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THE ANNIHILATOR GRAPH OF MODULES OVER
COMMUTATIVE RINGS

F. ESMAEILI KHALIL SARAEI ∗

Abstract. LetM be a module over a commutative ringR, Z∗(M)
be its set of weak zero-divisor elements, and if m ∈ M , then
let Im = (Rm :R M) = {r ∈ R : rM ⊆ Rm}. The annihila-
tor graph of M is the (undirected) graph AG(M) with vertices

Z̃∗(M) = Z∗(M) \ {0}, and two distinct vertices m and n are ad-
jacent if and only if (0 :R ImInM) 6= (0 :R m)∪ (0 :R n). We show
that AG(M) is connected with diameter at most two and girth
at most four. Also, we study some properties of the zero-divisor
graph of reduced multiplication-like R-modules.

1. Introduction

Let R be a commutative ring with identity and Z(R) its set of zero-
divisors. The concept of the graph of zero-divisors of a ring was first
introduced by Beck in [7]. The zero-divisor graph of R (denoted by
Γ(R)) was introduced by Anderson and Levingston in [2], with vertices
Z(R)∗ = Z(R) \ {0} and two distinct vertices x and y adjacent if xy =
0. In [5], Badawi introduces, for a commutative ring R with nonzero
identity, its annihilator graph AG(R). The set of vertices of this graph
is Z(R)∗ = Z(R) \ {0} and two distinct vertices x and y adjacent if
and only if annR(xy) 6= annR(x) ∪ annR(y) where annR(a) = {r ∈ R :
ra = 0} for every a ∈ R. It follows that each edge (path) of Γ(R) is
an edge (path) of AG(R), so Γ(R) is an induced subgraph of AG(R).
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In [8], Behboodi gives several generalizations of the concept of zero-
divisor elements in a commutative ring to modules and he introduces
zero-divisor graphs for modules over commutative rings. The reader is
referred to [4], [6], [10], [11], [12] and [13] for a detailed discussion of
associated graphs to algebraic structures.

All rings in this paper are commutative with nonzero identity. Let
R be a commutative ring and M be an R-module. For x ∈ M , we
denote the annihilator of the factor module M/Rx by Ix (i.e., Ix :=
{r ∈ R : rM ⊆ Rx} = (Rx :R M)). It is clear that for each x ∈ M ,
(0 :R M) ⊆ Ix and Rx = M if and only if Ix = R. In particular, if
M = R then for each x ∈ R, Ix = Rx. This means that IxIy = 0 if
and only if xy = 0. (see [8])

An element m of M is called a weak zero-divisor if either m = 0
or ImInM = (Rm :R M)(Rn :R M)M = 0 for some nonzero element
n ∈M with In ⊂ R. The set of all weak zero-divisor elements of M is
denoted by Z∗(M). It is clear that when M = R, then Z∗(R) = Z(R).
For an R-module M , we let Z̃∗(M) = Z∗(M) \ {0}. Then we associate
the zero-divisor graph Γ∗(M) with vertices Z̃∗(M) and the vertices m
and n are adjacent if and only if ImInM = 0. (see [8, Definition 1.1])
In this article, we introduce the annihilator graph AG(M) for an R-
module M , with vertices Z̃∗(M) = Z∗(M) \ {0}, and two distinct ver-
tices m and n are adjacent if and only if (0 :R ImInM) 6= (0 :R m)∪(0 :R
n). One can show that (0 :R m) ∪ (0 :R n) ⊆ (0 :R ImInM) since
ImInM ⊆ Rm∩Rn. So the reverse of the inclusion is important. Also,
it follows that each edge (path) of Γ∗(M) is an edge (path) of AG(M),
so Γ∗(M) is an induced subgraph of AG(M). In the second section,
we consider several definitions and results which we use throughout
this paper. We devote Section 3 to the reduced multiplication-like R-
modules (defined later) and their properties. In Section 4, we show
that AG(M) is connected with diameter at most two (Theorem 4.5).
If AG(M) is not identical to Γ∗(M), then we show that gr(AG(M))
(i.e., the length of a smallest cycle) is at most four (Theorem 4.8).
We show that for a reduced multiplication-like R-module M , if Z∗(M)
is a submodule, then it is a prime submodule. In the final section,
we determine when AG(M) is identical to Γ∗(M). Also we consider
some properties of the zero-divisor graph of reduced multiplication-like
R-modules.

We begin with some notation and definitions. Let Γ be a simple
graph. The vertex set of Γ is denoted by V (Γ). We recall that a graph
is connected if there exists a path connecting any two distinct vertices.
The distance d(a, b) is the length of the shortest path from a to b, if
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such a path does not exist, then d(a, b) =∞. The diameter of a graph
Γ, denoted by diam(Γ), is equal to sup{d(a, b) : a, b ∈ V (Γ)}. A graph
is complete, if it is connected with diameter less than or equal to one.
The girth of a graph Γ, denoted by gr(Γ), is the length of a shortest
cycle in Γ, provided Γ contains a cycle; otherwise; gr(Γ) = ∞, in this
case Γ is called an acyclic graph. We say that two (induced) subgraphs
Γ1 and Γ2 of Γ are disjoint if Γ1 and Γ2 have no common vertices and
no vertex of Γ1 (respectively, Γ2) is adjacent (in Γ) to any vertex not
in Γ1 (respectively, Γ2). We denote the complete bipartite graph on m
and n vertices by Km,n.

2. Preliminaries

We devote this section to the several definitions and results which
we use throughout this paper.

