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N-FOLD OBSTINATE AND N-FOLD FANTASTIC
(PRE)FILTERS OF EQ-ALGEBRAS

A. PAAD ∗ AND A. JAFARI

Abstract. In this paper, the notions of n-fold obstinate and n-
fold fantastic (pre)filter in EQ-algebras are introduced and the
relationship among n-fold obstinate, maximal, n-fold fantastic and
n-fold (positive) implicative prefilters are investigated. Moreover,
the quotient EQ-algebra induced by an n-fold obstinate filter is
studied and it is proved that the quotient EQ-algebra induced
by an n-fold fantastic filter of a good EQ-algebra with bottom
element 0 is an involutive EQ-algebra. Finally, the relationships
between types of n-fold filters in residuated EQ-algebras is shown
by diagrams.

1. Introduction

EQ-algebras were proposed by Novák and De Baets [13, 14]. One
of the motivations was to introduce a special algebra as the correspon-
dence of truth values for high-order fuzzy type theory (FTT )[12] that
generalizes the system of classical type theory ([1]) in which the sole ba-
sic connective is equality. Analogously, the basic connective in (FTT )
should be fuzzy equality. Another motivation is from the equational
style of proof in logic. It has three connectives: meet ∧, product �
and fuzzy equality ∼. The implication operation → is the derived of
the fuzzy equality ∼ and it together with � no longer strictly form the
adjoint pair in general. EQ-algebras are interesting and important for
studying and researching and residuated lattices are particular cases of
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EQ-algebras. In fact, EQ-algebras generalize non-commutative resid-
uated lattices [4]. From the point of view of logic, the main diference
between residuated lattices and EQ-algebras lies in the way the impli-
cation operation is obtained. While in residuated lattices it is obtained
from (strong) conjunction, in EQ-algebras it is obtained from equiv-
alence. The prefilter theory plays a fundamental role in the general
development of EQ-algebras. From a logical point of view, various
prefilters correspond to various sets of provable formulas. Some types
of prefilters on EQ-algebras based on logical algebras have been widely
studied [2, 5, 9, 16], and some important results have been obtained.
Since residuated lattices (BL-algebras, MV−algebras, MTL-algebras,
R0-algebras) are EQ-algebras, it is natural to extend some notions of
residuated lattices to EQ-algebras and study some of their properties.

For example, Haveshki and Eslami introduced the notions of n-fold
implicative filters and n-fold positive implicative filters in BL-algebras
and they prove some relations between these filters and construct quo-
tient algebras via these filters in [6]. The fantastic filters are studied
by Kondo and Dudek [7] and the notion of n-fold fantastic filters and
n-fold BL-algebras are defined by Lele [8]. As a generalization of obsti-
nate and fantastic filters in BL-algebras, the notion of n-fold obstinate
and n-fold fantastic filters in BL-algebras were proposed by Motamed
and Borumand Saeid [10].

So generalization existing results in BL-algebras and residuated lat-
tices, to EQ-algebras is important tool for studying various algebraic
and logical systems in special case EQ-algebras. In the theory of EQ-
algebras, as various algebraic structures, the notion of (pre)filter is at
the center and so the study of EQ-algebras has experienced a tremen-
dous growth over resent years and the main focus has been on some
types (pre)filter. This motivates us to extend different types of n-fold
( obstinate, fantastic) (pre)filters to EQ-algebras. Hence, we introduce
the notions n-fold obstinate and n-fold fantastic (pre)filters in EQ-
algebras and investigate the properties and characterized them as it
have done in residuated lattices.
This paper is organized as follows: in section 2, the basic definitions,
properties and theorems of EQ-algebras are reviewed. In section 3,
the notion of n-fold obstinate (pre)filter in EQ-algebras is introduced
and several properties and equivalent conditions of them are provided.
Moreover, the relationship among n-fold obstinate, maximal and n-fold
(positive) implicative prefilters are investigated and the extension prop-
erty for n-fold obstinate prefilters in EQ-algebras are studied. In section
4, the notion of n-fold fantastic (pre)filter in EQ-algebras is introduced
and some characteristics of it is presented. Finally, it is proved that
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the quotient EQ-algebra induced by an n-fold fantastic filter of a good
EQ-algebra with bottom element 0 is an involutive EQ-algebra and the
relationships between types of n-fold filters in residuated EQ-algebras
is shown by a diagram.

2. Preliminaries

In this section, we present some definitions and results about EQ-
algebras that will be used in the sequal.

Definition 2.1. [5, 13] An EQ-algebra is an algebra (L,∧,�,∼, 1) of
type (2, 2, 2, 0) satisfying the following axioms:
(E1) (L,∧, 1) is a ∧-semilattice with top element 1. We set x ≤ y if
and only if x ∧ y = x,
(E2) (L,�, 1) is a commutative monoid and � is isotone with respect
to ≤,
(E3) x ∼ x = 1 (reflexivity axiom),
(E4) ((x ∧ y) ∼ z)� (s ∼ x) ≤ z ∼ (s ∧ y) (substitution axiom),
(E5) (x ∼ y)� (s ∼ t) ≤ (x ∼ s) ∼ (y ∼ t) (congruence axiom),
(E6) (x ∧ y ∧ z) ∼ x ≤ (x ∧ y) ∼ x (monotonicity axiom),
(E7) x� y ≤ x ∼ y (boundedness axiom),
For all s, t, x, y, z ∈ L.

