
Journal of Algebra and Related Topics

Vol. 9, No 1, (2021), pp 79-92

SOME RESULTS ON THE QUOTIENT OF CO-M
MODULES

S. RAJAEE

Abstract. In this paper, among various results, we prove that
if M is a cancellation co-m R-module and L is a non-zero simple
submodule of M , then M/L is a co-m R-module. We investigate
various conditions under which the quotient module M/N of a
co-m module M is also co-m. Moreover, if M is a cancellation
Noetherian co-m R-module, then for every second submodule N of
M the quotient module M/N is also a co-m R-module. We prove
some results concerning socle and radical of co-m modules.

1. Introduction

Throughout this paper all rings are assumed commutative with non-
zero identity and all modules are unitary. Multiplication modules play
important roles in module theory and have been studied by many au-
thors extensively, see [3], [10], and [22]. We denote the set of all sub-
modules of M by L(M), and also L∗(M) = L(M)\{0,M}. The notion
of Max(M) denote the set of all maximal submodules of M . A proper
submodule N of M is said to be prime if from rm ∈ N for r ∈ R and
m ∈M we can deduce that r ∈ (N : M) or m ∈ N . The set of all prime
submodules of M , denoted by Spec(M). For any submodule N of an
R-module M , we define V(N) to be the set of all prime submodules
of M containing N . The singular submodule of a module M will be
denoted by Z(M), and is Z(M) := {m ∈ M : Ann(m) ≤e R}. Then
M is called singular if Z(M) = M and is nonsingular if Z(M) = {0}
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[21, p.247]. The second singular submodule Z2(M) is the submodule
containing Z(M) such that Z2(M)/Z(M) = Z(M/Z(M)) [19, p.37].

An R-module M is called a multiplication module, if every submod-
ule N of M has the form N = IM for some ideal I of R. Note that
therefore I ⊆ AnnR(M/N) and then N = IM ⊆ AnnR(M/N)M ⊆ N .
Therefore N = AnnR(M/N)M . We note that submodules of a mul-
tiplication R-module M need not be multiplication R-modules. It is
clear that every cyclic module is multiplication, and that a multiplica-
tion module over a local ring is cyclic, see [10, Propostion 4].

According to [5, Definition 3.1], an R-module M is called comulti-
plication (co-m for short), if for every submodule N of M , there exists
an ideal I of R such that N = AnnM(I). It is clear that if M is
a co-m R-module, then M is a faithful co-m R/I-module such that
I = AnnR(M), since AnnR/I(M) = I = 0R/I . In [5, Lemma 3.7], it is
shown that M is a co-m R-module if and only if for each submodule
N of M , we have N = (0 :M AnnR(N)). By [5, Example 3.8], every
semisimple ring as a module over itself is co-m. Note that every sub-
module of a co-m module M is also co-m [5, Theorem 3.17 (d)]. But
the quotient modules of a co-m module are not necessarily co-m, see
[7, Example 2.6].

We investigate some various conditions on module M and some sub-
modules N of M under which the quotient module M/N of a co-m
module M is also co-m. We use N ≤ M (resp., N � M , N ≤e M)
to indicate that N is a submodule (resp., a small submodule, an es-
sential submodule) of M . For a submodule K of a module M , Zorn’s
lemma guarantees the existence of a submodule L of M such that L
is a maximal essential extension of K in M . A maximal essential ex-
tension of N in M is called a closure of N in M . A submodule N of
an R-module M is said to be pure if IN = IM ∩ N for every ideal I
of R [4, p.232]. Hence, an ideal I of a ring R is pure, if IJ = I ∩ J
for any ideal J of R. A submodule N of an R-module M is said to
be copure if (N :M I) = N + (0 :M I) for every ideal I of R [7,
Definition 2.7]. An R-module M is said to be fully copure if every
submodule of M is copure. It is possible for a co-m R-module M , to
have a submodule N for which there exist two ideals I 6= J with the
property (0 :M I) = N = (0 :M J). For example, if M = Z2∞ , then
(0 :M 2Z) = (0 :M 6Z). It is easy to see that for each submodule N
of M there exists a unique ideal I of R such that N = (0 :M I) if and
only if M is co-m and satisfies the double annihilator condition (DAC
for short) that is, AnnR(AnnM(I)) = I for each ideal I of R. Modules
with this property are called strong comultiplication (s-co-m for short)
modules, see [7, Definition 2.1].
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An R-module M is said to be distributive if the lattice of its sub-
modules is distributive, i.e. (X + Y )∩Z = (X ∩Z) + (Y ∩Z) for any
of its submodules X, Y and Z [12].