Definition 2.1. Let R be a commutative ring and let M be an R-
module.
(1) For every submodule N of an R-module M , the ideal {r ∈ R :
rM ⊆ N} is denoted by (N :R M). So (0 :R M) is the annihilator of
M .
(2) For any submodules N and K of M , we define the product of N
and K by NK = (N :R M)(K :R M)M .(see [3, Definition 3.1]).
(3) A submodule N of M is said to be nilpotent if there exists a positive
integer k such that Nk = (N :R M)kM = 0.(see [3, Definition 3.4])
(4) An R-module M is defined to be a multiplication module if for each
submodule N of M , N = IM for some ideal I of R. In this case we
can take I = (N :R M).
(5) Let M be an R-module. We say that M is a multiplication-like
module, if for each nonzero submodule N of M , (0 :R M) ⊂ (N :R
M).(see [8, Definition 2.1])
(6) A ring R is reduced, if it has no nonzero nilpotent elements and
an R-module M is called reduced, if for any m ∈ M and any a ∈ R,
ma = 0 implies Rm ∩ aM = 0. (see [1])
(7) A proper submodule N of an R-module M is prime if whenever
rm ∈ N for some r ∈ R and m ∈M , then m ∈ N or r ∈ (N :R M).
(8) A proper submodule N of an R-module M is semiprime if for every
ideal I of R and every submodule K of M , IkK ⊆ N for some positive
integer k implies that IK ⊆ N . An R-module M is called a semiprime
module if 〈0〉 ⊂M is a semiprime submodule. (see [9])
(9) A submodule K of an R-module M is called essential, if for each
submodule L of M , K ∩ L = 0 implies that L = 0. An R-module
M is called a uniform module if the intersection of any two nonzero
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submodules is nonzero. So every submodule of an uniform module is
an essential submodule.

We have the following result that is proved in ([3, Lemma 3.7]).

Lemma 2.2. Let M be an R-module. Then the following statements
are equivalent.
(a) 0 is the only nilpotent submodule of M .
(b) For all submodules N and K of M with NK = 0, we have N ∩K =
0.

3. Reduced and multiplication-like modules

The aim of this section is to study the properties of reduced and
multiplication-like modules. We first consider the following lemma.

Lemma 3.1. Let M be a reduced R-module. Then the following hold.
(1) If akm = 0 for some a ∈ R, m ∈ M and positive integer k, then
am = 0.
(2) If IkM = 0 for some ideal I of R and positive integer k, then
IM = 0.
(3) M is a semiprime R-module.
(4) For any elements m,n ∈M and r ∈ R, Rrm∩Rn = 0 if and only
if Rm ∩Rrn = 0.
(5) Every submodule of M is reduced.

Proof. (1) Let akm = 0 for some a ∈ R and m ∈ M . We can assume
that k 6= 1. Then a(ak−1m) = 0. Since M is a reduced module, we
have Rak−1m ∩ aM = 0. So ak−1m = 0, since ak−1m ∈ Rak−1m ∩ aM .
By a similar way, we get am = 0.
(2) Suppose that IkM = 0 for some ideal I of R and positive integer
k. Let a ∈ I and m ∈ M . Then akm ∈ IkM = 0, so am = 0 by (1).
Thus IM = 0.
(3) Let K be a submodule of M and IkK = 0 for some positive integer
k. Let a ∈ I and m ∈ K. Then akm ∈ IkK = 0, so am = 0 by (1).
Therefore IK = 0. Hence 0 is a semiprime submodule of M and then
M is a semiprime R-module.
(4) Let Rrm ∩ Rn = 0 and y ∈ Rm ∩ Rrn. Then y = sm = s′rn
for some s, s′ ∈ R. So r2s′n = rsm ∈ Rrm ∩ Rn = 0. Since M is
a reduced module, it follows that y = rs′n = 0 by (1). Similarly, if
Rm ∩Rrn = 0, then we have Rrm ∩Rn = 0.
(5) Let N be a submodule of M , m ∈ N and a ∈ R such that ma = 0.
Then Rm ∩ aN ⊆ Rm ∩ aM = 0, since M is a reduced module. �

The next proposition has a crucial role in this paper.



THE ANNIHILATOR GRAPH OF MODULES 97

Proposition 3.2. Let M be a reduced multiplication-like module and
r ∈ R, n,m ∈ M such that rm 6= 0 and rn 6= 0. Then the following
hold.
(1) 0 is the only nilpotent submodule of M .
(2) InIrmM 6= 0 if and only if ImIrnM 6= 0.

Proof. (1) Let N be a nonzero nilpotent submodule of M . Then (N :
M)kM = Nk = 0 for some positive integer k. Since M is a reduced
module, we have (N : M)M = 0 by Lemma 3.1 (2). Thus (N :R
M) ⊆ (0 :R M). It is clear that (0 :R M) ⊆ (N :R M). Hence
(0 :R M) = (N :R M), a contradiction since M is a multiplication-like
module. Then N = 0.
(2) Assume that InIrmM 6= 0. Then Rn ∩ Rrm 6= 0, since InIrmM ⊆
Rn ∩ Rrm. So Rm ∩ Rrn 6= 0 by Lemma 3.1 (4). Thus ImIrnM =
(Rm)(Rrn) 6= 0 by (1) and Lemma 2.2. The converse is similar. �

In view of Proposition 3.2, we have the following lemma.