EQ-algebra L is called with exchange principle, if x → (y → z) =
y → (x → z), for all x, y, z ∈ L. We denote x̃ = x ∼ 1 and
x→ y = (x ∧ y) ∼ x, for all x, y ∈ L.
If L contains a bottom element 0, then we may define the unary op-
eration ¬ on L by ¬x = x ∼ 0. Moreover, we denote x ⇔ y := (x →
y) ∧ (y → x) and x⇔◦ y := (x→ y)� (y → x), for all x, y ∈ L.

Definition 2.2. [4, 13, 17] Let L be an EQ-algebra. Then we say that
it is:
(i) Separated, if x ∼ y = 1, then x = y, for all x, y ∈ L.
(ii) Good, if x̃ = x, for all x ∈ L.
(iii) Residuated, if (x�y)∧z = x�y if and only if x∧((y∧z) ∼ y) = x,
for all x, y, z ∈ L.
(iv) Involutive( IEQ-algebra ), if it contains a bottom element 0 and
¬¬x = x, for all x ∈ E.
(iv) Multiplicatively relative, if x ∼ y ≤ (x � z) ∼ (y � z), for all
x, y, z ∈ L.

Example 2.3. [9] Let L = (L,∧,∨,�,⇒, 0, 1) be a residuated lattice.
For any x, y ∈ L, we define x ∼ y = (x ⇒ y) ∧ (y ⇒ x). Then
(L,∧,�,∼, 1) is a residuated EQ-algebra. It is easily proved that x→
y = (x ∧ y) ∼ x = x⇒ y, for any x, y ∈ L.
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Lemma 2.4. [5] Let L be an EQ-algebra. Then the following properties
hold for any x, y, z ∈ L:
(i) x ∼ y = y ∼ x, x ∼ y ≤ x→ y, x� y ≤ x ∧ y ≤ x, y,
(ii) x ≤ 1 ∼ x = 1→ x ≤ y → x,
(iii) x→ y ≤ (y → z)→ (x→ z),
(iv) x→ y ≤ (z → x)→ (z → y),
(v) If x ≤ y, then x→ y = 1, x ∼ y = y → x,
(vi) If x ≤ y, then z → x ≤ z → x, y → z ≤ x→ z,
(vii) If L contains a bottom element 0, then ¬0 = 1, ¬x = x→ 0,
(viii) If L separated, then x→ y = 1 if and only if x ≤ y.

Theorem 2.5. [4] Let L be a residuated EQ-algebra. Then (x� y)→
z = x→ (y → z), for any x, y, z ∈ L.

Definition 2.6. [5] Let L be an EQ-algebra and ∅ 6= F ⊆ L. Then F
is called a prefilter of L, if it satisfies for any x, y ∈ L,
(F1) 1 ∈ F ,
(F2) If x ∈ F and x→ y ∈ F , then y ∈ F .
A prefilter F is said to be a filter if it satisfies
(F3) If x→ y ∈ F , then (x� z)→ (y � z) ∈ F , for any x, y, z ∈ L. It
is proved in [5] that {1} is a filter in any separated EQ-algebra and it
is contained in any other filter.

Lemma 2.7. [5] Let F be a prefilter of EQ-algebra L. Then the fol-
lowing hold, for any x, y ∈ L:
(i) x ∈ F and x ≤ y, imply y ∈ F ,
(ii) x, x ∼ y ∈ F implies y ∈ F .
(iii) x, y ∈ F , implies x� y ∈ F , when F is a filter of L.

Definition 2.8. [2, 9, 15, 16] Let L be an EQ-algebra and ∅ 6= F ⊆ L.
Then
(i) F is called an n-fold implicative prefilter, if
(F1) 1 ∈ F ,
(F7) z → ((xn → y) → x) ∈ F and z ∈ F imply x ∈ F , for any
x, y, z ∈ L.
An n-fold implicative prefilter is called an n-fold implicative filter, if
it satisfies (F3). 1-fold implicative (pre)filter is called an implicative
(pre)filter.
(ii) Perfilter F is called an n-fold positive implicative prefilter, if it
satisfies:
(F5) xn → (y → z) ∈ F , xn → y ∈ F imply xn → z ∈ F , for all
x, y, z ∈ L.
If F is a filter and satisfies (F5), then F is called an n-fold positive
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implicative filter. 1-fold positive implicative (pre)filter is called a pos-
itive implicative (pre)filter.
(iii) Prefilter F of L is called an obstinate prefilter, if it satisfies:
(F8) x, y /∈ F implies x→ y ∈ F and y → x ∈ F , for all x, y ∈ L.
If F is a filter and satisfies (F8), then F is called an obstinate filter.
(iv) Prefilter F is called a fantastic prefilter of L if it satisfies:
(F9) y → x ∈ F implies ((x→ y)→ y)→ x ∈ F , for all x, y ∈ L.
If F is a filter and it satisfies (F9), then it is called a fantastic filter of
L.
(v) Prefilter F of L is called a maximal prefilter, if it is proper and
no proper prefilter of L stricly contains F , that is, for each prefilter,
G 6= F , if F ⊆ G, then G = L.