2. Preliminaries

In this section, we remind some of the definitions and points that
we need in the next sections. We refer the reader to [2], [4], [14], [19],
and [21] for all concepts and basic properties of rings and modules not
defined here.

Definition 2.1. Let M be an R-module and N be a submodule of M .

(i) N is called small (superfluous) if for every submodule L of M ,
L + N = M , implies that L = M . We denote the set of all
small submodules of M by S(M) [4, p.72].

(ii) N is called essential (large) if for every non-zero submodule L
of M , N ∩ L 6= 0, or equivalently for every submodule L of M ,
N∩L = 0, implies that L = 0. We denote the set of all essential
submodules of M by ess(M) [4, p.72].

(iii) M has the property (∗), if for every two ideals I and J of R,
(0 :M I) + (0 :M J) = (0 :M I ∩ J) (∗).

We note that a s-co-m module is a module M with property (∗).

Example 2.2. Let Z be the ring of integer numbers.

(i) Consider M = Z4 as an Z-module, then the only proper sub-
module N = {0, 2} of M is equal to N = (0 :Z4 2Z). Therefore
Z4 is a co-m Z-module.

(ii) Let p be a prime number and consider the Z-module M = Zp∞ .
Choose N = Z(1/p+Z) and set I = Zpi, i ≥ 0. It is clear that
N = AnnM(I). Therefore M = Zp∞ is a co-m Z-module, see
[5, Example 3.2].

(iii) Consider M = Z as a Z-module, then M is not co-m, because
Z = (0 :Z AnnZ(2Z)) 6= 2Z, see [5, Example 3.9].

Definition 2.3. Let M be an R-module.

(i) M is semisimple if every submodule N of M is a direct sum-
mand of M [4, p.116].

(ii) M is finitely generated if for every family A of submodules of
M ,

∑
A = M implies that

∑
F = M for some finite subset F

of A [4, p.123]. Dually, a module M is finitely cogenerated in
case for every family A of submodules of M ,

⋂
A = 0 implies

that
⋂

F = 0 for some finite subset F in A [4, p.124].
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(iii) The radical Jacbson of M , denoted by Rad(M) which is equal to
Rad(M) =

⋂
L∈Max(M)

L =
∑

N�M
N . If M does not have maximal

submodules, we put Rad(M) = M , see [4, Proposition 9.13].
(iv) The socle of M is defined to be the sum of the minimal non-

zero submodules of M . It can be considered as a dual notion
to that of the radical Jacbson of a module. In set notation,
soc(M) =

∑
N∈Min(M) N =

⋂
E∈ess(M) E, see [4, Proposition

9.7].
(v) A ring R is said to be a CS-ring if every complement ideal is a

direct summand of RR, also called extending ring [21, p.222].

Definition 2.4. Let M be an R-module.

(i) An ideal I of R is called an M -cancellation ideal, if for all sub-
modules N and K of M , the equality IN = IK implies that
N = K. A ring R is called an M -cancellation ideal ring, if every
non-zero ideal I of R is an M -cancellation ideal. In this case,
we say that M is a cancellation module.

(ii) A non-zero submodule N of M is said to be second if for each

a ∈ R, the homomorphism N
a−→ N is either surjective or zero.

This implies that AnnR(N) is a prime ideal of R [7, Definition
1.1].

(iii) The M-radical of a submodule N of M is the intersection of all
prime submodules of M containing N , denoted by radM(N) or
briefly, rad(N), i.e., rad(N) =

⋂
P∈V (N) P . If N is not contained

in any prime submodule, then rad(N) = M .
(iv) A submodule N of M is called quasi-copure if every proper

prime submodule P containing N is a copure submodule of M
[24, Definition 2.4].

Definition 2.5. Let M be an R-module.