Lemma 3.3. Let M be an R-module and m, n two nonzero elements
of M . Then the followig hold.
(1) If Rm ∩Rn = 0, then m and n are adjacent in Γ∗(M).
(2) If M is a reduced multiplication-like module, then Rm ∩Rn = 0 if
and only if m and n are adjacent in Γ∗(M).

Proof. (1) It is clear since ImInM ⊆ Rm ∩Rn = 0.
(2) Assume that m and n are adjacent in Γ∗(M). Then (Rm)(Rn) =
ImInM = 0. So Rm∩Rn = 0 by Lemma 2.2 and Proposition 3.2. The
coverse is clear by (1). �

4. Basic properties of AG(M)

In this section, we compute the diameter of graph AG(M). We begin
with a lemma containing several useful properties of AG(M).

Lemma 4.1. Let R be a commutative ring and M be an R-module.
(1) Let m,n be distinct elements of Z̃∗(M). Then m−n is not an edge
of AG(M) if and only if (0 :R ImInM) = (0 :R n) or (0 :R ImInM) =
(0 :R m).
(2) If m−n is an edge of Γ∗(M) for some distinct m,n ∈ Z̃∗(M), then
m − n is an edge of AG(M). In particular, if P is a path in Γ∗(M),
then P is a path in AG(M).
(3) If m−n is not an edge of AG(M) for some distinct m,n ∈ Z̃∗(M),
then (0 :R m) ⊆ (0 :R n) or (0 :R n) ⊆ (0 :R m).
(4) If dΓ∗(M)(m,n) = 3 for some distinct m,n ∈ Z̃∗(M), then m− n is
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an edge of AG(M).

Proof. (1) Assume that m − n is not an edge of AG(M). Then (0 :R
ImInM) = (0 :R m) ∪ (0 :R n) by definition. Since (0 :R ImInM)
is a union of two ideals, we have (0 :R ImInM) = (0 :R m) or (0 :R
ImInM) = (0 :R n). Conversely, suppose that (0 :R ImInM) = (0 :R m)
or (0 :R ImInM) = (0 :R n). Then (0 :R ImInM) = (0 :R m) ∪ (0 :R n)
and so m− n is not an edge of AG(M).
(2) Suppose that m − n is an edge of Γ∗(M) for some distinct m,n ∈
Z̃∗(M). Then ImInM = 0 and (0 :R ImInM) = R. Since m 6= 0 and
n 6= 0, it follows that (0 :R m) 6= R and (0 :R n) 6= R. Thus m − n is
an edge of AG(M). The particular statement is clear.
(3) Suppose that m − n is not an edge of AG(M) for some distinct
m,n ∈ Z̃∗(M). Then (0 :R ImInM) = (0 :R m) ∪ (0 :R n). Since
(0 :R ImInM) is a union of two ideals, we have (0 :R ImInM) = (0 :R m)
or (0 :R ImInM) = (0 :R n). So (0 :R m) ⊆ (0 :R n) or (0 :R n) ⊆ (0 :R
m).
(4) Suppose that dΓ∗(M)(m,n) = 3 for some distinct m,n ∈ Z̃∗(M).
Then there is a path m − a − b − n of length 3 between m and n.
So ImIaM = IaIbM = IbInM = 0, ImIbM 6= 0 and IaInM 6= 0.
Then Ia(ImInM) = Ib(InImM) = 0, so Ia, Ib ⊆ (0 :R ImInM). Since
ImM ⊆ Rm, we have (0 :R m) ⊆ (0 :R ImM). So Ibm 6= 0, since
ImIbM 6= 0. Similarly Ian 6= 0. But we have ImIaM = IbInM = 0.
The proof will now break into two cases:
Case 1. If Iam = 0 and Ibn = 0, then Ia ∈ (0 :R m) \ (0 :R n) and
Ib ∈ (0 :R n) \ (0 :R m), since Ibm 6= 0 and Ian 6= 0. Hence m− n is an
edge of AG(M) by Part (3).
Case 2. If either Iam 6= 0 or Ibn 6= 0, then Ia ⊆ (0 :R ImInM) \ ((0 :R
m) ∪ (0 :R n)) or Ib ⊆ (0 :R ImInM) \ ((0 :R m) ∪ (0 :R n)), so
(0 :R ImInM) 6= (0 :R m) ∪ (0 :R n) and the proof is complete. �

In [8, Proposition 1.4], it is shown that, for an R-module M with
I = (0 :R M), Γ∗(RM) = Γ∗(R/IM). Now, we have the following
lemma.

Lemma 4.2. Let M be an R-module with I = (0 :R M). Then
AGR(M) = AGR/I(M).

Proof. Let x ∈ Z̃∗(M). Then there exists 0 6= y ∈ M such that
IxIyM = 0. It is clear that I ⊆ (0 :R x) ∩ (0 :R y), (0 :R/I IxIyM) =
(0 :R IxIyM)/I, (0 :R/I x) = (0 :R x)/I and (0 :R/I y) = (0 :R y)/I.
By ([8, Proposition 1.4]), x ∈ Z∗(RM) if and only if x ∈ Z∗(R/IM).
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It is clear that the vertices x and y are adjacent in AGR(M) if and
only if x and y are adjacent in AGR/I(M). Therefore AGR(M) =
AGR/I(M). �

We need the following lemma that is a generalization of [8, Lemma
1.7].