Theorem 2.9. [4] Let F be a prefilter of EQ-algebra L. Define a
relation ≡F on L as follows:

x ≡F y if and only if x ∼ y ∈ F

It follows that ≡F is an equivalence relation on L. Let
L

F
denote the

quotient algebra induced by F and [x]F denote the equivalence class of x
with respect to ≡F . Moreover, if F is a filter, then ≡F is a congruence

relation on L and quotient algebra
L

F
is a separated EQ-algebra.

From now on, we let (L,∧,�,∼, 1) denote an EQ-algebra, unless
otherwise we state.

3. n-Fold Obstinate Prefilter in EQ-algebras

In this section we introduce the concept of n-fold obstinate prefilters
in EQ-algebras and we give some related results.

Definition 3.1. A prefilter F of L is called an n-fold obstinate prefilter
of L, if for all x, y ∈ L,
(F10) x, y /∈ F implies xn → y ∈ F and yn → x ∈ F .

If F is a filter and satisfies (F10), then F is called an n-fold obstinate
filter.

Example 3.2. [2] Let L = {0, a, b, c, 1}, such that 0 < a, b < c < 1.
The following binary operation � and ∼ define an EQ-algebra on L
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and we have the following →:

� 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

∼ 0 a b c 1
0 1 b a 0 0
a b 1 1 a a
b a 1 1 b b
c 0 a b 1 c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Then F = {a, c, 1} is a 2-fold obstinate prefilter of L.

Proposition 3.3. Let F be a prefilter of L. Then for any x, y ∈ L:
(i) If x, y /∈ F implies xn ∼ yn ∈ F , then F is an n-fold obstinate
prefilter of L,
(ii) If x, y /∈ F implies xn ∼ y ∈ F and yn ∼ x ∈ F , then F is an
n-fold obstinate prefilter of L.

Proof. (i) Suppose that x, y /∈ F , implies xn ∼ yn ∈ F , since by Lemma
2.4(i), xn ∼ yn ≤ xn → yn, yn → xn, so by Lemma 2.7(i), we get that
xn → yn ∈ F and yn → xn ∈ F . Moreover, since yn ≤ y and xn ≤ x, we
get that by Lemma 2.4(vi), xn → yn ≤ xn → y and yn → xn ≤ yn → x.
Thus, by Lemma 2.7(i), xn → y ∈ F and yn → x ∈ F . Therefore, F is
an n-fold obstinate prefilter of L.
(ii) Suppose that x, y /∈ F , then xn ∼ y ∈ F and yn ∼ x ∈ F , since by
Lemma 2.4(i), xn ∼ y ≤ xn → y and yn ∼ x ≤ yn → x, so by Lemma
2.7(i), we get that xn → y ∈ F and yn → x ∈ F . Therefore, F is an
n-fold obstinate prefilter of L. �

Proposition 3.4. Let F be a filter of L and xn ⇔◦ yn ∈ F , for all
x, y ∈ L− F . Then F is a n-fold obstinate filter.

Proof. Let xn ⇔◦ yn ∈ F for x, y ∈ L − F . Then (xn → yn) � (yn →
xn) ∈ F . Since by Lemma 2.4(i) and (iv),

(xn → yn)� (yn → xn) ≤ (xn → yn) ∧ (yn → xn)

≤ (xn → y) ∧ (yn → x)

≤ (xn → y), (yn → x)
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By Lemma 2.7(i), we get that xn → y ∈ F and yn → x ∈ F and so F
is an n-fold obstinate filter of L. �

Theorem 3.5. Let L be an EQ-algebra with bottom element 0 and F
be a proper prefilter of L. Then F is an n-fold obstinate prefilter if and
only if x ∈ L− F , implies (¬xn)m ∈ F , for some natural number m.

Proof. Suppose that F is an n-fold obstinate prefilter of L and x ∈ L
such that x /∈ F . Then ¬xn = xn → 0 ∈ F . Hence, for m = 1, we have
(¬xn)m ∈ F . Conversely, let x, y /∈ F . Then we show that xn → y ∈ F
and yn → x ∈ F . By the hypothesis, there are natural numbers m, s
such that (¬xn)m ∈ F and (¬yn)s ∈ F . By (E2) and Lemma 2.4(vi),
we have (¬xn)m ≤ ¬xn ≤ xn → y and (¬yn)s ≤ ¬yn ≤ yn → x and so
by Lemma 2.7(i), we get xn → y ∈ F and yn → x ∈ F . Therefore, F
is an n-fold obstinate filter of L. �

Corollary 3.6. Let L be an EQ-algebra with bottom element 0 and F
be a proper prefilter of L. Then F is a n-fold obstinate prefilter of L if
and only if x ∈ F or (¬xn)m ∈ F , for all x ∈ L and for some natural
numbers m.