(i) The submodule N of M is called closed if it has no proper
essential extension in M , i.e. if N ≤e K for some K ⊆ M ,
then K = N [19, page18]. Also N is coclosed in M , if whenever
N/K �M/K for some K ⊆M implies that N = K, i.e., N/K
is not small in M/K for any proper submodule K of N [20].

(ii) M is said to be Hopfian if every surjective R-endomorphism f ∈
EndR(M) is an isomorphism. Also M is said to be generalized
Hopfian (gH for short) if for every surjective R-endomorphism
f ∈ EndR(M), we have ker f �M [17, p.325].
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3. On the quotient of co-m modules

The aim of this section is to investigate some results on the quotient
of co-m modules. For any unexplained notions or terminology please
see [2, 4, 14, 19, 21]. Regular modules have been studied under different
definitions. A module M is called regular if each submodule N of M is
(Cohn) pure in M , i.e., the inclusion 0→ A→ B remains exact upon
tensoring by any (right) R-module. We recall that a ring R is regular
if every element in R is von Neumann regular [19, p.10]. Equivalently,
R is regular if it is regular as an R-module, i.e., every ideal I of R is
pure.

Now we state and prove the following theorem, which is one of the
main result of this section.

Theorem 3.1. Let M be a co-m R-module. Then the following state-
ments are true.

(i) If M is a cancellation module and 0 6= L ∈ Min(M), then M/L
is also a co-m R-module.

(ii) If M is a cancellation module and N ∈ Min(M), then for every
m ∈ Max(R), Mm/Nm is a co-m Rm-module.

(iii) Assume that S = {K < M : K 6= N, N ∩ K 6= 0} for a
submodule N ∈ L∗(M). If |S| = 0, then M/N is a simple
co-m R-module. Moreover, in this case L∗(M) = {N} or M is
the direct sum of two copure submodules.

(iv) If M is cancellation and m ∈ Max(R), then M/(0 :M m) is a
co-m R-module.

(v) If M is either semisimple or fully pure, then for every submodule
N of M , M/N is also a co-m R-module.

Proof. i) Let I be an M -cancellation ideal of R and L be a non-zero
simple submodule of M . Clearly, I(L :M I) ⊆ L. It follows that
I(L :M I) = 0 or I(L :M I) = L.

Case i. Suppose that I(L :M I) = 0, then (L :M I) ⊆ (0 :M I) ⊆
L + (0 :M I). Conversely, it is clear that L + (0 :M I) ⊆ (L :M I).

Case ii. Let I(L :M I) = L. We note that I(L+ (0 :M I)) = IL ⊆ L.
If IL = 0, then IL = I0 = 0, and since I is an M -cancellation ideal,
hence L = 0, which is impossible. It implies that IL = L and so
I(L :M I) = L = I(L + (0 :M I)) = IL. Since I is an M -cancellation
ideal, hence (L :M I) = L + (0 :M I). Moreover, in this case, if M is
co-m, then by [25, Theorem 2.1], M/L is also a co-m R-module.

ii) We know that M is a cancellation R-module if and only if Mm is
a cancellation Rm-module for every maximal ideal m of R. Moreover,
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since N ∈ Min(M) hence Nm ∈ Min(Mm). By virtue of (i), the proof
is complete.

iii) It is clear that N is a simple submodule of M and by part (i),
N is a copure submodule of M . Since |S| = 0, hence M/N is also a
simple R-module. By virtue of [25, Theorem 2.1], M/N is a simple
co-m R-module. It follows that N ∈ Min(M) ∩ Max(M), therefore
L∗(M) = {N} otherwise, N is a simple submodule of M and M =
N ⊕K for a simple submodule K of M , where by part (i), N and K
are copure submodules of M .

iv) Since N = (0 :M m) is a simple submodule of M , hence the proof
is completed by part (i). Furthermore, in virtue of [6] from the fact
that every non-zero submodule N of M contains a simple submodule
K of M , therefore M/K is a co-m R-module.

v) By [9, Lemma 3.11] and [9, Corollary 3.16 (b)], M is a fully copure
module and by [25, Theorem 2.1] the proof is complete. �

Corollary 3.2. Let R be a PID and M be a cyclic co-m module gen-
erated by a non-torsion element. Then for every N ∈ Min(M), M/N
is a co-m R-module.

