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ON MODULI SPACES OF KÄHLER-POISSON
ALGEBRAS OVER RATIONAL FUNCTIONS IN TWO

VARIABLES

A. AL-SHUJARY

Abstract. Kähler-Poisson algebras were introduced as algebraic
analogues of function algebras on Kähler manifolds, and it turns
out that one can develop geometry for these algebras in a purely
algebraic way. A Kähler-Poisson algebra consists of a Poisson al-
gebra together with the choice of a metric structure, and a natural
question arises: For a given Poisson algebra, how many different
metric structures are there, such that the resulting Kähler-Poisson
algebras are non-isomorphic? In this paper we initiate a study of
such moduli spaces of Kähler-Poisson algebras defined over rational
functions in two variables.

1. Introduction

In [3] we initiated the study of Kähler-Poisson algebras as algebraic
analogues of algebras of functions on Kähler manifolds. Kähler-Poisson
algebras consist of a Poisson algebra together with a metric structure.
This study was motivated by the results in [1] and [2], where many as-
pects of the differential geometry of an embedded almost Kähler mani-
fold Σ can be formulated in terms of the Poisson structure of the algebra
of functions of Σ. In [3] we showed that “the Kähler–Poisson condi-
tion”, being the crucial identity in the definition of Kähler-Poisson
algebras, allows an identification of geometric objects in the Poisson
algebra which share important properties with their classical counter-
parts. For instance, we proved the existence of a unique Levi-Civita
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connection on the module generated by the inner derivations of the
Kähler-Poisson algebra, and that the curvature operator has all the
classical symmetries. In [5] we explore further algebraic properties of
Kähler-Poisson algebras. In particular, we find appropriate definitions
of morphisms of Kähler-Poisson algebras as well as subalgebras, direct
sums and tensor products.

Starting from a Poisson algebra A, it is interesting to ask the fol-
lowing question: How many non-isomorphic Kähler-Poisson algebras
can one construct from A? This amounts to the study of a “moduli
space” for Kähler-Poisson algebras, in analogy with the corresponding
problem for Riemannian manifolds, where one consider metrics giving
rise to non-isometric Riemannian manifolds. In general, this is a hard
problem and, in this note, we will focus on approaching this problem
in a particular setting. For our purpose, we start from the polyno-
mial algebra C[x, y]. In order to understand isomorphism classes of
Kähler-Poisson algebras based on this algebra, one needs to study au-
tomorphisms of C[x, y]. In [10] Jung shows that every automorphism of
C[x, y] is a composition of so called elementary automorphisms. This
result was later extended to a field k of arbitrary characteristics and
free associative algebras ([6], [7], [11], [13], and [15]). In the notation of
[12] (which also provides an elementary proof of the automorphism the-
orem), every k-algebra automorphism of k[x, y] is a finite composition
of automorphisms of the type:

(1) x 7→ x, y 7→ y + h(x) with h(x) ∈ k[x]
(2) x 7→ a11x+a12y+a13, y 7→ a21x+a22y+a23 with a11a22 6= a21a12

for aij ∈ k. Using these automorphisms, we shall initiate a study of iso-
morphism classes of Kähler-Poisson algebras over C[x, y]. However, as
shown in [3], the construction of a Kähler-Poisson algebra over C[x, y]
will in most cases involve a localization of the algebra. Therefore,
we shall rather start from C(x, y), the algebra of rational functions of
two variables, together with an appropriate linear Poisson structure.
Although we do not solve the problem in its full generality, the clas-
sification results for certain classes of metrics obtained below, give an
insight into the complexity of the general problem.

2. Kähler-poisson algebras

We begin this section by recalling the main object of our investigation.
Let us consider a Poisson algebra (A, {·, ·}) over C and let {x1, ..., xm}
be a set of distinguished elements of A. These elements play the role of
functions providing an isometric embedding for Kähler manifolds (cf.
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[2]). Let us recall the definition of Kähler-Poisson algebras together
with a few basic results (cf. [3]).

Definition 2.1. Let (A, {·, ·}) be a Poisson algebra over C and let
x1, ..., xm ∈ A. Given a symmetric m×m matrix g = (gij) with entries
gij ∈ A, for i, j = 1, ...,m, we say that the tripleK = (A, g, {x1, ..., xm})
is a Kähler–Poisson algebra if there exists η ∈ A such that

m∑
i,j,k,l=1

η{a, xi}gij{xj, xk}gkl{xl, b} = −{a, b} (2.1)

for all a, b ∈ A. We call equation (2.1) ”the Kähler–Poisson condition”
.