Definition 3.7. [17] EQ-algebra L is called a local EQ-algebra, if it
has only one maximal filter. The order of an element x of a EQ-algebra
with bottom element 0, in symbols ord(x), is the least positive integer
m such that xm = 0. If no such m exists, then ord(x) =∞. Moreover,
We have the following notations:

D(L) = {x ∈ L|ord(x) =∞}

Proposition 3.8. [17] Let L be a multiplicatively relative EQ-algebra
with bottom element 0. Then the following statements are equivalent:
(i) D(L) is a filter,
(ii) D(L) is a proper filter,
(iii) L is a local EQ-algebra,
(iv) D(L) is a unique maximal filter.

Theorem 3.9. Let L be a good EQ-algebra with bottom element 0.
Then
(i) If F is an n-fold obstinate filter of L, the every nonunit element of

EQ-algebra
L

F
has order n.

(ii) If L is a multiplicatively relative EQ-algebra, then F is an n-fold

obstinate filter of L if and only if
L

F
is local and {[1]} is a unique

maximal and n-fold obstinate filter of
L

F
.
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Proof. (i) Let L be a good EQ-algebra with bottom element 0 and
[x] 6= [1]. Then x = x ∼ 1 6∈ F and since F is an n-fold obstinate
prefilter, we get that xn ∼ 0 = xn → 0 ∈ F and so [x]n = [0].

Therefore, ord([x]) = n, for any [1] 6= [x] ∈ L

F
.

(ii) Let L be a multiplicatively relative EQ-algebra. If F is an n-fold

obstinate filter of L, then it is clear
L

F
is a multiplicatively relative

EQ-algebra and by (i), we get that D(
L

F
) = {[1]} and since

L

F
is a

separated EQ-algebra, we conclude that {[1]} is a filter of
L

F
and so

by Proposition 3.8,
L

F
is local and {[1]} is unique maximal filter of

L

F
.

Moreover, if [1] 6= [x] ∈ L

F
, then ord([x]) = n and so [x]n = [0]. Hence,

([x]n)− = [1] and so by Theorem 3.5, {[1]} is an n-fold obstinate filter

of
L

F
. �

Proposition 3.10. Every n-fold obstinate prefilter of L is an (n+ 1)-
fold obstinate prefilter.

Proof. Let F be an n-fold obstinate prefilter of L and x, y /∈ F . Then
xn → y ∈ F and yn → x ∈ F . We must show that xn+1 → y ∈ F and
yn+1 → x ∈ F . Since xn+1 ≤ xn and yn+1 ≤ yn, so by Lemma 2.4(vi),
we get that xn → y ≤ xn+1 → y and yn → x ≤ yn+1 → x. Hence, by
Lemma 2.7(i), we have xn+1 → y ∈ F and yn+1 → x ∈ F . Therefore,
F is an (n+ 1)-fold obstinate prefilter of L. �

By the following example we show that the converse of Proposition
3.10 is not correct in general.

Example 3.11. [2] Let L = ({0, a, b, c, d, 1},∧,�,∼, 1) be an EQ-
algebra, with 0 < a < b < c < d < 1 and Cayley tables as follows:

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 0 0 a b
c 0 0 0 a a c
d 0 0 a a a d
1 0 a b c d 1

∼ 0 a b c d 1
0 1 c b a 0 0
a c 1 b a a a
b b b 1 b b b
c a a b 1 c c
d 0 a b c 1 d
1 0 a b c d 1
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→ 0 a b c d 1
0 1 1 1 1 1 1
a 1 1 1 1 1 1
b b b 1 1 1 1
c a a b 1 1 1
d 0 a b c 1 1
1 0 a b c d 1

Then {c, d, 1} is a 2-fold obstinate prefilter of L while it is not a 1-fold
obstinate prefilter because 0, b /∈ {c, d, 1} and b→ 0 = b /∈ {c, d, 1}.

Theorem 3.12. (Extension property)Let F,G be two prefilters of L
such that F ⊆ G. If F is an n-fold obstinate prefilter of L, then so is
G.

Proof. Let F,G be two prefilter of L such that F ⊆ G and F be an
n-fold obstinate prefilter of L. Assume that x ∈ L − G, since F ⊆ G,
we get that x /∈ F , and since F is an n-fold obstinate prefilter, by
Theorem 3.5, there exists m ∈ N such that (¬xn)m ∈ F . Now, by
F ⊆ G, we get that (¬xn)m ∈ G and so by Theorem 3.5, we conclude
that G is an n-fold obstinate prefilter of L. �

[2] Let A and B be two EQ-algebras. A function φ : A → B is a
homomorphism of EQ-algebras, if it satisfies the following conditions,
for any x, y ∈ A:

φ(1) = 1,

φ(x� y) = φ(x)� φ(y),

φ(x ∼ y) = φ(x) ∼ φ(y),

φ(x ∧ y) = φ(x) ∧ φ(y).