Lemma 4.3. Let R be a commutative ring and M be an R-module and
x, y ∈ Z̃∗(M). Then the following hold.
(1) If r ∈ (0 :R m) for some element m ∈ M , then ImIrxM = 0 for
every element x ∈M . In particular, if rx 6= 0, then m− rx is an edge
in Γ∗(M) for every element x ∈M .
(2) If x− y is an edge in Γ∗(M), then for each r /∈ (0 :R x) ∩ (0 :R y),
either x− ry or y − rx is also an edge in Γ∗(M).
(3) If x−y is an edge in Γ∗(M), then rx−sy is also an edge in Γ∗(M)
for every r, s ∈ R such that rx 6= 0 and sy 6= 0.

Proof. (1) Let λ ∈ ImIrxM . Then λ ∈ ImRrx, since IrxM ⊆ Rrx.
So λ = (r1s1 + ... + rnsn)rx for some ri ∈ Im and si ∈ R with i =
1, 2, ..., n. Then riM ⊆ Rm for each i. Thus risix ∈ Rm and hence
risirx ∈ Rrm = 0 for each i. So λ = 0. The in particular statement is
clear.
(2) Let 0 6= r ∈ R and x− y is an edge in Γ∗(M). Then IxIyM = 0. If
r ∈ (0 :R x), then r /∈ (0 :R y) and x− ry is an edge in Γ∗(M) by (1).
So suppose that r /∈ (0 :R x). Then rx 6= 0. If r ∈ (0 :R y), then y− rx
is an edge in Γ∗(M) by (1). If r /∈ (0 :R y) , then ry 6= 0 and x− ry is
an edge in Γ∗(M) by [8, Lemma 1.7].
(3) Since Irx ⊆ Ix and Isy ⊆ Iy, it follows that IrxIsyM ⊆ IxIyM = 0
and hence rx− sy is also an edge in Γ∗(M).

�

The next proposition gives a partial answer to the question ” Is
AG(M) a connected graph or not?”. Here we answer this question by
[8, Theorem 1.8].

Proposition 4.4. Let R be a commutative ring andM be an R-module.
If m − n is not an edge of AG(M) for some distinct m,n ∈ Z̃∗(M),
then there is a k ∈ Z̃∗(M) \ {m,n} such that m − k − n is a path in
Γ∗(M) and hence m− k − n is a path in AG(M).

Proof. By [8, Theorem 1.8], diam(Γ∗(M)) ≤ 3. So for every element
m,n ∈ Z̃∗(M), if either dΓ∗(M)(m,n) = 1 or 3, then m−n is an edge of
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AG(M) and m and n are adjacent in AG(M) by Lemma 4.1. Hence if
m and n are not adjacent in AG(M), then dΓ∗(M)(m,n) = 2. So there

exists k ∈ Z̃∗(M) \ {m,n} such that m− k−n is a path in Γ∗(M) and
hence m− k − n is a path in AG(M). �

In view of Proposition 4.4, we have the following theorem.

Theorem 4.5. Let R be a commutative ring and M be an R-module
with |Z̃∗(M)| ≥ 2. Then AG(M) is connected and diam(AG(M)) ≤ 2.

Lemma 4.6. Let R be a commutative ring and M be an R-module.
Suppose that m−n is an edge of AG(M) that is not an edge of Γ∗(M)
for some distinct m,n ∈ Z̃∗(M). If there is a x ∈ (0 :M ImIn) \ {m,n}
such that IxImM 6= 0 and IxInM 6= 0, then m − x − n is a path in
AG(M) that is not a path in Γ∗(M), and hence C : m− x− n−m is
a cycle in AG(M) of length three and each edge of C is not an edge of
Γ∗(M).

Proof. Suppose that m−n is an edge of AG(M) that is not an edge of
Γ∗(M). Then ImInM 6= 0. Assume that there is a x ∈ (0 :M ImIn) \
{m,n} such that IxImM 6= 0 and IxInM 6= 0. Since In(ImIxM) ⊆
ImInRx = 0, so In ⊆ (0 :R ImInM). If Inx = 0, then InIxM ⊆
InRx = 0, a contradiction. So Inx 6= 0. Similarly Inm 6= 0. Hence
In ⊆ (0 :R ImIxM) \ ((0 :R m) ∪ (0 :R x)), so (0 :R ImIxM) 6= (0 :R
m)∪ (0 :R x). We conclude that m−x is an edge of AG(M). Similarly
Im ⊆ (0 :R InIxM) \ ((0 :R n) ∪ (0 :R x)) and so x − n is an edge of
AG(M). Hence m− x− n is a path in AG(M). Since IxImM 6= 0 and
IxInM 6= 0, thus m − x − n is not a path in Γ∗(M). It is clear that
m − x − n −m is a cycle in AG(M) of length three and each edge of
C is not an edge of Γ∗(M). �

By [8, Theorem 1.8] for every R-module M , gr(Γ∗(M)) ≤ 4, So
gr(AG(M)) ∈ {3, 4} by Lemma 4.1 (2). But the following result shows
that for a reduced multiplication-like R-module M , there is a cycle C
of length 3 or 4 in AG(M) such that C is not a cycle in Γ∗(M).