Given a Kähler-Poisson algebra K = (A, g, {x1, ..., xm}), let g denote
the A-module generated by all inner derivations , i.e.

g = {a1{c1, ·}+ ...+ aN{cN , ·} : ai, c
i ∈ A and N ∈ N}.

It is a standard fact that g is a Lie algebra with respect to the bracket

[α, β](a) = α(β(a))− β(α(a)),

where α, β ∈ g and a ∈ A (see e.g. [8]).
Moreover, it was shown in [3] that g is a projective module and

that every Kähler–Poisson algebra is a Lie-Rinehart algebra. For more
details on Lie-Rinehart algebras, we refer to [9, 14]. It was also proven
that the matrix g defines a metric (in the context of metric Lie-Rinehart
algebras [3]) on g via

g(α, β) =
m∑

i,j=1

α(xi)gijβ(xj),

for α, β ∈ g. Denoting by P the matrix with entries P ij = {xi, xj}, the
Kähler-Poisson condition (2.1) can be written in matrix notation as

ηPgPgP = −P ,

if the algebra A is generated by {x1, ..., xm}. Let us now recall the
concept of a morphism of Kähler-Poisson algebras [4, 5], starting from
the following definition.

Definition 2.2. For a Kähler-Poisson algebra K = (A, g, {x1, ..., xm}),
let Afin ⊆ A denote the subalgebra generated by {x1, ..., xm}.

Clearly, if A is generated by {x1, . . . , xm}, which is often the case in
particular examples, then Afin = A. Note that Afin is not necessarily a
Poisson subalgebra of A in the general case.

Definition 2.3. Let

K = (A, g, {x1, ..., xm}) and K′ = (A′, g′, {y1, ..., ym′})



64 AL-SHUJARY

be Kähler-Poisson algebras together with their modules of inner deriva-
tions g and g′, respectively. A morphism of Kähler-Poisson algebras is a
pair of maps (φ, ψ), with φ : A → A′ a Poisson algebra homomorphism
and ψ : g→ g′ a Lie algebra homomorphism, such that

(1) ψ(aα) = φ(a)ψ(α),
(2) φ(α(a)) = ψ(α)(φ(a)),
(3) φ(g(α, β)) = g′(ψ(α), ψ(β)),
(4) φ(Afin) ⊆ A′fin,

for all a ∈ A and α, β ∈ g.

Let us also recall the following result from [4, 5], where a condition
for two Kähler-Poisson algebras to be isomorphic is formulated. In
this paper we shall repeatedly make use of this result to understand
when two Kähler-Poisson algebras are isomorphic for different choices
of metrics.

Proposition 2.4 ([4]). Let

K = (A, g, {x1, ..., xm}) and K′ = (A′, g′, {y1, ..., ym′})
be Kähler-Poisson algebras. Then K and K′ are isomorphic if and only
if there exists a Poisson algebra isomorphism φ : A → A′ such that
φ(Afin) = A′fin, and

P ′g′P ′ = P ′ATφ(g)AP ′, (2.2)

where Aiα = ∂φ(xi)
∂yα

and (P ′)αβ = {yα, yβ}′.

In what follows, the matrix P ′ will be invertible, implying that (2.2)
is equivalent to g′ = ATφ(g)A. We shall also need the following result
[4, 5].

Proposition 2.5 ([4]). Let

K = (A, g, {x1, ..., xm}) and K′ = (A′, g′, {y1, ..., ym′})
be Kähler-Poisson algebras and let (φ, ψ) : K → K′ be an isomorphism
of Kähler-Poisson algebras. If

ηPgPgP = −P and η′P ′g′P ′g′P ′ = −P ′

then (φ(η)− η′)P ′ = 0.

Note that, in the current situation, Proposition 2.5 implies that φ(η) =
η′ since P ′ is invertible.
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3. Kähler-poisson algebras over rational functions

Let us start by considering C[x, y] together with a (non-zero) linear
Poisson structure; i.e a Poisson bracket determined by

{x, y} = λx+ µy

for λ, µ ∈ C such that at least one of λ, µ is non-zero (note that the
Jacobi identity is satisfied for all choices of λ and µ). The corresponding
Poisson algebras are isomorphic for different choices of λ and µ, and
for definiteness we shall choose a particular presentation.

Proposition 3.1. Let A1 = (C[x, y], {·, ·}1) denote the Poisson algebra
defined by {x, y}1 = λx + µy for λ, µ ∈ C such that {x, y}1 6= 0.
Then A1 is isomorphic to the Poisson algebra A = (C[x, y], {·, ·}) with
{x, y} = x.