Note that φ(x → y) = φ(x) → φ(y) and for X ⊆ A and Y ⊆ B,
φ(X) = {φ(x) | x ∈ X} and φ−1(Y ) = {a ∈ A | φ(a) ∈ Y }. The set of
all homomorphisms from A into B is denoted by Hom(A,B).

Proposition 3.13. Let φ ∈ Hom(A,B) and F,G be two n-fold obsti-
nate prefilters of A,B, respectively. Then
(i) φ−1(G) is an n-fold obstinate prefilter of A.
(ii) If φ is onto, then φ(F ) is an n-fold obstinate prefilter of B.

Proof. Straightforward.
�

For brevity, we need the following notations for all a, z ∈ L and
natural number n:
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a →0 z = z; a →1 z = a → z; a →2 z = a → (a → z); a →n z = a →
(a→n−1 z)

Definition 3.14. [11] Let L be an EQ-algebra and ∅ 6= X ⊆ L. Then
a generated prefilter by X, is the smallest prefilter containing X and
denoted by < X >. We have
< X >:= {a ∈ L | ∃xi ∈ X andm ≥ 1 such that x1 → (x2 → . . . →

(xm → a) . . . ) = 1}.
Moreover, for a prefilter F of L and x ∈ L,

F (x) :=< {x} ∪ F >= {a ∈ L | ∃m ≥ 1 such that x→m a ∈ F}

Proposition 3.15. Let F be an n-fold positive implicative prefilter of
L and x ∈ L− F . Then

< {xn} ∪ F >= {a ∈ L | xn → a ∈ F}

Proof. Let F be an n-fold positive implicative prefilter of L and x ∈
L− F . Then by Definition 3.14,

< {xn} ∪ F >= {a ∈ L | ∃m ≥ 1 such that xn →m a ∈ F}

Since F is an n-fold positive implicative prefilter and
m−times︷ ︸︸ ︷

xn → (xn → . . .→ xn → (xn → a) . . . ) = xn →m a ∈ F and xn →

xn = 1 ∈ F , we get that

(m−1)−times︷ ︸︸ ︷
xn → (xn → . . .→ xn → (xn → a) . . . ) =

xn →(m−1) a ∈ F and by continuing this process, we have xn → a ∈ F .
Hence, < {xn} ∪ F >= {a ∈ L | xn → a ∈ F}.

�

Theorem 3.16. Let F be a maximal and n-fold positive implicative
prefilter of L. Then F is an n-fold obstinate prefilter of L.

Proof. Assume that F is a maximal and n-fold positive implicative
prefilter of L and n is a natural number, x, y ∈ L such that x, y /∈ F .
Then by Proposition 3.15, < {xn} ∪ F >= {z ∈ L|xn → z ∈ F} and
since x 6∈ F , we get that xn 6∈ F . Since if xn ∈ F , then by Lemma
2.4(i) and we have xn ≤ x and so by Lemma 2.7(i), we get that x ∈ F ,
which is impossible. Hence, F (< {xn} ∪ F >⊆ L and since F is
a maximal prefilter of L, we conclude that < {xn} ∪ F >= L. Now,
since y ∈ L, we get that y ∈< {xn} ∪ F >. Thus, xn → y ∈ F and
by similarly, we can obtain yn → x ∈ F . Therefore, F is an n-fold
obstinate prefilter of L.

�
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Theorem 3.17. Let L be an EQ-algebra with bottom element 0. Then
every n-fold obstinate proper filter of L is a maximal and n-fold positive
implicative filter of L.

Proof. Let F be an n-fold obstinate proper filter of L, G be a filter of
L and F ⊆ G ⊆ L. If F 6= G, then there exists x ∈ G such that x /∈ F ,
so by Corollary 3.9, (¬xn)m ∈ F , for some natural number m, and so
we get that (¬xn)m ∈ G. By Lemma 2.4(i), we have (¬xn)m ≤ ¬xn
and so by Lemma 2.7(i), we conclude that xn ∼ 0 = ¬xn ∈ G. Now,
since x ∈ G, by Lemma 2.7(iii), we get that xn ∈ G and so by Lemma
2.7(i), 0 ∈ G. Hence, G = L and so F is a maximal filter of L. Now,
let xn → (y → z) ∈ F and xn → y ∈ F , for x, y ∈ L. Then we consider
two cases:
case (1): if z ∈ F , then by Lemma 2.4(ii), since by Lemma 2.7(i),
z ≤ xn → z, we conclude that xn → z ∈ F .
Case (2): If z 6∈ F , then we have two cases:
(i) if x 6∈ F , then since F is an n-fold obstinate filter of L, we conclude
that xn → z ∈ F .
(ii) If x ∈ F , then by Lemma 2.7(iii), xn ∈ F and by xn → y ∈ F ,
we get that y ∈ F . Now, by xn → (y → z) ∈ F and xn, y ∈ F , we
conclude that z ∈ F , which is impossible. Therefore, F is an n-fold
positive implicative filter of L. �

Theorem 3.18. Every n-fold obstinate prefilter of L is an n-fold im-
plicative prefilter of L.