Theorem 4.7. Let M be a reduced multiplication-like R-module. Sup-
pose that m−n is an edge of AG(M) that is not an edge of Γ∗(M) for
some distinct m,n ∈ Z̃∗(M). Then there exist x, y ∈ M \ {m,n} such
that one of the following statement holds.
(1) x−n−m−x and y−m−n−y are two cycles in AG(M) of length
three such that each edge of C is not an edge of Γ∗(M).
(2) n − x − y −m − n is a cycle in AG(M) of length 4 that is not a
cycle in Γ∗(M).
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Proof. Let m− n be an edge of AG(M) that is not an edge of Γ∗(M).
First suppose that (0 :M ImIn) = 0. Since n ∈ Z∗(M), there exists
x ∈ M such that Ix ⊂ R and InIxM = 0, so IxInImM = 0. Thus
IxM = 0, since (0 :M ImIn) = 0. Therefore IxInM = IxImM = 0.
Hence m− x− n−m is a cycle of length three in AG(M).
Now, assume that (0 :M ImIn) 6= 0. Since m− n is an edge of AG(M)
that is not an edge of Γ∗(M), it follows that (0 :R ImInM) 6= (0 :R
m) ∪ (0 :R n) and ImInM 6= 0. Since M is a reduced module, we
have I2

mInM 6= 0 and ImI
2
nM 6= 0 by Lemma 3.1. Now let r ∈ (0 :R

ImInM) \ ((0 :R m) ∪ (0 :R n)). Then rImInM = 0, rm 6= 0 and
rn 6= 0. It is clear that rm, rn ∈ (0 :R ImIn). Now, we show that
rm, rn /∈ {m,n}. If rm = m, then I2

mInM = ImIn(ImM) ⊆ ImInRm =
ImInRrm = 0, a contradiction. Similarly rm 6= n, since ImI

2
nM 6= 0.

Hence rm /∈ {m,n}. By a similar way, we get rn /∈ {m,n}. Set x = rm
and y = rn. Now, we show that rm−m is an edge of AG(M) that is not
an edge of Γ∗(M). If rm−m is an edge of Γ∗(M), then IrmImM = 0. It
means that (Rrm)(Rm) = (Rrm :R M)(Rm :R M)M = IrmImM = 0,
so Rrm ∩ Rm = 0 by Proposition 3.2 and Lemma 2.2, which is a
contradiction. So rm −m is not an edge of Γ∗(M). Similarly, rn − n
is not an edge of Γ∗(M). The proof will now break into two cases:
Case 1. If IrmInM 6= 0, then ImIrnM 6= 0 by Proposition 3.2. We show
that In ⊆ (0 :R ImIrmM)\ ((0 :R m)∪ (0 :R rm)). Since In(ImIrmM) ⊆
InImRrm = 0, we have In ⊆ (0 :R ImIrmM). Since (0 :R m) ⊆
(0 :R rm), it suffices to show that In(rm) 6= 0. If In(rm) = 0, then
InIrmM ⊆ InRrm = 0 which is a contradiction. So (0 :R ImIrmM) 6=
(0 :R m) ∪ (0 :R rm). Hence m− rm is an edge of AG(M) that is not
an edge of Γ∗(M). Similarly, rn − n is an edge of AG(M) that is not
an edge of Γ∗(M). Now we show that Im ⊆ (0 :R InIrmM) \ ((0 :R
n) ∪ (0 :R rm)). Since Im(IrmInM) ⊆ ImInRrm = 0, it follows that
Im ⊆ (0 :R InIrmM). Since IrmImM 6= 0 and IrmM ⊆ Rrm, we have
Im(rm) 6= 0. Also, if Imn = 0, then ImInM ⊆ ImRn = 0 which is a
contradiction. So rm− n is an edge of AG(M) that is not an edge in
Γ∗(M). Similarly m− rn is an edge of AG(M) that is not an edge in
Γ∗(M). Then in this case, x − n −m − x and y −m − n − y are two
cycles in AG(M) of length three such that each edge of C is not an
edge of Γ∗(M).
Case 2. If IrmInM = 0, then ImIrnM = 0 by Proposition 3.2. So
IrmIrnM ⊆ IrmInM = 0. Hence n−x−y−m−n is a cycle in AG(M)
of length 4 that is not a cycle in Γ∗(M). �

In view of Theorem 4.7, we have the following result.
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Theorem 4.8. Let M be a reduced multiplication-like R-module and
suppose that AG(M) 6= Γ∗(M). Then gr(AG(M)) ∈ {3, 4}. Further-
more, there is a cycle C in AG(M) that C is not a cycle in Γ∗(M).

Proposition 4.9. LetM be a reduced multiplication-like R-module and
suppose that AG(M) 6= Γ∗(M). Suppose that m − n is not an edge of
AG(M) for some distinct m,n ∈ Z̃∗(M). If (0 :R m) = (0 :R n) = 0,
then Z∗(M) = M and gr(AG(M)) = 3.

Proof. Suppose that m − n is not an edge of AG(M). Then (0 :R
ImInM) = (0 :R m) ∪ (0 :R n) = 0 and ImInM 6= 0 by Lemma 4.1
(2). Since m ∈ Z̃∗(M), we have IxImM = 0 for some nonzero element
x ∈M . Thus Ix(ImInM) = 0 and then Ix ⊆ (0 :R ImInM) = 0. Hence
IyIxM = 0 for every element y ∈ M . Thus Z∗(M) = M and x is
adjacent to every element of M . If gr(AG(M)) = 4, then there exists a
cycle a− b− c−d−a, since x adjacent to every element, it follows that
a−x− b−a, a−x−d−a, b−x− c− b and c−x−d− c are four cycles
of length 3 in AG(M), which is a contradiction. So gr(AG(M)) = 3
by Theorem 4.8. �

Proposition 4.10. Let M be an R-module. Then the following hold.
(1) If M has no essential submodule, then Z∗(M) = M .
(2) If M is a reduced multiplication-like R-module and Γ∗(M) is a
complete graph with Z∗(M) = M , then M has no essential submodule.
(3) IfM is a reduced multiplication R-module and AG(M) is a complete
graph with Z∗(M) = M , then M has no essential submodule.