Proof. We will show that for every choice of λ, µ ∈ C (with at least one
of them being non-zero), there exists a Poisson algebra automorphism
φ : A1 → A of the form

φ(x) = ax+ by φ(y) = cx+ dy

with a, b, c, d ∈ C and ad− bc 6= 0. Thus, one needs to prove that

{φ(x), φ(y)} = φ({x, y}1) (3.1)

for every allowed choice of λ, µ ∈ C. Starting from the left hand side
we get

{φ(x), φ(y)} = {ax+ by, cx+ dy} = ad{x, y}+ bc{y, x}
= ad{x, y} − bc{x, y} = (ad− bc)x.

From the right hand side, we get

φ({x, y}1) = φ(λx+ µy) = λφ(x) + µφ(y) = λ(ax+ by) + µ(cx+ dy)

= λax+ λby + µcx+ µdy

That is, (3.1) is equivalent to

λa+ µc = ad− bc (3.2)

λb+ µd = 0 (3.3)

If λ = 0 then µ 6= 0, since {x, y}1 6= 0. From (3.3) one gets that d = 0
and inserting this into (3.2) one obtains µc = bc implying that b = −µ
(note that c 6= 0, since ad − bc 6= 0). Hence, choosing e.g. c = 1 and
a = 0, gives φ(x) = −µy and φ(y) = x defining a Poisson algebra
isomorphism.
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If λ 6= 0 then from (3.3) one gets b = −µd
λ

and inserting this into
(3.2) one obtains

λa+ µc = ad+
µcd

λ
⇔ a(λ− d) =

µc

λ
(d− λ),

and choosing d = λ we get b = −µ (note that a 6= 0 since ad− bc 6= 0).
Hence, choosing e.g. a = 1 and c = 0 gives φ(x) = x−µy and φ(y) = λy
defining a Poisson algebra isomorphism. Thus, we have shown that for
every choice of λ, µ ∈ C such that λx + µy 6= 0, one can construct a
Poisson algebra isomorphism φ : A1 → A. �

Now, let C(x, y) denote the rational functions in x, y and let C(x)
denote the rational functions in x. Any Poisson structure on C[x, y]
extends to a Poisson structure on C(x, y) via Leibniz rule

{p, q−1} = −{p, q}q−2

for p, q ∈ C[x, y] with {p, q} ∈ C[x, y]. Thus, in the following, we
let A(x, y) denote the Poisson algebra (C(x, y), {·, ·}) with {x, y} = x.
Given the Poisson algebra A(x, y) we set out to study the possible
Kähler-Poisson algebra structures arising from A(x, y); that is, finding
gij such that (A(x, y), g, {x, y}) is a Kähler-Poisson algebra.

It is easy to check that for an arbitrary symmetric matrix g one
obtains

PgPgP = −{x, y}2 det(g)P = −x2 det(g)P

giving η = (x2 det(g))−1, implying that (A(x, y), g, {x, y}) is a Kähler-
Poisson algebra as long as det(g) 6= 0. Hence, any non-degenerate
(2× 2)-matrix g, with entries in A(x, y), gives rise to a Kähler-Poisson
algebra over A(x, y).

Next, let us recall that all automorphisms of C[x, y] (see [10, 12]) are
given by compositions of

φ(x) = α1x+ β1y + γ1 and φ(y) = α2x+ β2y + γ2

for α1, β1, γ1, α2, β2, γ2 ∈ C, with α1β2 6= α2β1 and

φ(x) = x and φ(y) = y + p(x)

for all p(x) ∈ C[x]. In order to use these to construct Kähler-Poisson
algebra morphisms, we need to check which ones that are Poisson al-
gebra morphisms.

Lemma 3.2. Let A(x, y) = C(x, y) be the rational functions in x, y
with a Poisson structure given by {x, y} = x. Then:

(A) φ(x) = α1x+β1y+γ1 and φ(y) = α2x+β2y+γ2, for α1, β1, γ1, α2, β2, γ2 ∈
C with α1β2 6= α2β1, is a Poisson algebra automorphism of A(x, y) if
β1 = γ1 = 0 and β2 = 1, giving φ(x) = α1x and φ(y) = α2x+ y + γ2.
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(B) φ(x) = αx and φ(y) = y + p(x) is a Poisson algebra automorphism for
all p(x) ∈ C[x] and α ∈ C\{0}.

Proof. (A) For φ to be a Poisson algebra automorphism we need to
check that φ({x, y}) = {φ(x), φ(y)} and since {x, y} = x this is equiv-
alent to φ(x) = {φ(x), φ(y)}. We start from

{φ(x), φ(y)} = {α1x+ β1y + γ1, α2x+ β2y + γ2}
= α1α2{x, x}+ α1β2{x, y}+ β1β2{y, y}+ β1α2{y, x}
= α1β2{x, y}+ β1α2{y, x} = (α1β2 − β1α2)x.