Proof. Clearly every non-zero element of M is non-torsion. It implies
that M is a cancellation module. The proof is complete by Theorem
3.1 (i). �

Corollary 3.3. Let M = N ⊕K be a co-m R-module and let N,K be
cancellation R-modules where Ann(N) + Ann(K) = R. Then for every
L ∈ Min(M), M/L is a co-m R-module.

Proof. Since N,K are cancellation modules where Ann(N)+Ann(K) =
R, hence for two submodules L = L1 ⊕ L2 and T = T1 ⊕ T2 of M and
every ideal I of R the equality IL = IT implies that IL1 = IL2 and
also IT1 = IT2. By hypothesis, N,K are cancellation modules hence
L = T . This conclude that M is a cancellation module and the proof
is complete by Theorem 3.1 (i). �

Remark 3.4. Every submodule N of Z-module Zn is copure, where n
is square-free. Therefore Zn/N is a co-m Z-module.

Theorem 3.5. Let M and M
′

be two co-m R-modules. The following
assertions hold.

(i) If M is a fully copure module, then for every N ∈ L∗(M), M/N
is a co-m R-module.

(ii) If R is a Noetherian ring and I is a pure ideal of R, then for
every copure submodule N of M , M/(N :M I) is a co-m R-
module.
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(iii) For every copure submodule N of M and each P ∈ Spec(R),
MP/NP is a co-m RP -module. Furthermore, if K is a second
submodule of M , then NP is a copure submodule of MP , where
P = Ann(K).

(iv) If R is a PID, then for every pure submodule N of M , M/N is
a co-m R-module.

(v) If R is a principal ideal regular domain, then for any submodule
N of M , M/N is a co-m R-module.

(vi) If f ∈ End(M) is idempotent, then Im(f) is a co-m R-module..

Proof. i) It is clear by [25, Theorem 2.1].
ii) It follows by [8, Proposition 2.6] and [25, Theorem 2.1].
iii) It is clear since for every P ∈ Spec(R), MP is a co-m RP -module,

and NP is a copure submodule of MP . The second part follows from
this fact that since K is a second submodule of M , hence Ann(K) is a
prime ideal of R.

iv) It is clear by [8, Theorem 2.12] and [25, Theorem 2.1].
v) By [16, Theorem 4], M is a regular module and hence every sub-

module of M is a pure submodule. Then the proof is clear by (iv).
vi) By [15, Proposition 2.4] since f 2 = f , hence ker(f) is a copure

submodule of M and by [25, Theorem 2.1], M/ ker(f) ∼= Im(f) is a
co-m R-module. �

Recall that a module M is called cocyclic if there exists an essential
simple submodule in M . In fact, M is cocyclic, if and only if, M is a
uniform module with non-zero socle, if and only if, M is isomorphic to
a non-zero submodule of the injective hull of a simple module.

Corollary 3.6. Let M be an R-module. Then the following statements
are true.

(i) If M is a cancellation cocyclic module, then soc(M) is a copure
submodule of M . In this case, if M is a co-m module, then
M/soc(M) is also a co-m R-module.

(ii) If M is a cancellation Noetherian co-m module, then for every
second submodule N of M the quotient module M/N is a co-m
R-module.

(iii) If M is a semisimple co-m module, then every quotient module
of M is also a co-m R-module.

(iv) If N1 ⊆ N2 ⊆ · · · is an ascending chain of copure submodules
of a co-m module M , then M/ ∪∞i=1 Ni is a co-m R-module.

Proof. i) We know that a cocyclic module M over an arbitrary ring R
has a simple essential socle. It follows by Theorem 3.1, (i), that soc(M)
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is a copure submodule of M . Then by [25, Theorem 2.1], M/soc(M)
is a co-m R-module.

ii) Suppose that M is a Noetherian co-m module. By [6, Theorem
3.1], M has a finite number of second submodules and every second
submodule of M is a minimal submodule of M . By virtue of Theorem
3.1 (i), every second submodule is copure and by [25, Theorem 2.1],
M/N is a co-m R-module.

iii) One can check that every direct summand of an R-module M
is a copure submodule of M . Since M is semisimple, hence every
submodule N of M is a direct summand of M . It implies that M =
N ⊕ K for some K ∈ L(M). It follows that M/N ∼= K is a co-m
R-module.

iv) The proof is clear. �

Corollary 3.7. Let M be an R-module and let {Ni}i∈Λ be a finite
family of copure submodules. Then the following assertions hold.