Proof. Let (xn → y)→ x ∈ F , for x, y ∈ L. We consider two cases:
case (1): If y ∈ F , then by Lemma 2.4(ii), we have y ≤ xn → y and so
by Lemma 2.7(i), we conclude that xn → y ∈ F . Now, by hypothesis,
(xn → y)→ x ∈ F and since xn → y ∈ F , we obtain x ∈ F .
Case (2): If x, y /∈ F , since F is an n-fold obstinate prefilter, we get
that xn → y ∈ F and so we conclude that x ∈ F by hypothesis, which
is contradiction. Therefore, F is an n-fold implicative prefilter of L. �

The following example shows that the converse of Theorem 3.18 is
not correct in general.
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Example 3.19. [2] Let L = ({0, a, b, 1},∧,�,∼, 1) be a chain with
Cayley tables as follows:

� 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b 1
1 0 a b 1

∼ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a 1 1

Then L is an EQ-algebra and {b, 1} is a 2-fold implicative prefilter,
while it is not a 2-fold obstinate prefilter because a, 0 /∈ {b, 1} and
a2 → 0 = a→ 0 = 0 /∈ {b, 1}.

Theorem 3.20. [15] Let F be an n-fold implicative filter of residuated
EQ-algebra L. Then F is an n-fold positive implicative filter of L.

As a direct consequence of Theorem 3.20 and Theorem 3.18, we get
the following theorem:

Theorem 3.21. Every n-fold obstinate prefilter of a residuated EQ-
algebra L is an n-fold positive implicative prefilter of L.

The following example shows that the converse of Theorem 3.21 is
not correct in general.

Example 3.22. Let L be the EQ-algebra defined in Example 3.19.
One can see that {b, 1} is a 2-fold positive implicative prefilter, while
it is not a 2-fold obstinate prefilter of L.

By Theorem 3.16, Theorem 3.17, Theorem 3.18, Theorem 3.20 and
Theorem 3.21, we conclude the following corollary:

Corollary 3.23. Let F be a proper filter of residuated EQ-algebra L.
Then the following conditions are equivalent:
(i) F is a maximal and n-fold implicative filter of L ,
(ii) F is a maximal and n-fold positive implicative filter of L ,
(iii) F is an n-fold obstinate filter of L.

By the following diagrams, we show summarizing the relations be-
tween different types of n-fold filters in residuated EQ-algebras.
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4. n-Fold Fantastic Prefilter in EQ-algebras

In this section we introduce the concept of n-fold fantastic prefilters
in EQ-algebras and we give some related results.

Definition 4.1. Let F be a prefilter of L. Then F is called an n-fold
fantastic prefilter, if it satisfies for all x, y ∈ L:
(F11) y → x ∈ F implies ((xn → y)→ y)→ x ∈ F .
If F is a filter and satisfies (F11), then F is called an n-fold fantastic
filter. 1-fold fantastic (pre)filter is called a fantastic (pre)filter.

Example 4.2. [16] Let L = {0, a, b, 1} be a chain with the following
Cayley tables:

� 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 a b
1 0 a b 1

∼ 0 a b 1
0 1 b a 0
a b 1 b a
b a b 1 b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1
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Then (L,∧,�,∼, 1) is an EQ-algebra. One can check that F = {1} is
a 2-fold fantastic prefilter of L.

Theorem 4.3. [5] Let L be an EQ-algebra. Then the following are
equivalent:
(i) L is good,
(ii) L is separated and satisfies exchange principle,
(iii) L is separated and satisfies x ≤ (x→ y)→ y, for any x, y ∈ L.

Theorem 4.4. Let L be a good EQ-algebra with bottom element 0 and

F be a fantastic filter of L. Then
L

F
is an involutive EQ-algebra.

Proof. Let L be a good EQ-algebra with bottom element 0 and F be

a fantastic filter of L. Then by Theorem 2.9,
L

F
is an EQ-algebra.

Now, since 0 → x = 1 ∈ F and F is a fantastic filter, we get that
¬¬x→ x ∈ F and so ¬¬x∧x ∼ ¬¬x ∈ F , for any x ∈ L. By Theorem
4.3, x ≤ ¬¬x, for any x ∈ L and so x ∼ ¬¬x = ¬¬x ∧ x ∼ ¬¬x ∈ F ,
for any x ∈ L and so [x] = [¬¬x] = ¬¬[x], for any x ∈ L. Therefore,
L

F
is an involutive EQ-algebra.

�

The following example shows that the converse of Theorem 4.4 is not
correct in general.

Example 4.5. [13] Let L = {0, a, b, c, d, e, f, 1} be such that 0 < a <
c < d < e < 1, 0 < b < c < d < f < 1. Multiplication, fuzzy equality
and implication on L are defined below.