Now, φ(x) = {φ(x), φ(y)} gives α1x+ β1y + γ1 = (α1β2 − β1α2)x. and
one obtains

α1 = α1β2 − β1α2, β1 = 0, γ1 = 0,

implying that β2 = 1 since α1 6= 0 (by the assumption α1β2−α2β1 6= 0).
Hence, we get φ(x) = α1x and φ(y) = α2x+ y + γ2.

(B) For φ to be a Poisson algebra automorphism we need to check
that φ({x, y}) = {φ(x), φ(y)} and since {x, y} = x we show that φ(x) =
{φ(x), φ(y)}. We start from the right side

{φ(x), φ(y)} = {αx, y + p(x)} = α{x, y}+ α{x, p(x)} = αx = φ(x)

since {x, p(x)} = 0 for arbitrary p(x). Hence, φ is a Poisson algebra
automorphism for an arbitrary p(x) ∈ C[x] and α ∈ C\{0}. �

Next, let us show that compositions of Poisson algebra automorphisms
in Lemma 3.2 may be written in a simple form.

Proposition 3.3. Let φ = φ1 ◦φ2 ◦ ... ◦φn be an arbitrary composition
of Poisson algebra of automorphisms of A(x, y), where each φk can be
written as: either φk(x) = α1kx, φk(y) = α2kx+y+γ2 or φk(x) = αkx,
φk(y) = y + pk(x). Then there exists α ∈ C and p(x) ∈ C[x] such that
φ(x) = αx and φ(y) = y + p(x).

Proof. We show that every composition of all Poisson algebra auto-
morphisms in Lemma 3.2 can be written with the form φ(x) = αx
and φ(y) = y + p(x). Clearly, both type (A) and (B) Poisson algebra
automorphisms in Lemma 3.2 can be written in this form. Thus, let
φ1(x) = α1x, φ1(y) = y + p1(x), φ2(x) = α2x and φ2(y) = y + p2(x).
Then

(1) φ1(φ2(x)) = φ1(α2x) = α2φ1(x) = α2α1x = αx.
(2) φ1(φ2(y)) = φ1(y + p2(x)) = y + p1(x) + p2(α1x) = y + p(x).

which are again of the form φ(x) = αx and φ(y) = y + p(x). Hence,
using the argument above, showing that the composition of two such
automorphisms of is again of the same form, one can conclude that the
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composition of an arbitrary number of such automorphisms is of the
required form. �

In order to prove results related to arbitrary automorphisms ofA(x, y),
we will need to consider the case when φ(x) ∈ C(x). In this case, the
possible types of automorphisms can be explicitly described.

Proposition 3.4. Let φ : A(x, y) → A(x, y) be a Poisson algebra
automorphism such that φ(x) ∈ C(x). Then there exist α, β, γ, δ ∈ C
and r(x) ∈ C(x) such that αδ − βγ 6= 0 and

φ(x) =
αx+ β

γx+ δ

φ(y) =
(αx+ β)(γx+ δ)y

(αδ − βγ)x
+ r(x).

Proof. Since φ is invertible then, since φ(x) ∈ C(x), φ(x) has to be an
invertible rational function of x. It is well known that such a function is
of the form φ(x) = αx+β

γx+δ
for some α, β, γ, δ ∈ C with αδ−βγ 6= 0. Since

φ is a Poisson algebra automorphism, one can determine the possible
φ(y) via

{φ(x), φ(y)} = φ({x, y}).
We start from the left hand side

{φ(x), φ(y)} =
{αx+ β

γx+ δ
, φ(y)

}
=
{αx+ β

γx+ δ
, y
}
φ(y)′y

=
(αx+ β

γx+ δ

)′
x
{x, y}φ(y)′y

=
( αδ − βγ

(γx+ δ)2

)
xφ(y)′y,

and from the right hand side we get

φ({x, y}) = φ(x) =
αx+ β

γx+ δ
.

Therefore, we obtain

αδ − βγ
γx+ δ

xφ(y)′y = αx+ β ⇒

(αδ − βγ)xφ(y)′y = (αx+ β)(γx+ δ) ⇒

φ(y) =
(αx+ β)(γx+ δ)y

(αδ − βγ)x
+ r(x).
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for some r(x) ∈ C(x). �

Let us now start to investigate isomorphism classes of metrics for
Kähler-Poisson algebras over A(x, y). The simplest case is when the
metrics are constant; i.e

g =

(
a b
b c

)
and g̃ =

(
ã b̃

b̃ c̃

)
for a, b, c, ã, b̃, c̃ ∈ C.

