایل اصل مقاله: 1,271 |