� 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 a
b 0 0 0 0 0 0 0 b
c 0 0 0 0 0 0 0 c
d 0 0 0 0 d d d d
e 0 0 0 0 d e d e
f 0 0 0 0 d d d f
1 0 a b c d e f 1

∼ 0 a b c d e f 1
0 1 e f d e a b 0
a e 1 d f c a c a
b f d 1 e c c b b
c d f e 1 c c c c
d c c c c 1 f e d
e a a c c f 1 d e
f b c b c d d 1 f
1 0 a b c e e f 1
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→ 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a e 1 e 1 1 1 1 1
b f f 1 1 1 1 1 1
c d f e 1 1 1 1 1
d c c c c 1 1 1 1
e a a c c f 1 f 1
f b c b c e e 1 1
1 0 a b c d e f 1

Then (L,∧,�,∼, 1) is a good and involutive EQ-algebra. It is clear

that {1} is a filter of L and
L

{1}
is an involutive EQ-algebra, while {1}

is not a fantastic filter because a→ e = 1 ∈ {1} and ((e→ a)→ a)→
e = e 6∈ {1}.
Theorem 4.6. (Extension property)Let L be an EQ-algebra with ex-
change principle and F,G be two prefilters of L, such that F ⊆ G. If
F is an n-fold fantastic prefilter of L, then G is an n-fold fantastic
prefilter of L.

Proof. Let L be an EQ-algebra with exchange principle and F,G be
two prefilters of L, such that F ⊆ G and y → x ∈ G. Then y → ((y →
x) → x) = (y → x) → (y → x) = 1 ∈ F and since F is an n-fold
fantastic prefilter of L, we get that(

((((y → x)→ x)n → y)→ y)→ ((y → x)→ x)
)
∈ F ⊆ G

Now, with exchange principle we have:
(y → x) → (((((y → x) → x)n → y) → y) → x) = (((((y → x) →
x)n → y)→ y))→ ((y → x)→ x) ∈ G and since y → x ∈ G and G is
a prefilter of L, we conclude that

(((((y → x)→ x)n → y)→ y)→ x) ∈ G
Moreover, by Lemma 2.4(i), (iii) and (v), we have

(((((y → x)→ x)n → y)→ y)→ x)→ (((xn → y)→ y)→ x) ≥
((xn → y)→ y)→ ((((y → x)→ x)n → y)→ y) ≥

(((y → x)→ x)n → y)→ (xn → y) ≥
xn → ((y → x)→ x)n = 1

Hence, (((((y → x) → x)n → y) → y) → x) → (((xn → y) → y) →
x) = 1 ∈ G and since G is a prefilter and (((((y → x) → x)n → y) →
y) → x) ∈ G, we conclude that ((xn → y) → y) → x ∈ F . Therefore,
G is an n-fold fantastic prefilter of L.
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�

Proposition 4.7. Every n-fold fantastic prefilter of L is an (n+1)-fold
fantastic prefilter of L.

Proof. Let F be an n-fold fantastic prefilter of L and y → x ∈ F , for
x, y ∈ L. Then ((xn → y) → y) → x ∈ F and since by Lemma 2.4(i),
xn+1 ≤ xn, by Lemma 2.4(vi), we get that xn → y ≤ xn+1 → y and
so (xn+1 → y) → y ≤ (xn → y) → y, hence, ((xn → y) → y) →
x ≤ ((xn+1 → y) → y) → x. Now, since ((xn → y) → y) → x ∈ F ,
by Lemma 2.7(i), we conclude that ((xn+1 → y) → y) → x ∈ F .
Therefore, F is an (n+ 1)-fold fantastic prefilter of L. �

The following example shows that the converse of Proposition 4.7
may not be true.

Example 4.8. [9] Let L = {0, a, b, 1} be a chain with Cayley tables as
follows:

� 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 0 b
1 0 a b 1

∼ 0 a b 1
0 1 a 0 0
a a 1 a a
b 0 a 1 b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Routine calculation shows that (L,∧,�,∼, 1) is a good EQ-algebra.
It is easy to check that F = {1} is a 2-fold fantastic prefilter but
F is not a 1-fold fantastice prefilter because a → b = 1 ∈ F but
((b→ a)→ a)→ b = b 6∈ F .

Theorem 4.9. [15] Every n-fold implicative prefilter of L is a prefilter.

Theorem 4.10. [15] Let F be a prefilter of L. Then the following are
equivalent:
(i) F is an n-fold implicative prefilter of L,
(ii) (xn → y)→ x ∈ F implies, x ∈ F for any x, y ∈ L.

Theorem 4.11. Let L be an EQ-algebra with exchange principle and
F be an n-fold implicative prefilter of L. Then F is an n-fold fantastic
prefilter of L.
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Proof. Let F be an n-fold implicative prefilter of L. Then by Theorem
4.9, F is a prefilter of L. Now, let x, y ∈ L such that y → x ∈ F .
Then by Lemma 2.4(ii), we get that x ≤ ((xn → y) → y) → x,
and by the mathematical induction and by Lemma 2.4(i), we obtain
xn ≤ (((xn → y)→ y)→ x)n, hence, by Lemma 2.4(vi), we get that

(((xn → y)→ y)→ x)n → y ≤ xn → y

and so by Lemma 2.4(vi), (xn → y) → (((xn → y) → y) → x) ≤
((((xn → y)→ y)→ x)n → y)→ (((xn → y)→ y)→ x).