Proposition 3.5. Let

K = (A(x, y), g, {x, y}) and K̃ = (A(x, y), g̃, {x, y})
be Kähler-Poisson algebras, with

g =

(
a b
b c

)
and g̃ =

(
ã b̃

b̃ c̃

)
where a, b, c, ã, b̃, c̃ ∈ C such that det(g) 6= 0 and det(g̃) 6= 0. Then
K ∼= K̃ if and only if c = c̃.

Proof. First, we assume that c = c̃ and show that K ∼= K̃ by using
an automorphism of the form φ(x) = αx and φ(y) = y + p(x) (cf.
Lemma 3.2). We will do this by applying Proposition 2.4 to show that
there exists α ∈ C and p(x) ∈ C[x] such that

g̃ = ATφ(g)A. (3.4)

First, note that φ(g) = g, since φ is unital. From Aiα = ∂φ(xi)
∂yα

one
computes

A =

(
∂φ(x)
∂x

∂φ(x)
∂y

∂φ(y)
∂x

∂φ(y)
∂y

)
=

(
α 0

p′(x) 1

)
,

giving (3.4) as(
ã b̃

b̃ c

)
=

(
α p′(x)
0 1

)(
a b
b c

)(
α 0

p′(x) 1

)
=

(
αa+ p′(x)b αb+ p′(x)c

b c

)(
α 0

p′(x) 1

)
=

(
α(αa+ p′(x)b) + p′(x)(αb+ p′(x)c) αb+ p′(x)c

αb+ P ′(x)c c

)
,

showing that (3.4) is equivalent to

ã = α2a+ 2αp′(x)b+ (p′(x))2c (3.5)
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b̃ = αb+ p′(x)c (3.6)

First, assume that c 6= 0. From (3.6) we get p′(x) = b̃−αb
c

giving

p(x) = ( b̃−αb
c

)x, and inserting p′(x) in (3.5) we obtain

ã = α2a+ 2α
( b̃− αb

c

)
b+

( b̃− αb
c

)2

c

= α2a+
2αbb̃− 2α2b2

c
+
b̃2c− 2αbb̃c+ α2b2c

c2

Multiplying both sides by c2, we get

ãc2 = α2ac2 + 2αbb̃c− 2α2b2c+ b̃2c− 2αbb̃c+ α2b2c ⇒ α2 =
ãc− b̃2

ac− b2
,

where ac − b2 = det(g) 6= 0 by assumption. Hence, for c = c̃ 6= 0, we
have constructed an isomorphism between K and K̃. If c = c̃ = 0 we

get from (3.6) that α = b̃
b
, where b 6= 0 since det(g) 6= 0. Now, we find

p′(x) from (3.5) by using α = b̃
b

ã = a
( b̃
b

)2

+ 2
( b̃
b

)
p′(x)b+

(
p′(x)

)2
c ⇒ p′(x) =

ãb2 − ab̃2

2b2b̃

(note that b̃ 6= 0 since det(g̃) 6= 0), giving p(x) = ( ãb
2−ab̃2
2b2b̃

)x. Hence, for

c = c̃ = 0, this gives an isomorphism between K and K̃. We conclude
that K ∼= K̃ if c = c̃. Vice versa, assume that K ∼= K̃. We have

η = {x, y}2 det(g) = x2 det(g) and η̃ = {x, y}2 det(g̃) = x2 det(g̃)

with det(g), det(g̃) ∈ C. By using Proposition 2.5, stating that φ(η) =
η̃, one obtains

φ(x2) det(g) = x2 det(g̃) ⇒ φ(x2)

x2
=

det g̃

det(g)
∈ C

implying that φ(x) = αx for some α ∈ C. Furthermore, using Propo-
sition 3.4 with β = 0, γ = 0, δ = 1 one obtains φ(y) = y+ r(x). Hence,
any isomorphism have to be of the form φ(x) = αx and φ(y) = y+r(x),
for some α ∈ C and r(x) ∈ C(x).

Using the above form of the isomorphism in Proposition 2.4 one gets(
ã b̃

b̃ c̃

)
=

(
α r′(x)
0 1

)(
a b
b c

)(
α 0

r′(x) 1

)
=

(
α(αa+ r′(x)b) + r′(x)(αb+ r′(x)c) αb+ r′(x)c

αb+ r′(x)c c

)
,

giving c̃ = c. �
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The above result shows that the isomorphism classes of Kähler-Poisson
algebras with constant metrics can be parametrized by one (complex)
parameter. In the next result, we study the case when the metric only
depends on x, and start by giving sufficient conditions for the Kähler-
Poisson algebras to be isomorphic.