(i) If M is s-co-m, then M/⊕i∈Λ Ni is co-m.
(ii) If M is a distributive co-m module, then M/ ∩i∈Λ Ni is co-m.

Proof. i) Clearly the class of s-co-m modules is closed under sum of
copure submodules, hence ⊕i∈ΛNi is a copure submodule of M and the
proof is complete by [25, Theorem 2.1].

ii) It follows by [24, Theorem 3.3 (ii)] and [25, Theorem 2.1]. �

The following theorem shows that if M is s-co-m on a regular ring
R, then M/N is a co-m R-module for every submodule N of M .

Theorem 3.8. Let M be a s-co-m R-module and N ∈ L(M). Then
the following assertions hold.

(i) M/N is a co-m R-module if and only if (0 :R N)(N :R K) =
(0 :R K) for each submodule K of M with N ⊆ K.

(ii) If AnnR(N) is a pure ideal of R, then M/N is a co-m R-module.
(iii) For every pure ideal I of R, the quotient module M/AnnM(I)

is a co-m R-module. Furthermore, M is a fully copure module
if and only if R is a regular ring.

Proof. i) It follows by [7, Theorem 2.5, (a)].
ii) By [7, Theorem 2.13, (a)], N is a copure submodule of M and the

proof follows from [25, Theorem 2.1].
iii) It follows by [7, Theorem 2.13, (b)] and [25, Theorem 2.1]. For

second part, since M is s-co-m, hence N = (0 :M I) for some ideal I of
R. By virtue of [7, Theorem 2.13, (b)], an ideal I of R is pure if and
only if N = (0 :M I) is a copure submodule of M . This implies that R
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is a regular ring if and only if M is a fully copure module. In this case
M/N is a co-m R-module for every N ∈ L(M). �

Note that if R is an integral domain and there exists a faithful mul-
tiplication and co-m R-module M , then R is a field. In this case, M is
simple, see [6, Theorem 3.3 (e)].

Theorem 3.9. Let M be a non-zero co-m R-module. The following
assertions are true.

(i) If N is a quasi-copure submodule of M , then for every P ∈
V(N), M/P is a co-m R-module.

(ii) If M is a distributive s-co-m module and N is a quasi-copure
submodule of M with |V (N)| < ∞, then M/rad(N) is a co-m
R-module.

(iii) If M is a finitely generated multiplication module and N is a
quasi-copure primary submodule of M , then M/rad(N) is co-m.
Furthermore, for every primary submodule L ⊇ N , M/rad(L)
is a co-m R-module.

(iv) If M is a Noetherian multiplication module, then for every
quasi-copure submodule N of M , M/rad(N) is a co-m R-module.
Moreover, if R is an arithmetical ring, then for quasi-copure
submodules N and K of M , M/rad(N∩K) is a co-m R-module.

Proof. i) The proof is clear by definition and [25, Theorem 2.1].
ii) By Corollary 3.7 (i), rad(N) = ∩P∈V(N)P is a copure submodule

of M and the proof is complete.
iii) By [24, Corollary 3.4 (ii)], rad(N) is a prime submodule of M con-

taining N . Since N is a quasi-copure submodule of M , therefore rad(N)
is a copure submodule of M and by [25, Theorem 2.1], M/rad(N) is a
co-m R-module. The second part is followed by [24, Theorem 3.3 (i)]
and [25, Theorem 2.1].

iv) The proof is clear by [24, Corollary 3.4, (iv)] and part (i). �

4. Some results on radical and socle of a co-m module

In this section we investigate some results concerning socle and rad-
ical of co-m modules. Note that Z2(M) is a closed submodule of M
and Z(M) ≤e Z2(M). It is known that Z2(M) is the unique closure
of Z(M). It is easy to see that each of Z(M) and Z2(M) is a fully
invariant submodule of M . It can be verified that if N ≤e M , then
Z(M/N) = M/N . If R is a (right) nonsingular ring, i.e. RR is nonsin-
gular, then Z(M) = Z2(M) for every R-module M see ([2], p.153). It
is well known that M/Z2(M) is a nonsingular module.
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In the following theorem we investigate some various results related
to the radical and socle of co-m modules.