Proof. (1) Let 0 6= x ∈ M . Since M has no essential submodule, Rx
can not be an essential submodule. So there exists 0 6= y ∈ M such
that Rx ∩Ry = 0. Then IxIyM ⊆ Rx ∩Ry = 0 and so x ∈ Z∗(M).
(2) Let M have an essential submodule N and 0 6= x ∈ M . Then
N ∩ Rx 6= 0 and there is a nonzero element y ∈ N ∩ Rx. So 0 6= y ∈
Ry∩Rx; thus Rx∩Ry 6= 0. Since Γ∗(M) is a complete graph, it follows
that IxIyM = 0. Then Rx ∩ Ry = 0 by Lemma 2.2 and Proposition
3.2 which is a contradiction.
(3) Let M have an essential submodule N and 0 6= x ∈M . Then N ∩
Rx 6= 0 and there is a nonzero element y ∈ N∩Rx. So 0 6= y ∈ Ry∩Rx;
thus Rx ∩ Ry 6= 0 and y ∈ Rx. So y = ax for some 0 6= a ∈ R. Since
AG(M) is a complete graph, we have (0 :R IxIyM) 6= (0 :R x)∪ (0 :R y)
and since (0 :R x) ⊆ (0 :R y), we have (0 :R IxIyM) 6= (0 :R y).
Hence there exists 0 6= s ∈ (0 :R IxIyM) \ (0 :R y). So sy 6= 0 and
sIxIyM = 0. Since y ∈ Rx, Iy ⊆ Ix. Therefore sI2

yM ⊆ sIxIyM = 0
and thus sIyM = 0, since M is a reduced module. By assumption M
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is a multiplication module, then sRy = sIyM = 0. Hence s ∈ (0 :R y)
which is a contradiction. �

We end this section with the following proposition.

Proposition 4.11. Let M be a reduced multiplication-like R-module.
If Z∗(M) is a submodule, then Z∗(M) is a prime submodule of M .

Proof. Let rx ∈ Z∗(M) for some r ∈ R and x ∈ M . First suppose
that rx = 0. So r ∈ (0 :R x). If rM = 0, then rM ⊆ Z∗(M). So
let rM 6= 0. Then rn 6= 0 for some nonzero element n ∈ M . Then
IxIrnM = 0 by Lemma 4.3. Thus x ∈ Z∗(M). Now, let rx 6= 0 and
x /∈ Z∗(M). It suffices to show that rM ⊆ Z∗(M). There exists a
nonzero element y ∈ M such that IrxIyM = 0. If r /∈ (0 :R y), then
ry 6= 0 and IryIxM = 0 by Proposition 3.2. Then x ∈ Z∗(M) which is
a contradiction. So we can assume that ry = 0. Let 0 6= λ ∈ rM . Then
λ = rm for some nonzero element m ∈ M . So IyIrmM = IyIλM = 0
by Lemma 4.3. Therefore λ ∈ Z∗(M) and we have rM ⊆ Z∗(M). �

5. When is AG(M) identical to Γ∗(M) ?

In this section, we determine when AG(M) is identical to Γ∗(M). By
Lemma 4.1, each edge (path) of Γ∗(M) is an edge (path) of AG(M). So
Γ∗(M) is an induced subgraph of AG(M) and if Γ∗(M) is a complete
graph, then AG(M) = Γ∗(M) is a complete graph. So in [8], whenever
we have ”Γ∗(M) is a complete graph”, we conclude that AG(M) =
Γ∗(M).

First, we consider several examples of the annihilator and the zero-
divisor graphs of R-modules.
The following is an example of a nonreduced R-module M , where
AG(M) 6= Γ∗(M) and these graphs are not complete.

Example 5.1. Let M = Z12 and R = Z. Since (2̄2)(3̄) = 0 but
(2̄)(3̄) = 6̄ 6= 0, it follows that M is nonreduced. Also, M has seven
weak zero-divisors. It is easy to check that I2̄ = I1̄0 = 2Z, I3̄ = I9̄ = 3Z,
I4̄ = I8̄ = 4Z and I6̄ = 6Z. So I2̄I6̄M = I1̄0I6̄M = 0, I3̄I4̄M =
I3̄I8̄M = I9̄I4̄M = I9̄I8̄M = 0 and I4̄I6̄M = I8̄I6̄M = 0. It is clear
that 0 6= 4̄ ∈ I2̄I1̄0M = (2Z)(2Z)Z12, then 2̄ is not adjacent to 1̄0 in
Γ∗(M). One can see (0 :R I2̄I1̄0M) = 3Z and (0 :R 2̄) ∪ (0 :R 1̄0) = 6Z.
Therefore (0 :R I2̄I1̄0M) 6= (0 :R 2̄) ∪ (0 :R 1̄0). So 2̄− 1̄0 is an edge in
AG(M) that is not an edge of Γ∗(M). Thus AG(M) 6= Γ∗(M).

The following is an example of an R-module M , where AG(M) =
Γ∗(M) is not a complete graph.
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Example 5.2. Let M = Z ⊕ Z2 and R = Z. It is easy to see that
for every 0 6= n ∈ Z, I(n,0̄) = rZ such that r = lcm(2, n), I(n,1̄) = nZ
and I(0,1̄) = 0. So I(n,1̄)I(0,1̄)M = I(n,0̄)I(0,1̄)M = 0 and every element
is adjacent to (0, 1̄) and we have I(n,1̄)I(n,0̄)M 6= 0, I(n,1̄)I(m,1̄)M 6= 0
and I(n,0̄)I(m,0̄)M 6= 0 for every nonzero elements n,m ∈ M . Similarly
for every element α and β of M with α, β ∈ M \ {(0, 1̄)}, we have
(0 :R α) = (0 :R β) = (0 :R IαIβM) = 0. Thus Γ∗(M) and AG(M) are
not complete graphs and AG(M) = Γ∗(M).