Proposition 3.6. Let K = (A(x, y), g, {x, y}) and K̃ = (A(x, y), g̃, {x, y})
be Kähler-Poisson algebras, with

g =

(
a(x) b(x)
b(x) c(x)

)
and g̃ =

(
ã(x) b̃(x)

b̃(x) c̃(x)

)
where a(x), b(x), c(x), ã(x), b̃(x), c̃(x) ∈ C[x] such that det(g) 6= 0 and
det(g̃) 6= 0. If c(x) 6= 0 and there exists α ∈ C such that:

(1)
(
ã(x)− α2a(αx)

)
c(αx) = b̃(x)2 − α2b(αx)2

(2) b̃(x)−αb(αx)
c(αx)

∈ C[x]

(3) c̃(x) = c(αx)

then K ∼= K̃. If c̃(x) = c(x) = 0 and there exists α ∈ C such that:

(a) b̃(x) = αb(αx)

(b) ã(x)−α2a(αx)
2αb(αx)

∈ C[x]

then K ∼= K̃.

Proof. Let φ be an automorphism of φ(x) = αx and φ(y) = y + p(x).
We will show that one may find α ∈ C and p(x) ∈ C[x] such that

g̃ = ATφ(g)A, (3.7)

implying, via Proposition 2.4, that K ∼= K̃. From Aiα = ∂φ(xi)
∂yα

one
computes

A =

(
∂φ(x)
∂x

∂φ(x)
∂y

∂φ(y)
∂x

∂φ(y)
∂y

)
=

(
α 0

p′(x) 1

)
,

giving (3.7) as(
ã(x) b̃(x)

b̃(x) c̃(x)

)
=

(
α p′(x)
0 1

)(
a(αx) b(αx)
b(αx) c(αx)

)(
α 0

p′(x) 1

)
=

(
α2a(αx) + 2αp′(x)b(αx) + p′(x)2c(αx) αb(αx) + p′(x)c(αx)

αb(αx) + p′(x)c(αx) c(αx)

)
.
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Hence, (3.7) is equivalent to

ã(x) = α2a(αx) + 2αp′(x)b(αx) + p′(x)2c(αx) (3.8)

b̃(x) = αb(αx) + p′(x)c(αx) (3.9)

c̃(x) = c(αx) (3.10)

First, assume that c(x) 6= 0 together with the assumptions (1)–(3).
From (3.9) we get

p′(x) =
b̃(x)− αb(αx)

c(αx)
.

and, by assumption, this is in C[x] which implies that one may integrate
to get p(x). Inserting p′(x) in (3.8) we obtain

ã(x)c(αx) = α2a(αx)c(αx) + 2αb(αx)p′(x)c(αx) + p′(x)2c(αx)2

= α2a(αx)c(αx) + 2αb(αx)
(
b̃(x)− αb(αx)

)
+
(
b̃(x)− αb(αx)

)2

= α2a(αx)c(αx)− α2b(αx)2 + b̃(x)2

that is,
(
ã(x) − α2a(αx)

)
c(αx) = b̃(x)2 − α2b(αx)2 which is true by

assumption.

If c̃(x) = c(x) = 0, we assume that ã(x)−α2a(αx)
2αb(αx)

∈ C[x] and b̃(x) =

αb(αx). Then (3.9) is immediately satisfied and from (3.8) we get

p′(x) = ã(x)−α2a(αx)
2αb(αx)

. By assumption this is in C[x] which implies that

one may integrate to get p(x). This shows that one may explicitly
construct an isomorphism between K and K̃, given the assumptions in
the statement. �

For the sake of illustration, let us use the above result to give a simple
example, and construct two seemingly different metrics that give rise
to isomorphic Kähler-Poisson algebras.

Example 3.7. Let K = (A(x, y), g, {x, y}) and K̃ = (A(x, y), g̃, {x, y})
be Kähler-Poisson algebras, with

g =

(
a(x) 0

0 c(x)

)
and g̃ =

(
a(x) + q(x)2c(x) q(x)c(x)

q(x)c(x) c(x)

)
for a(x), c(x), q(x) ∈ C[x]. We will use Proposition 3.6 to show that
K ∼= K̃. Let us check conditions (1)–(3) with α = 1, b(x) = 0, c̃(x) =

c(x), b̃(x) = q(x)c(x) and

ã(x) = a(x) + q(x)2c(x).
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(1)
(
ã(x)− α2a(αx)

)
c(αx) = b̃(x)2 − α2b(αx)2:(

ã(x)− α2a(αx)
)
c(αx) = q(x)2c(x)2

b̃(x)2 − α2b(αx)2 = q(x)2c(x)2,

(2)
b̃(x)− αb(αx)

c(αx)
= q(x) ∈ C[x],

(3) c̃(x) = c(αx) since α = 1 and c̃(x) = c(x).