Proposition 4.1. Let M be a s-co-m R-module. Then the following
assertions hold.

(i) If (0 :R Rad(M)) = 0, then soc(R) = 0.
(ii) If R is a CS-ring and cogenerates the simple R-modules, then

Rad(M) is a small submodule of M and also M has at least a
maximal submodule. In addition, if M is nonsingular, then M
is semiprimitive.

Proof. i) By [25, Proposition 2.4], for a submodule N of M , N �M if
and only if there exists I ≤e R such that N = AnnM(I). According to
[7], for a collection {Mλ}λ∈Λ of submodules of M the following equality
holds (0 :M

⋂
λ∈Λ AnnR(Mλ)) =

∑
λ∈Λ(0 :M AnnR(Mλ)). Therefore

Rad(M) =
∑

N�M N =
∑

I∈F⊆ess(R) AnnM(I) = (0 :M
⋂
I∈F⊆ess(R) I).

We conclude that (
⋂
I∈F⊆ess(R) I)Rad(M) = 0. Since (0 :R Rad(M)) =

0, therefore soc(R) ⊆
⋂
I∈F⊆ess(R) I = 0. In this case, R have infinite

number of essential ideals.
ii) We note that since R is a CS-ring and cogenerates the simple R-

modules by [18, Corollary 2.7], R has a finite essential socle. Therefore
Rad(M) = (0 :M soc(R)), where soc(R) is an essential ideal of R.
By [25, Proposition 2.4], Rad(M) is a small submodule of M . Hence,
Rad(M) 6= M and so M has at least a maximal submodule.

Furthermore, if M is a nonsingular module, then soc(R)Rad(M) = 0,
and this implies that Rad(M) = 0. Therefore M is semiprimitive. �

Proposition 4.2. Let M be a faithful s-co-m R-module, and let soc(M)
be a pure submodule of M . Then M is a semisimple module. Further-
more, Rad(R) ⊆ Ann(M).

Proof. Since M is s-co-m, hence M is finitely cogenerated and by
[23, Theorem 1 (2)] for any finitely cogenerated module M , soc(M)
is an essential submodule of M and also a finite direct sum of sim-
ple modules. By [25, Theorem 2.5], there exists I � R such that
soc(M) = AnnM(I). Moreover, since M has the property (∗), then by
[25, Corollary 2.7], soc(M) = (0 :M Rad(R)). By virtue of [7, Proposi-
tion 2.11 (b)], since soc(M) is a pure submodule of the faithful s-co-m
M , hence soc(M) = M i.e., M is semisimple. Moreover, it follows that
M = (0 :M Rad(R)) and hence Rad(R) ⊆ Ann(M). �
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Theorem 4.3. Let M be a s-co-m R-module and let K be a copure
submodule of M with AnnR(M/K) = 0. Then for every small submod-
ule N of M , where N ⊇ K there exists I ≤e R such that I(N/K) = K.
In particular, if AnnM(soc(R)) = 0, then M/K is a semiprimitive R-
module.

Proof. First we prove that if M has property (∗) and K is a copure
submodule of M , then M/K has also property (∗) as an R-module.

x + K ∈ (0̄ :M/K I ∩ J)⇒ (I ∩ J)(x + K) = (I ∩ J)x + K ⊆ K

⇒ (I ∩ J)x ⊆ K ⇒ x ∈ (K :M I ∩ J)

= K + (0 :M I ∩ J) = K + (0 :M I) + (0 :M J)

= K + (0 :M I) + K + (0 :M J)

⇒ x + K ∈ K + (0 :M I)

K
+

K + (0 :M J)

K

=
(K :M I)

K
+

(K :M J)

K
= (0̄ :M/K I) + (0̄ :M/K J).