The following is an example of a nonreduced R-module M , where
AG(M) 6= Γ∗(M) and Γ∗(M) is not a complete graph, but AG(M) is
the complete graph K3.

Example 5.3. Let M = Z8 and R = Z. Since (2̄2)(2̄) = 0 but (2̄)(2̄) =
4̄ 6= 0, so M is nonreduced. Also, M has three weak zero-divisors. It
is easy to check that I2̄ = I6̄ = 2Z, I4̄ = 4Z and I3̄ = I5̄ = I7̄ = Z. So
I2̄I4̄M = I4̄I6̄M = 0 and I2̄I6̄M 6= 0. Then 2̄ is not adjacent to 6̄ in
Γ∗(M). One can see (0 :R I2̄I6̄M) = 2Z and (0 :R 2̄) ∪ (0 :R 6̄) = 4Z.
Therefore (0 :R I2̄I6̄M) 6= (0 :R 2̄) ∪ (0 :R 6̄). So 2̄ − 6̄ is an edge in
AG(M) that is not an edge of Γ∗(M). Thus AG(M) 6= Γ∗(M) and
AG(M) is the complete graph K3.

The following is an example of a reducedR-moduleM , whereAG(M) =
Γ∗(M) is not a complete graph.

Example 5.4. Let M = Z6 and R = Z. Then M has three weak
zero-divisors. It is easy to check that M is a reduced module and
I2̄ = I4̄ = 2Z, I3̄ = 3Z and I1̄ = I5̄ = Z. So I2̄I3̄M = I4̄I3̄M = 0
and I2̄I4̄M 6= 0. Then 2̄ is not adjacent to 4̄ in Γ∗(M). One can
see (0 :R I2̄I4̄M) = 3Z and (0 :R 2̄) ∪ (0 :R 4̄) = 3Z. Therefore
(0 :R I2̄I4̄M) = (0 :R 2̄) ∪ (0 :R 4̄). Then 2̄ is not adjacent to 4̄ in
AG(M). Thus AG(M) = Γ∗(M) and these graphs are not complete.

Now, we study the case when (0 :R M) is a prime ideal.

Theorem 5.5. Let R be a commutative ring and m,n be distinct
nonzero elements of an R-module M for which (0 :R M) is a prime
ideal. Suppose that m,n ∈ Z̃∗(M). Then m− n is an edge of AG(M)
if and only if m− n is an edge of Γ∗(M).

Proof. Suppose that m− n is an edge of AG(M) such that it is not an
edge of Γ∗(M). It is clear that ImInM 6= 0. We show that m−n is not
an edge of AG(M). If 0 6= r ∈ (0 :R ImInM) \ ((0 :R m) ∪ (0 :R n)),
then rImInM = 0. So rImIn ∈ (0 :R M). Since (0 :R M) is a prime
ideal and ImInM 6= 0, we have r ∈ (0 :R M). Therefore rM = 0
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and r ∈ (0 :R m) ∩ (0 :R n) which is a contradiction. Therefore (0 :R
ImInM) = (0 :R m)∪(0 :R n) and then m−n is not an edge of AG(M).
The converse is clear by Lemma 4.1 (2). �

In view of Theorem 5.5 we have the following result.

Corollary 5.6. Let R be a commutative ring and M be an R-module
M for which (0 :R M) is a prime ideal.Then AG(M) = Γ∗(M).

Proposition 5.7. Let M be an R-module. Then the following hold.
(1) IfM is a reduced multiplication-like uniform module, then AG(M) =
Γ∗(M) = ∅.
(2) AG(M) = Γ∗(M) = ∅ if and only if M is a multiplication-like
uniform module and (0 :R M) is a prime ideal.

Proof. (1) Let m ∈ Z̃∗(M). Then there exists n ∈ Z̃∗(M) such that
ImInM = 0. Since M is a uniform module, we have Rm ∩ Rn 6= 0.
Let 0 6= x ∈ Rm ∩ Rn. Then x = rm = sn for some nonzero elements
r, s ∈ R. So I2

xM = IrmIsnM ⊆ ImInM = 0. Therefore IxM = 0 since
M is a reduced module. Hence Ix = (0 :R M) which is a contradiction.
So Z̃∗(M) = ∅
(2) Let AG(M) = ∅. Then for every nonzero elements m,n ∈ M , m
and n are not adjacent. If Rm∩Rn = 0, then ImInM ⊆ Rm∩Rn = 0
which is a contradiction. So Rm ∩ Rn 6= 0 for every nonzero elements
m,n ∈ M . This implies that M is a uniform module. Now, we show
that M is a multiplication-like module. Let 0 6= x ∈ M . If (0 :R
M) = Ix, then IxM = 0. Therefore IxIyM = 0 for every 0 6= y ∈ M
which is a contradiction. So (0 :R M) ⊂ Ix for every 0 6= x ∈ M and
then M is multiplication-like by [8, Lemma 2.3]. Now, suppose that
rs ∈ (0 :R M) and r, s /∈ (0 :R M). So there exist x, y ∈ M such that
rx 6= 0 and sy 6= 0. Since rsM = 0, it follows that s ∈ (0 :R rx) and
r ∈ (0 :R sy). Then IrxIsyM = 0 by Lemma 4.3. Hence rx, sy ∈ Z̃∗(M)
which is a contradiction. Thus (0 :R M) is a prime ideal.
Conversely, let M is a multiplication-like uniform module and (0 :R M)
is a prime ideal. Then it is clear that M is a reduced R-module. So
the result is clear by (1). �

Lemma 5.8. Let M be a simple R-module. Then AG(M) = Γ∗(M) =
∅.