For instance, with a(x) = x, c(x) = x2 and q(x) = x3 one concludes
that

g =

(
x 0
0 x2

)
and

(
x+ x8 x5

x5 x2

)
define isomorphic Kähler-Poisson algebras.

The following result shows that, in the more restricted situation where
the metrics are assumed to be diagonal, one describe all isomorphism
classes.

Proposition 3.8. Let K = (A(x, y), g, {x, y}) and K̃ = (A(x, y), g̃, {x, y})
be Kähler-Poisson algebras, with

g =

(
a(x) 0

0 c(x)

)
and g̃ =

(
ã(x) 0

0 c̃(x)

)
where a(x), c(x), ã(x), c̃(x) ∈ C[x] such that det(g) 6= 0 and det(g̃) 6= 0.
Then K ∼= K̃ if and only if there exists α ∈ C such that:

(1) c̃(x) = c(αx)
(2) ã(x) = α2a(αx)

Proof. To show that K ∼= K̃ if (1) and (2) are satisfied, we use Propo-
sition 3.6. Namley,(

ã(x)− α2a(αx)
)
c(αx) = b̃(x)2 − α2b(αx)2

for b = 0 becomes (
ã(x)− α2a(αx)

)
c(αx) = 0

which is satisfied since ã(x) = α2a(αx). (Condition (2) in Proposi-

tion 3.6 is trivially satisfied since b = b̃ = 0.)
Vice versa, assume that K ∼= K̃. We have

η = {x, y}2 det(g) = x2 det(g) and η̃ = {x, y}2 det(g̃) = x2 det(g̃)

with det(g), det(g̃) ∈ C[x]. By using Proposition 2.5, which gives that
φ(η) = η̃, it follows that

φ(x2) det(g) = x2 det(g̃)
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implying that φ(x) ∈ C(x). By Proposition 3.4, if φ(x) ∈ C(x), then
the automorphism has to be of the form

φ(x) = αx+β
γx+δ

and φ(y) = (αx+β)(γx+δ)y
(αδ−βγ)x

+ r(x)

where, α, β, γ, δ ∈ C, r(x) ∈ C(x) and αδ − βγ 6= 0. Moreover, by
Proposition 2.4, one also has

g̃ = ATφ(g)A. (3.11)

with

A =

(
φ(x)′x φ(x)′y
φ(y)′x φ(y)′y

)
=

(
φ(x)′x 0
φ(y)′x φ(y)′y

)
since φ(x)′y = 0, giving(
ã(x) 0

0 c̃(x)

)
=

(
φ(x)′x φ(y)′x

0 φ(y)′y

)(
φ(a(x)) 0

0 φ(c(x))

)(
φ(x)′x 0
φ(y)′x φ(y)′y

)
=

(
φ(a(x))

(
φ(x)′x

)2
+ φ(c(x))

(
φ(y)′x

)2
φ(c(x))φ(y)′xφ(y)′y

φ(c(x))φ(y)′xφ(y)′y φ(c(x))
(
φ(y)′y

)2

)
.

Hence, (3.11) is equivalent to

ã(x) = φ(a(x))(φ(x)′x)
2 + φ(c(x))(φ(y)′x)

2 (3.12)

c̃(x) = φ(c(x))(φ(y)′y)
2 (3.13)

φ(c(x))φ(y)′xφ(y)′y = 0. (3.14)

Now, φ(c(x)) 6= 0 (since det(g) 6= 0) and φ(y)′y 6= 0 (since αδ−βγ 6= 0)
which implies, by (3.14), that

φ(y)′x =
(

(αx+β)(γx+δ)
(αδ−βγ)x

y
)′
x

+ r′(x) = 0.

It follows that r(x) = r0 ∈ C and((αx+ β)(γx+ δ)

(αδ − βγ)x
y
)′
x

= 0 ⇒ (αx+ β)(γx+ δ)

(αδ − βγ)x
= λ ∈ C,

yielding

(αx+ β)(γx+ δ) = λx(αδ − βγ)

and consequently

αγ = 0, βδ = 0 and αδ + βγ = λ(αδ − βγ).
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If α = 0, then β 6= 0, γ 6= 0 (since αδ − βγ 6= 0) implying that δ = 0
and therefore, βγ = −λβγ which implies that λ = −1. Hence, the
automorphism have to be of the form φ(x) = β

γx
and φ(y) = −y + r0.