The converse is clear. Let N be a small submodule of M such that
N ⊇ K, then N/K is a small submodule of M/K. Because, if N/K +
L/K = M/K, where L/K ≤ M/K, then (N + L)/K = M/K, and
so N + L = M but N is a small submodule of M , hence L = M and
so L/K = M/K. Since K is copure and AnnR(M/K) = 0, hence
M/K is a faithful co-m R-module. Now for every small submodule N
of M such that N ⊇ K we have N/K � M/K and by virtue of [25,
Theorem 2.4], it is true if and only if there exists I ≤e R such that
N/K = (0̄ :M/K I) = (K :M/K I) = (K :M I)/K = (K + (0 :M I))/K.
This implies that I(N/K) = (IK + K)/K = K = 0̄ for some ideal
I ≤e R. In particular, in this case we obtain that

Rad(M/K) =
∑

N/K�M/K

N/K =
∑

I∈F⊆ess(R)

(K :M I)/K

= (K +
∑

I∈F⊆ess(R)

(0 :M I))/K

= (K + (0 :M
⋂

I∈F⊆ess(R)

I))/K

⊆ (K + (0 :M soc(R)))/K = K = 0M/K .

It follows that M/K is a semiprimitive R-module. �

Remark 4.4. Let M be a nonsingular R-module, and let N ≤M . The
following assertions hold.
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(i) N is an essential submodule of M if and only if M/N is singular
[19, Proposition 1.21].

(ii) The class of all nonsingular R-modules is closed under sub-
modules, direct products, essential extensions, and module ex-
tensions. The class of all singular R-modules is closed under
submodules, factor modules, and direct sums [19, Proposition
1.22].

(iii) If M is a simple module, then M is a projective module [19,
Proposition 1.24]. Therefore every nonsingular semisimple R-
module is projective [19, Corollary 1.25].

Theorem 4.5. Let M be a nonsingular s-co-m R-module. Then the
following assertions hold.

(i) S(M) = {0} and M is a co-semisimple module.
(ii) if M/Z2(M) is a faithful R-module and Z2(M) is a copure sub-

module of M , then M/Z2(M) contain no non-zero small sub-
module.

(iii) if Z2(M)� M , then every submodule of M containing Z2(M)
is coclosed.

(iv) M/Z2(M) is Hopfian.

Proof. i) Since M is nonsingular hence for any essential ideal I of R and
every non-zero element m ∈ M , Im 6= 0. If N is a small submodule
of co-m M , then by [25, Proposition 2.4], there exists I ≤e R such
that N = AnnM(I). It follows that N = 0 and we conclude that
S(M) = {0} and so Rad(M) = 0. It implies that M is a V -ring
and also M is cogenerated by the class of simple modules hence M is
co-semisimple.

ii) Now let Z2(M) be a copure submodule of M . By virtue of [19,
Exercise 20, p.37], Z(M/Z2(M)) = 0, i.e., M/Z2(M) is a nonsingular
faithful co-m R-module and by (i), S(M/Z2(M)) = {0}. Moreover, by
[1, Corollary 1.7], M/Z2(M) is semisimple and projective.

In this case, by Remark 4.4 (i), Z2(M) is not an essential submodule
of M , since M/Z2(M) is a nonsingular R-module and also M/Z2(M)
is a fully copure R-module.

iii) By (i), there is no proper small submodule containing Z2(M).
In particular, if Z2(M) � M , then for every submodule Z2(M) ⊆ N ,
N/Z2(M) � M/Z2(M) implies that N � M and hence Z2(M) = N .
This implies that N is coclosed in M .

iv) Let f : M/Z2(M)→M/Z2(M) be a epimorphism of R-modules.
Then since M/Z2(M) is a faithful co-m R-module, hence M/Z2(M) is
gH. It follows that ker f � M/Z2(M). By (i), we must have ker f =
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{0̄} and so f is an R-module isomorphism. Therefore M/Z2(M) is
Hopfian. �

Acknowledgments

The author is grateful to the referee for helpful suggestions which have
resulted in an improvement to the article.

References

[1] Y. AL.Shaniafi and P.F. Smith, Comultiplication modules over commutative
rings, J. Commut. Algebra, (1) 3 (2011), 1-29.

[2] T. Albu, G.F. Birkenmeier, A. Erdoğan and A. Tercan, Ring and Module
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