Moreover, by exchange principle property and by Lemma 2.4(iv) and
(vi), we have:

y → x ≤ ((xn → y)→ y)→ ((xn → y)→ x)

= (xn → y)→ (((xn → y)→ y)→ x)

≤ ((((xn → y)→ y)→ x)n → y)→ (((xn → y)→ y)→ x)

and since F is a prefilter, we conclude that ((((xn → y)→ y)→ x)n →
y)→ (((xn → y)→ y)→ x) ∈ F . Now, since F is an n-fold implicative
prefilter, by Theorem 4.10, we conclude that ((xn → y)→ y)→ x ∈ F .
Therefore, F is an n-fold fantastic prefilter of L. �

The following example shows that the converse of Theorem 4.11, is
not correct in general.

Example 4.12. [3] Let L = {0, a, b, c, d, 1} be a lattice such that 0 <
a, b, d, c < 1, a, b, c, d are pairwise incomparable. Define the operations
� and ⇒ by the two tables.

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a b d d a
b 0 b b 0 0 b
c 0 d 0 d d c
d 0 d 0 d d d
1 0 a b c d 1

⇒ 0 a b c d 1
0 1 1 1 1 1 1
a a 1 b c c 1
b c a 1 c c 1
c b a b 1 a 1
d b a b a 1 1
1 0 a b c d 1

Then (L,∧,�,⇒, 1) is a residuated lattice and so (L,∧,�,∼, 1) which
x ∼ y = (x⇒ y)∧ (y ⇒ x) and →=⇒ is an EQ-algebra(See Example
2.3). We can see {1} is a 2-fold fantastic prefilter, but it is not a 2-fold
implicative prefilter. Since (a2 → 0) → a) = (a → 0) → a) = 1 ∈ {1}
and a /∈ {1}.

As a direct consequence of Theorem 3.18 and Theorem 4.11, we
conclude the following corollary:



48 PAAD AND JAFARI

Corollary 4.13. Let L be an EQ-algebra with exchange principle and
F be an n-fold obstinate prefilter of L. Then F is an n-fold fantastic
prefilter of L.

Proposition 4.14. Let φ ∈ Hom(A,B) and F,G be two n-fold fan-
tastic prefilters of EQ-algebras A,B, respectively. Then
(i) φ−1(G) is an n-fold fantastic prefilter of A.
(ii) If φ is onto, then φ(F ) is an n-fold fantastic prefilter of B.

Proof. Straightforward.
�

Theorem 4.15. [15] Let F be a filter of residuated EQ-algebra L.
Then F is an n-fold positive implicative filter of L if and only if xn →
x2n ∈ F , for any x ∈ L.

Proposition 4.16. Let F be an n-fold fantastic and n-fold positive
implicative prefilter of residuated EQ-algebra L. Then F is an n-fold
implicative prefilter.

Proof. Let F be an n-fold fantastic and n-fold positive implicative pre-
filter of residuated EQ-algebra L and (xn → y)→ x ∈ F , for x, y ∈ L.
Then by Definition 4.1, we have

((xn → (xn → y))→ (xn → y))→ x ∈ F.

Since by Lemma 2.4(iii), (xn → x2n) ≤ (x2n → y) → (xn → y), by
Theorem 2.5, we get that xn → x2n ≤ (xn → (xn → y)) → (xn → y).
Hence, by Lemma 2.4(vi), we conclude that

((xn → (xn → y))→ (xn → y))→ x ≤ (xn → x2n)→ x.

Now, since F is a prefilter of L, by Lemma 2.7(i), we get that (xn →
x2n)→ x ∈ F and since F is an n-fold positive implicative prefilter of
L, by Theorem 4.15, we get xn → x2n ∈ F and so x ∈ F . Therefore,
by Theorem 4.10, F is an n-fold implicative prefilter of L. �

As a direct consequence of Theorem 3.20, Theorem 4.11 and Theorem
4.16, we conclude the following corollary:

Corollary 4.17. Let F be a prefilter of residuated EQ-algebra L. Then
F is an n-fold implicative prefilter of L if and only if F is an n-fold
positive implicative and n-fold fantastic prefilter.

By the following diagrams, we show summarizing the relations be-
tween different types of n-fold filters in residuated EQ-algebras.
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5. Conclusion

In this paper, we introduced the notions of n-fold obstinate and n-
fold fantastic (pre)filter in EQ-algebras and we studied several proper-
ties, characterizations and equivalent conditions of them. Moreover, we
investigated the relationship among n-fold obstinate, maximal, n-fold
fantastic and n-fold (positive) implicative prefilters and we provided
the extension property for n-fold obstinate and n-fold fantastic pre-
filters in EQ-algebras. Also, we proved that the quotient EQ-algebra
induced by an n-fold fantastic filter of a good EQ-algebra with bot-
tom element 0 is an involutive EQ-algebra. Finally, we draw diagram
summarizing the relations between different types of n-fold filters in
EQ-algebras.
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