Using Proposition 2.4 we get(
ã(x) 0

0 c̃(x)

)
=

(
− β
γx

0

0 −1

)(
φ(a(x)) 0

0 φ(c(x))

)(
− β
γx

0

0 −1

)
=

(
− β
γx
φ(a(x)) 0

0 −φ(c(x))

)(
− β
γx

0

0 −1

)
=

(
φ(a(x))

(
− β
γx

)2

0

0 φ(c(x))

)
giving that

ã(x) = φ(a(x))

(
− β

γx

)2

= a(φ(x))

(
− β

γx

)2

=

(
− β

γx

)2

a

(
β

γx

)
However, the above form of the automorphism is not possible since
we have assumed that a(x), ã(x) are non-zero polynomials (and not
rational functions).

If α 6= 0, then γ = 0, δ 6= 0 implying that β = 0 and αδ = λαδ,
which implies that λ = 1. Hence, the automorphism have to be of the
form φ(x) = αx

δ
= α̃x and φ(y) = λy = y + r0. Using Proposition 2.4

we get(
ã(x) 0

0 c̃(x)

)
=

(
α̃ 0
0 −1

)(
φ(a(x)) 0

0 φ(c(x))

)(
α̃ 0
0 −1

)
=

(
α̃2φ(a(x)) 0

0 φ(c(x))

)
giving that

ã(x) = α̃2φ(a(x)) = α̃2a(φ(x)) = α̃2a(α̃x)

c̃(x) = φ(c(x)) = c(φ(x)) = c(α̃x)

which concludes the proof of the statement. �

Let us give another simple example of isomorphic Kähler-Poisson alge-
bras.

Example 3.9. Let K = (A(x, y), g, {x, y}) and K̃ = (A(x, y), g̃, {x, y})
be Kähler-Poisson algebras, with

g =

(
a(x) 0

0 c(x)

)
and g̃ =

(
α2a(αx) 0

0 c(αx)

)
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for a(x), c(x) ∈ C[x] and α ∈ C. Proposition 3.8 shows that K ∼= K̃.
For instance, with a(x) = x, c(x) = 1 + x + x2 and α = −2 one finds
that

g =

(
x 0
0 1 + x+ x2

)
and g̃ =

(
−8x 0

0 1− 2x+ 4x2

)
give isomorphic Kähler-Poisson algebras.

For general metrics, the situation becomes much more complicated.
However, let us finish by giving a sufficient condition for diagonal met-
rics depending on y.

Proposition 3.10. Let K = (A(x, y), g, {x, y}) and K̃ = (A(x, y), g̃, {x, y})
be Kähler-Poisson algebras, with

g(y) =

(
a(y) 0

0 c(y)

)
and g̃(y) =

(
ã(y) 0

0 c̃(y)

)
for a(y), c(y), ã(y), c̃(y) ∈ C[x]. If there exists α, λ ∈ C such that

(1) ã(y) = α2a(y + λ)
(2) c̃(y) = c(y + λ)

then K ∼= K̃.

Proof. Assume ã(y) = α2a(y + λ) and c̃(y) = c(y + λ). To prove that
K ∼= K̃, we will use Proposition 2.4 and show that

g̃ = ATφ(g)A, (3.15)

for an automorphism of the type φ(x) = αx and φ(y) = y + p(x). Let
p(x) = λ, then p′(x) = 0 and we compute

A =

(
α 0

p′(x) 1

)
=

(
α 0
0 1

)
giving (3.15) as(

ã(y) 0
0 c̃(y)

)
=

(
α 0
0 1

)(
φ(a(y)) 0

0 φ(c(y))

)(
α 0
0 1

)
=

(
αa(y + λ) 0

0 c(y + λ)

)(
α 0
0 1

)
=

(
α2a(y + λ) 0

0 c(y + λ)

)
which is true by assumption. From Proposition 2.4 we conclude that
K ∼= K̃. �

For instance, with a(y) = y, c(y) = 1 + y2 , λ = 2 and α = 1 finds that
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g =

(
y 0
0 1 + y2

)
and g̃ =

(
y + 2 0

0 5 + y2 + 4y

)
give rise to isomorphic Kähler-Poisson algebras.

4. Summary

In this paper, we have started to investigate isomorphism classes of
Kähler-Poisson algebras for rational functions in two variables. Al-
though a complete classification has not been obtained there are several
subclasses of metrics which can be explicitly described. Proposition 3.5
shows that the class of constant metrics can be parametrized by one
(complex) parameter, and Proposition 3.8 describes the isomorphism
classes of diagonal metrics only depending on x. Furthermore, several
sufficient conditions are derived (Proposition 3.6 and Proposition 3.10)
and a number of examples are given illustrating that seemingly different
metrics may give rise to isomorphic Kähler-Poisson algebras.
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