Proof. Since M is a simple module, Rm = M for every nonzero element
m ∈ M . Then Im = R. So for every elements m,n ∈ M , we have
ImInM = M 6= 0 and thus Z̃∗(M) = ∅. �
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Theorem 5.9. Let M1 and M2 be two isomorphic simple R-modules
and M = M1 ⊕M2. Then Z∗(M) = M and AG(M) = Γ∗(M) is a
complete graph.

Proof. By [14, Theorem 2.1], we can assume that M = M1 ⊕M1 and
we have (R(x, y) :R M) = (0 :R M1) for every elements x, y ∈ M1.
So I(x,y) = (0 :R M1) for every elements x, y ∈ M1. Now, let (0, 0) 6=
(a, b) ∈ M . Then I(x,y)I(a,b)M = (0 :R M1)2M = 0. So Z̃∗(M) =
M \ {0} and Γ∗(M) is a complete graph. Thus AG(M) is a complete
graph. �

We end this paper with the following proposition that shows for a
reduced multiplication-like R-module M , if Z∗(M) = M , then Γ∗(M)
is not a bipartite graph.

Proposition 5.10. Let M be a reduced multiplication-like R-module.
If Γ∗(M) is a bipartite graph with parts V1 and V2 then Z∗(M) 6= M .

Proof. Suppose that Z∗(M) = M . Then Z̃∗(M) = V1 ∪ V2. Let V̄i =
Vi ∪ {0} for i = 1, 2. We show that V̄1 is a submodule of M . Let
x1, x2 ∈ V̄1 and r ∈ R. We have to show that x1 + x2, rx1 ∈ V̄1. If
rx1 = 0, then rx1 ∈ V̄1, so suppose that rx1 6= 0. Since Γ∗(M) is
a bipartite graph, x1 is adjacent to an element of V2, say y1. Then
Ix1Iy1M = 0, so Irx1Iy1M = Ix1Iy1M = 0. Since y1 ∈ V̄2, we have
rx1 ∈ V̄1.
If x1 + x2 = 0, then it is clear that x1 + x2 ∈ V̄1. Now suppose that
0 6= x1 + x2 /∈ V1, then x1 + x2 ∈ V2 since Z∗(M) = M = V1 ∪ V2.
So Ix1Ix1+x2M = Ix2Ix1+x2M = 0. This implies that Rx1 ∩ R(x1 +
x2)M = Rx2 ∩ R(x1 + x2)M = 0 by Lemma 2.2 and Proposition 3.2.
If Ix1+x2 = 0, then x1 + x2 is adjacent to every vertices which is a
contradiction. Hence Ix1+x2 6= 0. Let (0 :R x1) = 0 and 0 6= r ∈ Ix1+x2 .
Then rM ⊆ R(x1+x2). So 0 6= rx1 ∈ rM ⊆ R(x1+x2); thus 0 6= rx1 ∈
Rx1 ∩ R(x1 + x2) which is a contradiction. Therefore (0 :R x1) 6= 0,
Similarly (0 :R x2) 6= 0. If r ∈ (0 :R x1) \ (0 :R x2), then rx1 = 0
and rx2 6= 0. So 0 6= rx2 = r(x1 + x2) ∈ Rx2 ∩ R(x1 + x2) which is
a contradiction. The result is similar when r ∈ (0 :R x2) \ (0 :R x1).
Now, assume that (0 :R x1) = (0 :R x2) 6= 0. We may assume that
(0 :R x1 + x2) 6= 0 since (0 :R x1) ⊆ (0 :R x1 + x2). If (0 :R x1 +
x2) = Ix1+x2 , then I2

x1+x2
M = Ix1+x2(Ix1+x2M) ⊆ Ix1+x2R(x1 +x2) = 0,

then Ix1+x2M = 0 since M is reduced. So x1 + x2 is adjacent to all
vertics which is a contradiction. Therefore (0 :R x1 + x2) 6= Ix1+x2 .
Let s ∈ Ix1+x2 \ (0 :R x1 + x2). If sx1 = 0, then sx2 = 0 since
(0 :R x1) = (0 :R x2) which is a contradiction. Hence sx1 6= 0. So
sx1 ∈ sM ⊆ R(x1 + x2), thus 0 6= sx1 ∈ Rx1 ∩ R(x1 + x2) which is
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a contradiction. Therefore we have x1 + x2 ∈ V1. Similarly, V2 is a
submodule of M .
Now suppose that m ∈ Z̃∗(M). We can assume that m ∈ V1. So there
exists n ∈ Z̃∗(M) such that ImInM = 0. Thus n ∈ V̄2. If m + n = 0,
then m = −n ∈ V1 ∩ V2 which is a contradiction. So, let m + n 6= 0.
Then m + n ∈ Z̃∗(M), since Z∗(M) = M . Let m + n ∈ V1. Then
m + n ∈ V̄1. Therefore n ∈ V̄1 ∩ V̄2 = 0 which is a contradiction. The
proof is similar if m+ n ∈ V2. �
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